Study on an Accurate Magnetic Network Model of Eccentric Magnet-Shaped Permanent Magnet Synchronous Motor
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Magnetic Circuit Model of the Motor
2.1.1. Eccentric Magnet-Shaped PMSM Model
2.1.2. Stator Magnetic Circuit Model
2.1.3. Air-Gap and Permanent Magnet Magnetic Circuit Model
2.2. Magnetic Circuit Equation of the Motor
3. Simulation Results and Analysis
3.1. Motor Initial Parameters and Model
3.2. Verification of Air-Gap and Tooth Magnetic Density Under No-Load Condition
3.3. Optimization of Permanent Magnet
3.3.1. Optimization of Eccentric Distance of the PM
3.3.2. Optimization of Pole Arc Coefficient of the PM
3.3.3. Optimization of PM’s Maximum Thickness
3.4. Comparison of Motor Performance Before and After Optimization Using MNM
4. Experimental Results
4.1. Motor and Test Platform
4.2. Experimental Verification of No-Load-Induced EMF and Output Torque
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Cao, W.P.; Morrow, J. Design of built-in permanent magnet motor (PMSM) for electric vehicles. Trans. China Electrotech. Soc. 2015, 30, 108–115. [Google Scholar] [CrossRef]
- Tang, R.Y. Modern Permanent Magnet Motors, 2nd ed.; China Machine Press: Beijing, China, 2016; pp. 2–3. [Google Scholar]
- Levi, E.; Bojoi, R.; Profumo, F. Multiphase induction motor drives—A technology status review. IET Electr. Power Appl. 2007, 1, 489–516. [Google Scholar] [CrossRef]
- Xue, S. Research on Multiphase Permanent Magnet Synchronous Motor Drive Technology. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2006. [Google Scholar]
- Qiao, L.; Wang, X.; Chen, X.; Wang, Y. 3-Dimensional finite element analysis of vehicle permanent magnet motor’s rotor. In Proceedings of the International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), Jilin, China, 19–22 August 2011; pp. 1407–1410. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Zheng, Z. Review of multiphase motor control and drive technology. Trans. China Electrotech. Soc. 2017, 32, 17–29. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, W.; Ji, J.; Zeng, Y.; Ling, Z. Review of high-torque performance multiphase permanent magnet motors and their key technologies. Trans. China Electrotech. Soc. 2023, 38, 1403–1420. [Google Scholar] [CrossRef]
- Islam, M.S.; Mir, S.; Sebastian, T.; Underwood, S. Design considerations of sinusoidally excited permanent-magnet machines for low-torque-ripple applications. IEEE Trans. Ind. Appl. 2005, 41, 955–962. [Google Scholar] [CrossRef]
- Iles-Klumpner, D.; Risticevic, M.; Boldea, I. Advanced optimization design techniques for automotive interior permanent magnet synchronous machines. In Proceedings of the IEEE International Conference on Electric Machines and Drives, San Antonio, TX, USA, 15 May 2005. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Zhang, X.; Zheng, Z. Magnetic pole optimization of sinusoidal pole-shaping surface-mounted multi-phase permanent magnet synchronous motors. In Proceedings of the IEEE 6th International Electrical and Energy Conference (CIEEC), Hefei, China, 12–14 May 2023. [Google Scholar] [CrossRef]
- Lateb, R.; Takorabet, N.; Meibody-Tabar, F. Effect of magnet segmentation on the cogging torque in surface-mounted permanent-magnet motors. IEEE Trans. Magn. 2006, 42, 442–445. [Google Scholar] [CrossRef]
- Hu, P.; Wang, D.; Jin, S.; Wei, Y. Optimization study of harmonic pole-cutting technology for arc-shaped magnetic pole permanent magnet motors. Proc. CSEE 2020, 40, 5987–5997. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, D.; Hu, P.; Wei, Y.; Yi, X. Sinusoidal pole-cutting correction model for arc-shaped magnetic pole permanent magnet motors. Trans. China Electrotech. Soc. 2023, 38, 3667–3677. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, Z.Q.; Ombach, G. Torque enhancement of surface-mounted permanent magnet machine using third-order harmonic. IEEE Trans. Magn. 2014, 50, 104–113. [Google Scholar] [CrossRef]
- Chai, F.; Liang, P.; Pei, Y.; Cheng, S. Magnet shape optimization of surface-mounted permanent-magnet motors to reduce harmonic iron losses. IEEE Trans. Magn. 2016, 52, 6301304. [Google Scholar] [CrossRef]
- Evans, S.A. Salient pole shoe shapes of interior permanent magnet synchronous machines. In Proceedings of the 19th International Conference on Electrical Machines (ICEM), Rome, Italy, 6–8 September 2010. [Google Scholar] [CrossRef]
- Laskaris, K.I.; Kladas, A.G. Permanent-magnet shape optimization effects on synchronous motor performance. IEEE Trans. Ind. Electron. 2011, 58, 3776–3783. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, K.; Zheng, Y. Feedback Linearization-Based Direct Torque Control for Asymmetrical Six-Phase PMSM Motor with Back EMF Harmonics Compensation. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 5145–5155. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, K.; Zheng, Y. Luenberger Observer-Based Model Predictive Control for Six-Phase PMSM Motor with Localization Error Compensation. IEEE Trans. Ind. Electron. 2023, 70, 10800–10810. [Google Scholar] [CrossRef]
- Liu, C.; Xu, Y.; Zou, J.; Yu, G.; Zhuo, L. Permanent magnet shape optimization method for PMSM air gap flux density harmonics reduction. CES Trans. Electr. Mach. Syst. 2021, 5, 284–290. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, H.; Zou, T.; Pei, T.; Li, D.; Qu, R. Analytical Calculation of the Airgap Flux in PM Vernier Machine Considering Pole Transition Over Slots Effect. In Proceedings of the 2024 International Conference on Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024. [Google Scholar]
- Zhou, Y.; Li, H.; Ren, N.; Xue, Z.; Wei, Y. Analytical calculation and optimization of magnetic field in spoke-type permanent-magnet machines accounting for eccentric pole-arc shape. IEEE Trans. Magn. 2017, 53, 8107807. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Meng, G.; Zhou, S.; Cao, Q. Analytical calculation of magnetic field and cogging torque in surface-mounted permanent-magnet machines accounting for any eccentric rotor shape. IEEE Trans. Ind. Electron. 2015, 62, 3438–3447. [Google Scholar] [CrossRef]
- Taqavi, O.; Song, P.; Li, Z.; Kar, N.C. Development of a Combined Maxwell’s Equations and Magnetic Equivalent Circuit Solution for Induction Machines in Electric Vehicle Applications. In Proceedings of the 2024 IEEE International Magnetic Conference—Short Papers (INTERMAG Short Papers), Rio de Janeiro, Brazil, 5–10 May 2024. [Google Scholar]
- Wu, B.; Qiao, M.; Xia, Y.; Wang, K. Analytical Magnetic Field Calculation of Outer Rotor Flux-Concentrating PMVM Based on Equivalent Magnetic Circuit Model. In Proceedings of the 2024 3rd Asia Power and Electrical Technology Conference (APET), Fuzhou, China, 15–17 November 2024. [Google Scholar]
- Cao, D.; Zhao, W.; Ji, J.; Wang, Y. Parametric Equivalent Magnetic Network Modeling Approach for Multiobjective Optimization of PM Machine. IEEE Trans. Ind. Electron. 2021, 68, 6619–6629. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Z.; Gao, P.; Li, G. Design Optimization of Permanent Magnet Motors Considering Multiple Operating Conditions. In Proceedings of the 2023 26th International Conference on Electrical Machines and Systems (ICEMS), Zhuhai, China, 5–8 November 2023. [Google Scholar]
- Chen, Z.; Xia, C.; Geng, Q.; Yan, Y. Modeling and analyzing of surface-mounted permanent-magnet synchronous machines with optimized magnetic pole shape. IEEE Trans. Magn. 2014, 50, 8102804. [Google Scholar] [CrossRef]
- Jing, L.; Luo, Z.; Qu, R. Investigation of a surface PM machine with segmented-eccentric magnet poles. IEEE Trans. Appl. Supercond. 2018, 28, 5204305. [Google Scholar] [CrossRef]
- Rani, S.; Jayapragash, R. FEA-based Geometrical Modification of Switched Reluctance Motor for Radial Force Reduction. Chin. J. Electr. Eng. 2024, 10, 124–135. [Google Scholar] [CrossRef]
Slot Number | Current |
---|---|
1 | 2NciA1 |
2 | 2NciA2 |
3 | −2NciC1 |
4 | −2NciC2 |
5 | 2NciB1 |
6 | 2NciB2 |
Parameters | Value | Unit |
---|---|---|
Power rating | 50 | kW |
Pole/slot | 16/96 | |
Rated speed | 300 | r/min |
Winding voltage per phase | 360 | V |
Winding current per phase | 25 | A |
Axial length of the iron core | 280 | mm |
Stator inner diameter | 222.5 | mm |
Stator outer diameter | 295 | mm |
Rotor outer diameter | 208 | mm |
Rotor inner diameter | 74 | mm |
Eccentric distance of PM | 100 | mm |
Maximum thickness of PM | 7 | mm |
Pole arc coefficient | 0.9 | |
Air-gap | 4.7 | mm |
Time | Memory Consumption | |
---|---|---|
MNM | 20–30 s | 5–10 MB |
FEM | 820 s | 650 MB |
Eccentric Distance | THD |
---|---|
130 mm | 8.30% |
140 mm | 3.83% |
150 mm | 4.59% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Yang, K.; Xiong, F.; Luo, C.; Chen, Z.; Hu, H.; Liu, T. Study on an Accurate Magnetic Network Model of Eccentric Magnet-Shaped Permanent Magnet Synchronous Motor. Appl. Sci. 2025, 15, 10026. https://doi.org/10.3390/app151810026
Li T, Yang K, Xiong F, Luo C, Chen Z, Hu H, Liu T. Study on an Accurate Magnetic Network Model of Eccentric Magnet-Shaped Permanent Magnet Synchronous Motor. Applied Sciences. 2025; 15(18):10026. https://doi.org/10.3390/app151810026
Chicago/Turabian StyleLi, Tianle, Kai Yang, Fei Xiong, Cheng Luo, Zhihan Chen, Haiyang Hu, and Tianxiang Liu. 2025. "Study on an Accurate Magnetic Network Model of Eccentric Magnet-Shaped Permanent Magnet Synchronous Motor" Applied Sciences 15, no. 18: 10026. https://doi.org/10.3390/app151810026
APA StyleLi, T., Yang, K., Xiong, F., Luo, C., Chen, Z., Hu, H., & Liu, T. (2025). Study on an Accurate Magnetic Network Model of Eccentric Magnet-Shaped Permanent Magnet Synchronous Motor. Applied Sciences, 15(18), 10026. https://doi.org/10.3390/app151810026