Modulation of a Rubber Hand Illusion by Different Levels of Mental Workload: An EEG Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Apparatus and Stimuli
2.2.1. Dual N-Back Task
- Mental Demand: How much mental and perceptual activity was required?
- Physical Demand: How much physical activity was required?
- Temporal Demand: How much time pressure did you feel due to the pace of the task?
- Performance: How successful were you in accomplishing the goals of the task?
- Effort: How hard did you have to work to accomplish your level of performance?
- Frustration Level: How annoyed, irritated, or frustrated were you during the task?
2.2.2. Rubber Hand Illusion (RHI)
2.3. Experiment
- Resting (baseline) state 5 min;
- Rubber Hand Illusion 5 min;
- One-back and Two-back tasks for each subject on different days; each task lasts 20 min followed by the NASA TLX questionnaire;
- Rubber Hand Illusion 5 min.
2.4. EEG Recording and Preprocessing
2.5. Sample Entropy of EEG Data
- m: embedding dimension, representing the length of sequences to be compared.
- r: tolerance level, indicating the maximum acceptable difference between two sequences.
- N: length of the time series.
3. Results
3.1. Psychophysiological Results
3.2. Self-Report (NASA TLX) Results
3.3. EEG Results
3.4. Statistical Analysis and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
RHI | Rubber Hand Illusion |
SE | Sample Entropy |
EEG | Electroencephalography |
References
- Martin, M.G.F. Bodily awareness: A sense of ownership. In The Body and the Self; The MIT Press: Cambridge, MA, USA, 1995; pp. 267–289. [Google Scholar]
- Finotti, G.; Garofalo, S.; Costantini, M.; Proffitt, D.R. Temporal dynamics of the Rubber Hand Illusion. Sci. Rep. 2023, 13, 7526. [Google Scholar] [CrossRef]
- Ramakonar, H.; Franz, L.; Lind, C. The rubber hand illusion and its application to clinical neuroscience. J. Clin. Neurosci. 2011, 18, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Zbinden, J.; Ortiz-Catalan, M. The rubber hand illusion is a fallible method to study ownership of prosthetic limbs. Sci. Rep. 2021, 11, 4423. [Google Scholar] [CrossRef]
- Moseley, G.L.; Gallace, A.; Spence, C. Bodily illusions in health and disease: Physiological and clinical perspectives and the concept of a cortical ‘body matrix’. Neurosci. Biobehav. Rev. 2012, 36, 34–46. [Google Scholar] [CrossRef]
- Tsakiris, M. The multisensory basis of the self: From body to identity to others. Q. J. Exp. Psychol. 2017, 70, 597–609. [Google Scholar] [CrossRef]
- Biddiss, E.; Chau, T. Upper-limb prosthetics: Critical factors in device abandonment. Am. J. Phys. Med. Rehabil. 2007, 86, 977–987. [Google Scholar] [CrossRef]
- Othmani, A.; Brahem, B.; Haddou, Y. Machine-learning-based approaches for post-traumatic stress disorder diagnosis using video and EEG sensors: A review. IEEE Sens. J. 2023, 23, 24135–24151. [Google Scholar] [CrossRef]
- Cross, E.S.; Hortensius, R.; Wykowska, A. From social brains to social robots: Applying neurocognitive insights to human–robot interaction. Philos. Trans. R. Soc. B. 2019, 374, 20180024. [Google Scholar] [CrossRef]
- Khan, M.; Ahmad, J.; Gueaieb, W.; De Masi, G.; Karray, F.; El Saddik, A. Joint Multi-Scale Multimodal Transformer for Emotion Using Consumer Devices. IEEE Trans. Consum. Electron. 2025, 71, 1092–1101. [Google Scholar] [CrossRef]
- Prescott, T.J.; Vogeley, K.; Wykowska, A. Understanding the sense of self through robotics. Sci. Robot. 2024, 9, eadn2733. [Google Scholar] [CrossRef]
- Chevalier, P.; Kompatsiari, K.; Ciardo, F.; Wykowska, A. Examining joint attention with the use of humanoid robots—A new approach to study fundamental mechanisms of social cognition. Psychon. Bull. Rev. 2020, 27, 217–236. [Google Scholar] [CrossRef]
- Botvinick, M.; Cohen, J. Rubber hands ‘feel’touch that eyes see. Nature 1998, 391, 756. [Google Scholar] [CrossRef]
- Costantini, M.; Haggard, P. The rubber hand illusion: Sensitivity and reference frame for body ownership. Conscious. Cogn. 2007, 16, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Talsma, D.; Senkowski, D.; Soto-Faraco, S.; Woldorff, M.G. The multifaceted interplay between attention and multisensory integration. Trends Cogn. Sci. 2010, 14, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Tamè, L.; Linkenauger, S.A.; Longo, M.R. Dissociation of feeling and belief in the rubber hand illusion. PLoS ONE 2018, 13, e0206367. [Google Scholar] [CrossRef] [PubMed]
- Fahey, S.; Charette, L.; Francis, C.; Zheng, Z. Multisensory integration of signals for bodily self-awareness requires minimal cognitive effort. Can. J. Exp. Psychol. Rev. Can. Psychol. Exp. 2018, 72, 244. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Ma, K.; Hommel, B. Cognitive load dissociates explicit and implicit measures of body ownership and agency. Psychon. Bull. Rev. 2021, 28, 1567–1578. [Google Scholar] [CrossRef]
- Lucaroni, A.; Bottino, A.; Lamberti, F.; Mariani, G.; Marinelli, A.; Boccardo, N.; Gruppioni, E.; De Michieli, L.; Laffranchi, M.; Barresi, G. Effects of a Memory-Engaging Secondary Task in a Virtual Setting for Stimulating the Embodiment of an Artificial Upper Limb. In Proceedings of the 2024 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO), Hong Kong, 20–22 May 2024; pp. 92–97. [Google Scholar]
- Mariani, G.; Dominici, C.; Tessari, F.; Freddolini, M.; Traverso, S.; De Giuseppe, S.; Cherubini, A.; Gruppioni, E.; De Michieli, L.; Ferraresi, C.; et al. Social Tasks in a Spatial Augmented Training for the Embodiment of Prosthetic Lower Limbs. In Proceedings of the 2024 10th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), Heidelberg, Germany, 1–4 September 2024; pp. 699–704. [Google Scholar]
- Thériault, R.; Landry, M.; Raz, A. The Rubber Hand Illusion: Top-down attention modulates embodiment. Q. J. Exp. Psychol. 2022, 75, 2129–2148. [Google Scholar] [CrossRef]
- Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of science: Mental workload in ergonomics. Ergonomics 2015, 58, 1–17. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Tonoyan, Y.; Chanwimalueang, T.; Mandic, D.P.; Van Hulle, M.M. Discrimination of emotional states from scalp-and intracranial EEG using multiscale Rényi entropy. PLoS ONE 2017, 12, e0186916. [Google Scholar]
- Molle, M.; Marshall, L.; Pietrowsky, R.; Lutzenberger, W.; Fehm, H.L.; Born, J. Dimensional complexity of the EEG indicates a right fronto-cortical locus of attentional control. J. Psychophysiol. 1995, 9, 45–55. [Google Scholar]
- Kane, M.J.; Conway, A.R.A.; Miura, T.K.; Colflesh, G.J.H. Working memory, attention control, and the N-back task: A question of construct validity. J. Exp. Psychol. Learn. Mem. Cogn. 2007, 33, 615. [Google Scholar] [CrossRef]
- Lawlor-Savage, L.; Goghari, V.M. Dual N-back working memory training in healthy adults: A randomized comparison to processing speed training. PLoS ONE 2016, 11, e0151817. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; pp. 139–183. [Google Scholar]
- Kothe, C. Lab Streaming Layer (LSL). 2014. Available online: https://labstreaminglayer.org/#/ (accessed on 25 May 2025).
- Brunner, C.; Delorme, A.; Makeig, S. Eeglab–an open source matlab toolbox for electrophysiological research. Biomed. Eng. Biomed. Tech. 2013, 58, 000010151520134182. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Y.; Beadle, P.J. Independent component analysis of EEG signals. In Proceedings of the 2005 IEEE International Workshop on VLSI Design and Video Technology, Suzhou, China, 28–30 May 2005; pp. 219–222. [Google Scholar]
- Pinheiro, J.C.; Bates, D.M. Linear mixed-effects models: Basic concepts and examples. In Mixed-Effects Models in S and S-Plus; Springer: New York, NY, USA, 2000; pp. 3–56. [Google Scholar]
- Shibuya, S.; Ohki, Y. Mu Rhythm Desynchronization while Observing Rubber Hand Movement in the Mirror: The Interaction of Body Representation with Visuo-Tactile Stimulation. Brain Sci. 2023, 13, 969. [Google Scholar] [CrossRef]
- Milone, V.; Venturella, I.; Crivelli, D.; Balconi, M. The relationship between emotional components and the embodiment effect during the Rubber Hand Illusion: An EEG-fNIRS study. Neuropsychol. Trends 2016, 20, 107. [Google Scholar]
- Golaszewski, S.; Frey, V.; Thomschewski, A.; Sebastianelli, L.; Versace, V.; Saltuari, L.; Trinka, E.; Nardone, R. Neural mechanisms underlying the Rubber Hand Illusion: A systematic review of related neurophysiological studies. Brain Behav. 2021, 11, e02124. [Google Scholar] [CrossRef] [PubMed]
- Della Longa, L.; Mento, G.; Farroni, T. The Development of a Flexible Bodily Representation: Behavioral Outcomes and Brain Oscillatory Activity During the Rubber Hand Illusion in Preterm and Full-Term School-Age Children. Front. Hum. Neurosci. 2021, 15, 702449. [Google Scholar]
- Venturella, I.; Milone, V.; Crivelli, D.; Balconi, M. The role of emotion on body ownership and Rubber Hand Illusion: An EEG-NIRS study. J. Int. Neuropsychol. Soc. 2016, 22, 63–64. [Google Scholar]
- Sciortino, P.; Kayser, C. The rubber hand illusion is accompanied by a distributed reduction of alpha and beta power in the EEG. PLoS ONE 2022, 17, e0271659. [Google Scholar] [CrossRef] [PubMed]
- Kanayama, N.; Morandi, A.; Hiraki, K.; Pavani, F. Causal dynamics of scalp electroencephalography oscillation during the rubber hand illusion. Brain Topogr. 2017, 30, 122–135. [Google Scholar] [CrossRef]
- Roy, R.N.; Charbonnier, S.; Campagne, A.; Bonnet, S. Efficient mental workload estimation using task-independent EEG features. J. Neural Eng. 2016, 13, 026019. [Google Scholar] [CrossRef] [PubMed]
- Berka, C.; Levendowski, D.J.; Lumicao, M.N.; Yau, A.; Davis, G.; Zivkovic, V.T.; Olmstead, R.E.; Tremoulet, P.D.; Craven, P.L. EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 2007, 78, B231–B244. [Google Scholar]
- Causse, M.; Fabre, E.; Giraudet, L.; Gonzalez, M.; Peysakhovich, V. EEG/ERP as a measure of mental workload in a simple piloting task. Procedia Manuf. 2015, 3, 5230–5236. [Google Scholar] [CrossRef]
- Castro, F.; Lenggenhager, B.; Zeller, D.; Pellegrino, G.; D’Alonzo, M.; Di Pino, G. From rubber hands to neuroprosthetics: Neural correlates of embodiment. Neurosci. Biobehav. Rev. 2023, 153, 105351. [Google Scholar] [CrossRef]
- Richman, J.S.; Lake, D.E.; Moorman, J.R. Sample Entropy. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2004; pp. 172–184. Available online: https://www.sciencedirect.com/science/article/pii/S0076687904840114 (accessed on 25 May 2025).
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar]
- Liu, R.; Qi, S.; Hao, S.; Lian, G.; Li, Y.; Yang, H. Drivers’ workload electroencephalogram characteristics in cognitive tasks based on improved multiscale sample entropy. IEEE Access 2023, 11, 42180–42190. [Google Scholar] [CrossRef]
- Jie, X.; Cao, R.; Li, L. Emotion recognition based on the sample entropy of EEG. Biomed. Mater. Eng. 2014, 24, 1185–1192. [Google Scholar]
- Wang, F.; Lin, J.; Wang, W.; Wang, H. EEG-based mental fatigue assessment during driving by using sample entropy and rhythm energy. In Proceedings of the 2015 IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China, 8–12 June 2015; pp. 1906–1911. [Google Scholar]
- Chuckravanen, D. Approximate entropy as a measure of cognitive fatigue: An eeg pilot study. Int. J. Emerg. Trends Sci. Technol. 2014, 1, 1036–1042. [Google Scholar]
- Wang, Q.; Li, Y.; Liu, X. Analysis of feature fatigue EEG signals based on wavelet entropy. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1854023. [Google Scholar] [CrossRef]
- Xiong, Y.; Gao, J.; Yang, Y.; Yu, X.; Huang, W. Classifying driving fatigue based on combined entropy measure using EEG signals. Int. J. Control Autom. 2016, 9, 329–338. [Google Scholar] [CrossRef]
- Tran, Y.; Thuraisingham, R.A.; Wijesuriya, N.; Nguyen, H.T.; Craig, A. Detecting neural changes during stress and fatigue effectively: A comparison of spectral analysis and sample entropy. In Proceedings of the 2007 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala Coast, HI, USA, 2–5 May 2007; pp. 350–353. [Google Scholar]
Term | F-Statistic | DF1 | DF2 | p-Value |
---|---|---|---|---|
(Intercept) | 9.5661 | 1 | 8 | 0.014824 |
MentalDemand | 94.576 | 1 | 8 | 1.0448 × 10−5 |
Task | 0.0079291 | 1 | 8 | 0.93123 |
Entropy_EEG | 23.157 | 1 | 8 | 0.0013346 |
MentalDemand:task | 284.87 | 1 | 8 | 1.5392 × 10−7 |
MentalDemand:Entropy_EEG | 54.729 | 1 | 8 | 7.6348 × 10−5 |
task:Entropy_EEG | 10.328 | 1 | 8 | 0.012354 |
MentalDemand:task:Entropy_EEG | 29.314 | 1 | 8 | 0.00063511 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonoyan, Y.; Maludrottu, S.; Boccardo, N.; Berdondini, L.; Laffranchi, M.; Barresi, G. Modulation of a Rubber Hand Illusion by Different Levels of Mental Workload: An EEG Study. Appl. Sci. 2025, 15, 9682. https://doi.org/10.3390/app15179682
Tonoyan Y, Maludrottu S, Boccardo N, Berdondini L, Laffranchi M, Barresi G. Modulation of a Rubber Hand Illusion by Different Levels of Mental Workload: An EEG Study. Applied Sciences. 2025; 15(17):9682. https://doi.org/10.3390/app15179682
Chicago/Turabian StyleTonoyan, Yelena, Stefano Maludrottu, Nicolò Boccardo, Luca Berdondini, Matteo Laffranchi, and Giacinto Barresi. 2025. "Modulation of a Rubber Hand Illusion by Different Levels of Mental Workload: An EEG Study" Applied Sciences 15, no. 17: 9682. https://doi.org/10.3390/app15179682
APA StyleTonoyan, Y., Maludrottu, S., Boccardo, N., Berdondini, L., Laffranchi, M., & Barresi, G. (2025). Modulation of a Rubber Hand Illusion by Different Levels of Mental Workload: An EEG Study. Applied Sciences, 15(17), 9682. https://doi.org/10.3390/app15179682