Fiber Quality and Stability of Partially Interspecific Cotton Lines Under Irrigation and Nitrogen Environments
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Genetic Materials
2.3. Experimental Design
2.4. Fertilizer and Irrigation Application
2.5. Crop Management
2.6. Measurements
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zaidi, S.S.E.A.; Mansoor, S.; Paterson, A. The rise of cotton genomics. Trends Plant Sci. 2018, 23, 953–955. [Google Scholar] [CrossRef] [PubMed]
- Engonopoulos, V.; Kouneli, V.; Mavroeidis, A.; Karydogianni, S.; Beslemes, D.; Kakabouki, I.; Papastylianou, P.; Bilalis, D. Cotton versus climate change: The case of Greek cotton production. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12547. [Google Scholar] [CrossRef]
- USDA Foreign Agricultural Service. Cotton and Products Annual—Greece; Report No. GR2025-0001; USDA FAS: Washington, DC, USA, 2025. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Cotton+and+Products+Annual_Rome_Greece_GR2025-0001.pdf (accessed on 24 August 2025).
- Van Der Sluijs, M.H.J. Effect of nitrogen application level on cotton fibre quality. J. Cotton Res. 2022, 5, 9. [Google Scholar] [CrossRef]
- Krieg, D.R.; Hequet, E.F. Fiber Quality Variation within a Cotton Plant as Affected by Genetics and Environment. In Proceedings of the Beltwide Cotton Conferences, New Orleans, LA, USA, 4–7 January 2005; National Cotton Council: New Orleans, LA, USA, 2005; pp. 2380–2385. [Google Scholar]
- Ali, M.A.; Khan, I.A.; Awan, S.I.; Ali, S.; Niaz, S. Genetic of fiber quality traits in Cotton (Gossypium hirsutum L.). Aust. J. Crop Sci. 2008, 2, 10–17. [Google Scholar]
- Saha, S.; Jenkins, J.N.; Wu, J.; McCarty, J.C.; Stelly, D.M. Genetic analysis of agronomic and fiber traits using four interspecific chromos substitution lines in cotton. Plant Breed. 2008, 127, 612–618. [Google Scholar] [CrossRef]
- Zhang, J.; Percy, R.G.; McCarty, J.C. Introgression genetics and breeding between Upland and Pima cotton: A review. Euphytica 2014, 198, 1–12. [Google Scholar] [CrossRef]
- Lacape, J.M.; Nguyen, T.B.; Courtois, B.; Belot, J.T.; Giband, M.; Gourlot, J.P.; Gawryziak, G.; Roques, S.; Hau, B. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci. 2005, 45, 123–140. [Google Scholar] [CrossRef]
- Loden, H.D.; Richmond, T.R. Hybrid vigor in cotton-cytogenetic aspects and practical application. Econ. Bot. 1951, 5, 387–408. [Google Scholar] [CrossRef]
- Marani, A. Heterosis and inheritance of quantitative characters in interspecific crosses of cotton. Crop Sci. 1968, 8, 299–303. [Google Scholar] [CrossRef]
- Meredith, W.R., Jr. Yield and fiber quality potential for second generation cotton hybrids. Crop Sci. 1990, 30, 1045–1048. [Google Scholar] [CrossRef]
- Galanopoulou-Sendouca, S.; Roupakias, D. Performance of cotton F1 Hybrids and its relation to the mean yield of advanced bulk generations. Eur. J. Agron. 1999, 1, 53–62. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Environment effects on cotton fiber carbohydrate concentration and quality. Crop Sci. 2001, 41, 1108–1113. [Google Scholar] [CrossRef]
- Endrizzi, J.E. Genetic analysis of six primary monosomes and one tertiary monosome in Gossypium hirsutum. Genetics 1963, 48, 1625–1633. [Google Scholar] [CrossRef]
- Kohel, R.J.; Endrizzi, J.E.; White, T.G. An evaluation of Gossypium barbadense L. chromosome 6 and 17 in the G. hirsutum L. genome. Crop Sci. 1977, 17, 404–406. [Google Scholar] [CrossRef]
- Mavromatis, A.G.; Roupakias, D.G. Biotechnology: A hope for partial interspecific hybrid in cotton (Gossypium spp). In Cotton Biotechnology, Proceedings of the first Meeting of the Working Group on Cotton Biotechnology, Leuven, Belgium, 22–23 October 1993; Peeters, M.C., Ed.; FAO-Technical Series No.32; FAO: Rome, Italy, 1994; pp. 29–36. [Google Scholar]
- Mavromatis, A.G.; Kantartzi, S.K.; Vlachostergios, D.N.; Xynias, I.N.; Skarakis, G.N.; Roupakias, D.G. Induction of embryo development and fixation of partial interspecific lines after pollination of F1 cotton interspecific hybrids (G. barbadense × G. hirsutum) with pollen from Hibiscus cannabinus. Aust. J. Agric. Res. 2005, 56, 1101–1109. [Google Scholar] [CrossRef]
- Vlachostergios, D.N.; Mavromatis, A.G.; Kantartzi, S.K.; Roupakias, D.G. In-vitro development of obtained after pollination of cotton (G. hirsutum spp) flowers with pollen from okra Abelmoschus esculentus L. Moench. Plant Cell Tiss. Organ Cult. 2006, 88, 109–115. [Google Scholar] [CrossRef]
- Kantarzi, S.; Roupakias, D.G. Production of aneuploids of the cotton hybrid G. barbadense × G. hirsutum L. via intergeneric pollination with Abelmoschus esculentus. Euphytica 2008, 161, 319–327. [Google Scholar] [CrossRef]
- Mahtabi, E.; Farshadfar, E.; Jowkar, M.M. Stability Analysis of Yield and Yield Components in Chickpea Genotypes. Agri. Commun. 2014, 2, 1–8. [Google Scholar]
- Gul, S. Genotype by Environment Interaction for Morphoyield Traits in Upland Cotton. Master’s Thesis, University of Agriculture, Peshawar, Pakistan, 2013. [Google Scholar]
- Riaz, M.; Farooq, J.; Ahmed, S.; Amin, M.; Chattha, W.S.; Ayoub, M.; Kainth, R.A. Stability analysis of different cotton genotypes under normal and water-deficit conditions. J. Integr. Agric. 2019, 18, 1257–1265. [Google Scholar] [CrossRef]
- Mohamed, G.I.A.; Abd-El-Halem, S.H.M.; Ibrahim, E.M.A. A genetic analysis of yield and its components of Egyptian cotton (Gossypium barbadense L.) under divergent environments. Am.-Eurasian J. Agric. Environ. Sci. 2009, 5, 5–13. [Google Scholar]
- Jawdad, D.; Hilali, M.A.; Ayyoubi, Z.; Elias, R.; Al-Rayan, R.; Al-Salti, M.N.; Al-Safadi, B. Response of cotton varieties to different environments: Flowering behavior and fiber quality. Pak. J. Agric. Sci. 2012, 49, 289–298. [Google Scholar]
- Bai, Z.; Bai, W.; Xie, C.; Yu, J.; Dai, Y.; Pei, S.; Zhang, F.; Li, Y.; Fan, J.; Yin, F. Irrigation depth and nitrogen rate effects on seed cotton yield, fiber quality and water-nitrogen utilization efficiency in southern Xinjiang, China. Agric. Water Manag. 2023, 290, 108583. [Google Scholar] [CrossRef]
- Tucker, M.R. Essential Plant Nutrients: Their Presence in North Carolina Soils and Role in Plant Nutrition; Department of Agriculture and Consumer Services, Agronomic Division: Raleigh, NC, USA, 1999; p. 9. Available online: https://digital.ncdcr.gov/Documents/Detail/essential-plant-nutrients-their-presence-in-north-carolina-soils-and-role-in-plant-nutrition/2558624?item=2567833 (accessed on 1 September 2025).
- Khan, A.; Tan, D.K.Y.; Afridi, M.Z.; Luo, H.H.; Tung, S.A.; Ajab, M. Nitrogen fertility and abiotic stresses management in cotton crop: A review. Environ. Sci. Pollut. Res. 2017, 24, 14551–14566. [Google Scholar] [CrossRef]
- Kechagia, U.; Mitsios, J.; Paschalidis, C.; Katranis, N. Effect of nitrogen levels on cotton quality parameters. In Proceedings of the 2nd FAO Consultation of the Interregional Cooperative Research Network on Cotton, Thessaloniki, Greece, 16–19 June 1992. [Google Scholar]
- Boman, R.K.; Westerman, R.L. Nitrogen and mepiquat chloride effects on the production of nonrank, irrigated, short-season cotton. J. Prod. Agric. 1994, 7, 70–75. [Google Scholar] [CrossRef]
- Xanthopoulos, F.P.; Kechagia, O.E.; Batzios, B.P. The effect of nitrogen on characteristic of folliage, yield and quality of cotton. Agric. Res. 1996, 20, 1–8. (In Greek) [Google Scholar]
- Bauer, P.J.; Camerato, J.J.; Roach, S.H. Cotton yield and fiber response to green manures and nitrogen. Agron. J. 1993, 85, 1019–1023. [Google Scholar] [CrossRef]
- Hearn, A.B. Response of cotton to nitrogen and water in a tropical environment III, fibre quality. J. Agric. Sci. 1976, 86, 257–269. [Google Scholar] [CrossRef]
- Hearn, A.B. The principles of cotton water relations and their application in management. In Challenging the Future, Proceedings of the World Cotton Conference, Brisbane, Australia, 14–17 February 1994; Constable, G.A., Forrester, N.W., Eds.; CSIRO: Brisbane, Australia, 1994; pp. 66–92. [Google Scholar]
- Bradow, J.M.; Davidonis, G.H. Quantitation of fiber quality and the cotton production-processing interface: Physiologist’s perspective. J. Cotton Sci. 2000, 4, 34–36. [Google Scholar]
- Pettigrew, W.T. Moisture deficit effects on cotton lint yield, yield components, and boll distribution. Agron. J. 2004, 96, 377–383. [Google Scholar] [CrossRef]
- Lascano, R.J.; Hicks, S.K. Cotton lint yield and fiber quality as a function of irrigation level and termination dates in the Texas high plains: 1996–1998. In Proceedings of the Beltwide Cotton Conference, Orlando, FL, USA, 3–7 January 1999; National Cotton Council of America: Memphis, TN, USA, 1999; pp. 570–571. [Google Scholar]
- Balkcom, K.S.; Reeves, D.W.; Shaw, J.N.; Burmester, C.H.; Curtis, L.M. Cotton yield and fiber quality from irrigated tillage systems in the Tennessee Valley. Agron. J. 2006, 98, 596–602. [Google Scholar] [CrossRef]
- Campbell, B.T.; Bauer, P.J. Genetic variation for yield and fiber quality response to supplemental irrigation within the Pee Dee Upland cotton germplasm collection. Crop Sci. 2007, 47, 591–597. [Google Scholar] [CrossRef]
- Basal, H.; Dagdelen, N.; Unay, A.; Yilmaz, E. Effects of deficit drip irrigation ratios on cotton (Gossypium hirsutum L.) yield and fibre quality. J. Agron. Crop Sci. 2009, 195, 19–29. [Google Scholar] [CrossRef]
- Booker, J.D.; Bordovsky, J.R.; Lascano, J.; Segarra, E. Variable rate irrigation on cotton lint yield and fiber quality. In Proceedings of the Beltwide Cotton Conference, San Antonio, TX, USA, 3–6 January 2006; pp. 1768–1776. [Google Scholar]
- Ramey, H.H., Jr. Stress influences on fiber development. In Cotton Physiology; Mauney, J.R., Stewart, J., Eds.; The Cotton Foundation: Memphis, TN, USA, 1986; pp. 315–359. [Google Scholar]
- McWilliams, D. Drought Strategies for Cotton, Cooperative Extension Service Circular 582; College of Agriculture and Home Economics, New Mexico State University: Las Cruces, NM, USA, 2003. [Google Scholar]
- Snowden, C.; Ritchie, G.; Cave, J.; Keeling, W.; Rajan, N. Multiple irrigation levels affect boll distribution, yield, and fiber micronaire in cotton. Agron. J. 2013, 105, 1536–1544. [Google Scholar] [CrossRef]
- Davidonis, G.H.; Johnson, A.; Landivar, J.; Hinojosa, O. Influence of low-weight seeds and motes on the fiber properties of other cotton seeds. Field Crops Res. 1996, 48, 141–153. [Google Scholar] [CrossRef]
- Greveniotis, V. Impact of the Inputs Level on Yielding Performance and Fiber Quality of Pa7 Partially Interspecific Lines of Cotton. Master’s Thesis, Department of Plant Breeding, Faculty of Agriculture Science, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2008. [Google Scholar]
- Stratilakis, S.N.; Goulas, C.K. Yield performance at three nitrogen rates of a set of honeycomb vs. traditional pedigree selected bread wheat varieties. Eur. J. Agron. 2003, 19, 65–76. [Google Scholar] [CrossRef]
- Darawsheh, M.K.; Beslemes, D.; Kouneli, V.; Tigka, E.; Bilalis, D.; Roussis, I.; Karydogianni, S.; Mavroeidis, A.; Triantafyllidis, V.; Kosma, C.; et al. Environmental and Regional Effects on Fiber Quality of Cotton Cultivated in Greece. Agronomy 2022, 12, 943. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, H.; Dickey, D.A. Principles and Procedures of Statistics. A Biometrical Approach, 3rd ed.; McGraw-Hill: New York, NY, USA, 1997; p. 666. [Google Scholar]
- Fasoula, V.A. Prognostic breeding: A new paradigm for crop improvement. Plant Breed. Rev. 2013, 37, 297–347. [Google Scholar]
- Campbell, B.T.; Jones, M.A. Assessment of genotype × environment interactions for yield and fiber quality in cotton performance trials. Euphytica 2005, 144, 69–78. [Google Scholar] [CrossRef]
- Greveniotis, V.; Sioki, E. Genotype by environment interactions on cotton fiber traits and their implications on variety recommendation. J. Agric. Stud. 2017, 5, 86–106. [Google Scholar] [CrossRef]
- Bradow, J.M.; Bauer, P.J.; Hinojosa, O.; Sassenrath-Cole, G.F. Quantitation of cotton fibre-quality variations arising from boll and plant growth environments. Eur. J. Agron. 1997, 6, 191–204. [Google Scholar] [CrossRef]
- Bradow, J.M.; Bauer, P.J.; Sassenrath-Cole, G.F.; Johnson, R.M. Modulations of fiber properties by growth environment that persist as variations of fiber and yarn quality. In Proceedings of the Beltwide Cotton Conferences, New Orleans, LA, USA, 6–10 January 1997; National Cotton Council: Memphis, TN, USA, 1977; pp. 1351–1360. [Google Scholar]
- Marani, A.; Amirav, A. Effects of Soil Moisture Stress on Two Varieties of Upland Cotton in Israel. The Coastal Plain Region. Exp. Agric. 1971, 7, 213–224. [Google Scholar] [CrossRef]
- Christidis, G.V. The Cotton; University of Thessalaniki: Thessalaniki, Greece, 1965. [Google Scholar]
- Bradow, J.M.; Davidonis, G.H. Effects of environment on fiber quality. In Physiology of Cotton; Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R., Eds.; Springer: New York, NY, USA, 2010; pp. 229–245. [Google Scholar]
- Ma, J.; Geng, Y.; Pei, W.; Wu, M.; Li, X.; Liu, G.; Li, D.; Ma, Q.; Zang, Y.; Yu, S.; et al. Genetic variation of dynamic fiber elongation and its association with fiber quality traits in cotton. BMC Genom. 2018, 19, 882. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, W.; Grover, C.E.; Jiang, K.; Pan, Z.; Guo, B.; Zhu, J.; Su, Y.; Wang, M.; Nie, H.; et al. Genomic and GWAS analyses demonstrate phylogenomic relationships of Gossypium barbadense in China and selection for fibre length, lint percentage and Fusarium wilt resistance. Plant Biotechnol. J. 2022, 20, 691–710. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wang, L.; Wang, X.; Zhang, H.; Zhu, Y.; Guo, J.; Gao, W.; Geng, H.; Chen, Q.; Qu, Y. A high-density genetic map of extra-long staple cotton (Gossypium barbadense) constructed using genotyping-by-sequencing based single nucleotide polymorphic markers and identification of fiber traits-related QTL in a recombinant inbred line population. BMC Genom. 2018, 19, 489. [Google Scholar] [CrossRef] [PubMed]
- Sasser, P.; Shane, J.L. Crop quality—A decade of improvement. In Proceedings of the Beltwide Cotton Conference, Nashville, TN, USA, 12 January 1996; National Cotton Council of America: Memphis, TN, USA, 1996; pp. 9–12. [Google Scholar]
- May, O.L. Genetic variation in fiber quality. In Cotton Fibers: Developmental Biology, Quality Improvement, and Textile Processing; Basra, A.S., Ed.; Food Products Press: Binghamton, NY, USA, 1999; pp. 183–230. [Google Scholar]
- Bednarz, C.W.; Shurley, W.D.; Anthony, W.S.; Nichols, R.L. Yield, quality, and profitability of cotton produced at varying plant densities. Agron. J. 2005, 97, 235–240. [Google Scholar] [CrossRef]
- Tewolde, H.; Fernandez, C.J. Fiber quality response of Pima cotton to nitrogen and phosphorus deficiency. J. Plant Nutr. 2003, 26, 223–235. [Google Scholar] [CrossRef]
- Saleem, M.F.; Bilal, M.F.; Awais, M.; Shahid, M.Q.; Anjum, S.A. Effect of nitrogen on seed cotton yield and fiber qualities of cotton (Gossypium hirsutum L.) cultivars. J. Anim. Plant Sci. 2010, 20, 23–27. [Google Scholar]
- Papastylianou, P.T.; Argyrokastritis, I.G. Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions. Agric. Water Manag. 2014, 142, 127–134. [Google Scholar] [CrossRef]
- Ünlü, M.; Kanber, R.; Koç, D.L.; Tekin, S.; Kapur, B. Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a Mediterranean environment. Agric. Water Manag. 2011, 98, 597–605. [Google Scholar] [CrossRef]
- Bauer, P.J.; Frederick, J.R. Tillage effects on canopy position specific cotton fiber properties on two soils. Crop Sci. 2005, 45, 698–703. [Google Scholar] [CrossRef]
- Witt, T.W.; Ulloa, M.; Schwartz, R.C.; Ritchie, G.L. Response to deficit irrigation of morphological, yield and fiber quality traits of upland (Gossypium hirsutum L.) and Pima (G. barbadense L.) cotton in the Texas High Plains. Field Crops Res. 2020, 249, 107759. [Google Scholar] [CrossRef]
- Greveniotis, V.; Sioki, E.; Ipsilandis, C.G. Estimations of fibre trait stability and type of inheritance in cotton. Czech J. Genet. Plant Breed. 2018, 54, 190–192. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. A Stability Analysis Using AMMI and GGE Biplot Approach on Forage Yield Assessment of Common Vetch in Both Conventional and Low-Input Cultivation Systems. Agriculture 2021, 11, 567. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Estimations on Trait Stability of Maize Genotypes. Agriculture 2021, 11, 952. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Ipsilandis, C.G. Stability, the Last Frontier: Forage Yield Dynamics of Peas under Two Cultivation Systems. Plants 2022, 11, 892. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. Genotype-by-Environment Interaction Analysis for Quantity and Quality Traits in Faba Beans Using AMMI, GGE Models, and Stability Indices. Plants 2023, 12, 3769. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. Stability Dynamics of Main Qualitative Traits in Maize Cultivations across Diverse Environments regarding Soil Characteristics and Climate. Agriculture 2023, 13, 1033. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Zotis, S.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. A Comparative Study on Stability of Seed Characteristics in Vetch and Pea Cultivations. Agriculture 2023, 13, 1092. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Skendi, A.; Korkovelos, A.; Kantas, D.; Zotis, S.; Ipsilandis, C.G. Modeling Stability of Alfalfa Yield and Main Quality Traits. Agriculture 2024, 14, 542. [Google Scholar] [CrossRef]
- Greveniotis, V.; Bouloumpasi, E.; Skendi, A.; Korkovelos, A.; Kantas, D.; Ipsilandis, C.G. Evaluation and Stability of Red and White Trifolium Species for Nutritional Quality in a Mediterranean Environment. Agriculture 2025, 15, 391. [Google Scholar] [CrossRef]
- Delhom, C.D.; Martin, V.B.; Schreiner, M.K. Textile industry needs. J. Cotton Sci. 2017, 21, 210–219. [Google Scholar] [CrossRef]
- Valco, T.D. Fiber Quality Aspects of Cotton Ginning. Handout in Level III Cotton Ginners Short Course Text 2002. Available online: https://cotton.tamu.edu/wp-content/uploads/sites/27/legacy-files/Harvest/Ginning%20Quality%20Aspects.pdf (accessed on 24 August 2025).
- Fasoulas, A.C. The Honeycomb Methodology of Plant Breeding; Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki: Thessaloniki, Greece, 1988; p. 168. [Google Scholar]
- Kadam, K.; Chinchane, V.N.; Deshmukh, S.; Rani, R. Correlation and path analysis of yield and fiber quality traits in upland cotton (Gossypium hirsutum L.). Int. J. Adv. Biol. Chem. Res. 2024, 8, 61–66. [Google Scholar]
- Chapepa, B.; Mubvekeri, W.; Mare, M.; Kutywayo, D. Correlation and path coefficient analysis of polygenic traits of upland cotton genotypes grown in Zimbabwe. Cogent Food Agric. 2020, 6, 1823594. [Google Scholar] [CrossRef]
- Li, S.; Kong, L.; Xiao, X.; Li, P.; Liu, A.; Li, J.; Gong, J.; Gong, W.; Ge, Q.; Shang, H. Genome-wide artificial introgressions of Gossypium barbadense into G. hirsutum reveal superior loci for simultaneous improvement of cotton fiber quality and yield traits. J. Adv. Res. 2023, 53, 1–16. [Google Scholar] [CrossRef]
2006 | 2007 | |||||
---|---|---|---|---|---|---|
Max °C | Min °C | Rainfall mm | Max °C | Min °C | Rainfall mm | |
January | 8.84 | 2.06 | 5.80 | 21.35 | −5.40 | 6.6 |
February | 11.94 | −0.28 | 14.4 | 19.58 | −5.03 | 26.0 |
March | 16.08 | 3.88 | 40.2 | 23.55 | −0.72 | 410 |
April | 21.30 | 7.92 | 59.8 | 29.70 | 1.84 | 12.4 |
May | 28.38 | 10.63 | 7.00 | 35.18 | 8.70 | 54.2 |
June | 32.28 | 16.05 | 60.4 | 42.78 | 12.42 | 38.6 |
July | 33.28 | 18.26 | 39.4 | 46.65 | 13.85 | 2.0 |
August | 35.76 | 18.91 | 7.60 | 41.55 | 13.90 | 29.0 |
September | 29.65 | 14.59 | 81.8 | 35.96 | 8.37 | 26.2 |
October | 22.13 | 12.66 | 87.2 | 28.70 | 1.81 | 50.8 |
November | 16.86 | 3.87 | 23.0 | 23.38 | −0.98 | 32.2 |
December | 11.93 | 0.60 | 25.2 | 17.56 | −6.22 | 15.0 |
M1 | [(Carnakx4S) × H. cannabinus] |
M2 | [(Carnakx4S) × H. cannabinus] |
M3 | [(B403xCoker) × H. cannabinus] |
M4 | [(Carnakx4S) × H. cannabinus] |
M5 | Celia |
Date | I1: 1st Irrigation Level | I2: 2nd Irrigation Level | I3: 3rd Irrigation Level |
---|---|---|---|
Y1: 2006 | |||
5 May | 30 | 30 | 30 |
17 May | 37 | 37 | 37 |
18 June | 0 | 33 | 52 |
2 August | 22 | 36 | 63 |
14 August | 19 | 36 | 63 |
23 August | 17 | 53 | 80 |
Rainfall | 108 | 108 | 108 |
Total (irrigation + rainfall) | 233 | 333 | 433 |
Y2: 2007 | |||
26 April | 40 | 40 | 40 |
14 May | 16 | 16 | 16 |
6 July | 10 | 30 | 54 |
13 July | 30 | 49 | 70 |
23 July | 13 | 24 | 43 |
16 August | 0 | 50 | 76 |
22 August | 10 | 20 | 30 |
Rainfall | 202 | 202 | 202 |
Total (irrigation + rainfall) | 321 | 421 | 521 |
Source of Variation | df | Fiber Length (mm) | Fiber Strength (g tex−1) | Fiber Elongation (%) | Uniformity Index (%) | Micronaire Units | Yellowness (+b) | Reflectance Index (%) |
---|---|---|---|---|---|---|---|---|
Environments (E) | 5 | ** | *** | *** | *** | ** | *** | *** |
REPS/Environments | 12 | ns | ns | ns | ns | ns | ns | ns |
Genotypes (G) | 4 | *** | *** | *** | *** | *** | *** | *** |
Fertilization (F) | 1 | ns | ns | ns | ns | ns | * | ns |
G × E | 20 | ns | * | ns | ns | ns | ns | ns |
F × E | 5 | ns | ns | ns | * | ns | ns | ns |
G × F | 4 | ns | ns | ns | ns | ns | * | ns |
G × F × E | 20 | ns | ns | ns | ns | ns | ns | ns |
CV | 3.8% | 8.2% | 3.8% | 1.7% | 9.1% | 9.5% | 2.6% |
Fiber Length (mm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotypes | I1 | I2 | I3 | Across I | Over Years | Across Year | ||||||
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | I1 | I2 | I3 | ||
M1 | 32.53 a | 33.20 a | 32.35 a | 33.10 a | 32.52 a | 32.78 ab | 32.47 ab | 33.03 ab | 32.87 ab | 32.73 bc | 32.65 a | 32.75 b |
M2 | 31.88 a | 33.00 a | 33.67 a | 33.78 a | 32.72 a | 32.50 b | 32.76 ab | 33.09 ab | 32.44 ab | 33.72 a | 32.61 a | 32.92 ab |
M3 | 31.35 ab | 32.55 a | 32.42 a | 32.58 a | 32.03 a | 33.25 ab | 31.93 b | 32.76 b | 31.95 b | 32.50 c | 32.64 a | 32.36 b |
M4 | 32.72 a | 33.63 a | 33.32 a | 33.72 a | 33.32 a | 33.95 a | 33.12 a | 33.77 a | 33.18 a | 33.52 ab | 33.63 a | 33.44 a |
Μ5 | 29.67 b | 30.38 b | 29.55 b | 29.88 b | 30.27 b | 30.10 c | 29.83 c | 30.12 c | 30.02 c | 29.72 d | 30.18 b | 29.98 c |
Fiber Strength (g tex−1) | ||||||||||||
Genotypes | I1 | I2 | I3 | Across I | Over Years | Across Year | ||||||
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | I1 | I2 | I3 | ||
M1 | 41.52 | 36.38 ab | 41.03 ab | 37.12 | 39.08 ab | 36.13 | 40.54 a | 36.54 ab | 38.95 a | 39.08 a | 37.61 abc | 38.54 ab |
M2 | 41.20 | 38.93 a | 41.28 a | 38.63 | 42.45 a | 37.22 | 41.64 a | 38.26 a | 40.07 a | 39.96 a | 39.83 a | 39.95 a |
M3 | 35.48 | 33.50 b | 37.32 b | 35.45 | 37.70 bc | 35.72 | 36.83 b | 34.89 b | 34.49 b | 36.38 b | 36.71 bc | 35.86 c |
M4 | 41.82 | 36.35 ab | 40.85 ab | 36.18 | 39.43 ab | 37.25 | 40.70 a | 36.59 ab | 39.08 a | 38.52 ab | 38.34 ab | 38.65 ab |
Μ5 | 38.63 | 39.72 a | 37.45 b | 38.62 | 34.40 c | 36.28 | 36.83 b | 38.21 a | 39.20 a | 38.03 ab | 35.34 c | 37.62 b |
Fiber Elongation (%) | ||||||||||||
Genotypes | I1 | I2 | I3 | Across I | Over Years | Across Year | ||||||
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | I1 | I2 | I3 | ||
M1 | 8.02 a | 5.80 a | 7.77 a | 5.90 b | 7.63 b | 6.08 a | 7.81 ab | 5.93 ab | 6.91 a | 6.83 b | 6.86 ab | 6.87 b |
M2 | 7.43 a | 5.60 a | 7.95 a | 5.88 b | 8.70 a | 5.82 a | 8.03 ab | 5.77 b | 6.52 a | 6.92 ab | 7.26 a | 6.89 b |
M3 | 7.35 a | 5.87 a | 7.43 a | 5.73 b | 8.05 ab | 5.50 a | 7.61 b | 5.70 b | 6.61 a | 6.58 b | 6.78 b | 6.66 b |
M4 | 8.02 a | 6.18 a | 8.08 a | 6.78 a | 8.08 ab | 6.05 a | 8.06 a | 6.34 a | 7.10 a | 7.43 a | 7.07 ab | 7.20 a |
Μ5 | 6.32 b | 4.20 b | 6.40 b | 4.68 c | 6.28 c | 4.65 b | 6.33 c | 4.51 c | 5.26 b | 5.42 c | 5.47 c | 5.42 c |
Uniformity Index (%) | ||||||||||||
Genotypes | I1 | I2 | I3 | Across I | Over Years | Across Year | ||||||
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | I1 | I2 | I3 | ||
M1 | 83.73 ab | 86.33 | 83.22 bc | 86.67 | 85.10 | 86.35 | 85.18 ab | 86.45 | 85.03 ab | 84.94 ab | 85.73 | 84.61 ab |
M2 | 83.82 ab | 86.68 | 84.85 ab | 85.37 | 85.17 | 85.18 | 85.23 ab | 85.74 | 85.25 ab | 85.11 ab | 85.18 | 84.02 bc |
M3 | 82.68 b | 85.30 | 82.73 c | 85.55 | 84.17 | 84.77 | 84.20 c | 85.21 | 83.99 b | 84.14 b | 84.47 | 83.19 c |
M4 | 82.78 b | 86.90 | 83.80 abc | 85.80 | 83.52 | 85.63 | 84.74 bc | 86.11 | 84.84 ab | 84.80 ab | 84.58 | 83.37 c |
Μ5 | 86.22 a | 86.30 | 85.33 a | 85.67 | 85.10 | 85.87 | 85.75 a | 85.91 | 86.26 a | 85.50 a | 85.48 | 85.55 a |
Micronaire Units | ||||||||||||
Genotypes | I1 | I2 | I3 | Across I | Over Years | Across Year | ||||||
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | I1 | I2 | I3 | ||
M1 | 3.48 | 3.87 | 3.38 ab | 3.62 | 3.57 | 3.45 | 3.48 a | 3.64 | 3.68 | 3.5 a | 3.51 ab | 3.56 b |
M2 | 3.23 | 3.80 | 3.22 b | 3.67 | 3.27 | 3.57 | 3.24 b | 3.68 | 3.52 | 3.44 ab | 3.42 b | 3.46 bc |
M3 | 3.37 | 3.75 | 3.23 b | 3.52 | 3.23 | 3.75 | 3.28 b | 3.67 | 3.56 | 3.37 ab | 3.49 ab | 3.47 bc |
M4 | 3.15 | 3.97 | 3.03 b | 3.37 | 3.35 | 3.35 | 3.18 b | 3.56 | 3.56 | 3.2 b | 3.35 b | 3.37 c |
Μ5 | 3.58 | 4.00 | 3.75 a | 3.57 | 3.53 | 3.87 | 3.62 a | 3.81 | 3.79 | 3.66 a | 3.70 a | 3.72 a |
Yellowness (+b) | ||||||||||||
Genotypes | I1 | I2 | I3 | Across I | Over Years | Across Year | ||||||
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | I1 | I2 | I3 | ||
M1 | 9.32 a | 8.33 | 9.10 b | 8.13 b | 9.05 a | 8.52 ab | 9.16 b | 8.33 b | 8.83 ab | 8.62 b | 8.78 b | 8.74 b |
M2 | 10.52 a | 8.48 | 10.10 a | 8.93 c | 10.12 a | 9.18 a | 10.24 a | 8.87 a | 9.50 a | 9.52 a | 9.65 a | 9.56 a |
M3 | 8.90 ab | 7.95 | 8.83 b | 8.00 b | 8.58 b | 8.23 ab | 8.77 b | 8.06 b | 8.43 b | 8.42 b | 8.41 b | 8.42 b |
M4 | 8.87 ab | 8.43 | 8.80 b | 7.72 b | 8.65 b | 8.13 b | 8.77 b | 8.09 b | 8.65 ab | 8.26 b | 8.39 b | 8.43 b |
Μ5 | 7.43 b | 7.50 | 7.20 c | 6.95 a | 7.78 c | 6.80 c | 7.47 c | 7.08 c | 7.47 c | 7.08 c | 7.29 c | 7.28 c |
Reflectance Index (%) | ||||||||||||
Genotypes | I1 | I2 | I3 | Across I | Over Years | Across Year | ||||||
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | I1 | I2 | I3 | ||
M1 | 70.65 b | 76.03 b | 71.32 b | 75.87 b | 74.40 b | 71.45 bc | 71.14 b | 75.43 b | 73.34 bc | 73.59 bc | 72.93 bc | 73.29 cd |
M2 | 70.13 b | 75.75 b | 68.63 c | 75.93 b | 74.73 b | 69. 70 c | 69.49 c | 75.47 b | 72.94 c | 72.28 c | 72.22 c | 72.48 d |
M3 | 71.37 b | 75.87 b | 70.75 bc | 76.97 b | 76.50 b | 71.78 b | 71.30 b | 76.44 b | 73.62 bc | 73.86 bc | 74.14 b | 73.87 bc |
M4 | 72.63 ab | 77.52 b | 71.35 b | 76.97 b | 75.50 b | 73.23 b | 72.41 b | 76.66 b | 75.08 b | 74.16 b | 74.37 b | 74.53 b |
Μ5 | 74.82 a | 80.05 a | 75.63 a | 79.35 a | 79.02 a | 75.20 a | 75.22 a | 79.47 a | 77.43 a | 77.49 a | 77.11 a | 77.34 a |
Fiber Quality Traits | I1 | I2 | I3 | Across I | Over Years | Across Year | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | Y1 | Y2 | I1 | I2 | I3 | ||
Fiber length (mm) | 31.63 | 32.55 | 32.26 | 32.61 | 32.17 | 32.52 | 32.02 | 32.55 | 32.09 | 32.44 | 32.34 | 32.29 |
Fiber strength (g tex−1) | 39.73 | 36.98 | 39.59 | 37.20 | 38.61 | 36.52 | 39.31 | 36.90 | 38.36 | 38.39 | 37.57 | 38.12 |
Fiber elongation (%) | 7.43 | 5.53 | 7.53 | 5.79 | 7.75 | 5.62 | 7.57 | 5.65 | 6.48 | 6.64 | 6.69 | 6.61 |
Uniformity index (%) | 83.85 | 86.30 | 83.99 | 85.81 | 84.61 | 85.56 | 85.02 | 85.88 | 85.07 | 84.90 | 85.09 | 84.15 |
Micronaire units | 3.36 | 3.88 | 3.32 | 3.55 | 3.39 | 3.60 | 3.36 | 3.67 | 3.62 | 3.43 | 3.49 | 3.52 |
Yellowness (+b) | 9.01 | 8.14 | 8.81 | 7.95 | 8.84 | 8.17 | 8.88 | 8.09 | 8.58 | 8.38 | 8.50 | 8.49 |
Reflectance index (%) | 71.92 | 77.04 | 71.54 | 77.02 | 76.03 | 72.92 | 71.91 | 76.69 | 74.48 | 74.28 | 74.15 | 74.30 |
Genotypes | Fiber Length (mm) | Fiber Strength (g tex−1) | Fiber Elongation (%) | Uniformity Index (%) | Micronaire Units | Yellowness (+b) | Reflectance Index (%) |
---|---|---|---|---|---|---|---|
M1 | 107 | 134 | 1737 | 38 | 563 | 474 | 94 |
M2 | 75 | 134 | 2542 | 25 | 504 | 439 | 45 |
M3 | 114 | 128 | 2527 | 33 | 567 | 591 | 136 |
M4 | 84 | 102 | 1626 | 41 | 751 | 700 | 118 |
M5 | 89 | 149 | 5571 | 26 | 1381 | 857 | 171 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greveniotis, V.; Bouloumpasi, E.; Skendi, A.; Ipsilandis, C.G. Fiber Quality and Stability of Partially Interspecific Cotton Lines Under Irrigation and Nitrogen Environments. Appl. Sci. 2025, 15, 9684. https://doi.org/10.3390/app15179684
Greveniotis V, Bouloumpasi E, Skendi A, Ipsilandis CG. Fiber Quality and Stability of Partially Interspecific Cotton Lines Under Irrigation and Nitrogen Environments. Applied Sciences. 2025; 15(17):9684. https://doi.org/10.3390/app15179684
Chicago/Turabian StyleGreveniotis, Vasileios, Elisavet Bouloumpasi, Adriana Skendi, and Constantinos G. Ipsilandis. 2025. "Fiber Quality and Stability of Partially Interspecific Cotton Lines Under Irrigation and Nitrogen Environments" Applied Sciences 15, no. 17: 9684. https://doi.org/10.3390/app15179684
APA StyleGreveniotis, V., Bouloumpasi, E., Skendi, A., & Ipsilandis, C. G. (2025). Fiber Quality and Stability of Partially Interspecific Cotton Lines Under Irrigation and Nitrogen Environments. Applied Sciences, 15(17), 9684. https://doi.org/10.3390/app15179684