Recent Progress and Challenges of Artificial Intelligence in Bioinformatics and New Medicine
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ashley, E.A. Towards precision medicine. Nat. Rev. Genet. 2016, 17, 507–522. [Google Scholar] [CrossRef]
- He, J.; Baxter, S.L.; Xu, J.; Xu, J.; Zhou, X.; Zhang, K. The practical implementation of artificial intelligence technologies in medicine. Nat. Med. 2019, 25, 30–36. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Li, Y.; Li, J.; Meng, J.; Wu, A. Unleashing the potential of artificial intelligence in infectious diseases. Natl. Sci. Rev. 2025, 12, nwaf004. [Google Scholar] [CrossRef]
- Patel, A.U.; Gu, Q.; Esper, R.; Maeser, D.; Maeser, N. The crucial role of interdisciplinary conferences in advancing explainable AI in healthcare. BioMedInformatics 2024, 4, 1363–1383. [Google Scholar] [CrossRef]
- Wang, T.; Luo, Z. Large language models transform biological research: From architecture to utilization. Sci. China Inf. Sci. 2025, 68, 170101. [Google Scholar] [CrossRef]
- Jiang, T.; Cao, S.; Liu, Y.; Zhang, Z.; Liu, B.; Luo, R.; Wang, G.; Wang, Y. cuteFC: Regenotyping structural variants through an accurate and efficient force-calling method. Genome Biol. 2025, 26, 166. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, Y.; Huang, Y.; Zang, T.; Liu, Y. TDLM: A Diffusion Language Model for TCR Sequence Exploration and Generation. In Proceedings of the 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Lisboa, Portugal, 3–6 December 2024; pp. 113–120. [Google Scholar]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef]
- Ranea, J.A.G.; Perkins, J.; Chagoyen, M.; Díaz-Santiago, E.; Pazos, F. Network-based methods for approaching human pathologies from a phenotypic point of view. Genes 2022, 13, 1081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, S.; Wang, Y.; Zhao, T.; Wren, J. HBFormer: A single-stream framework based on hybrid attention mechanism for identification of human-virus protein–protein interactions. Bioinformatics 2024, 40, btae724. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Xu, L.; Han, C.; Tian, Z.; Zou, Q.; Gao, X. Drug–target interaction predictions with multi-view similarity network fusion strategy and deep interactive attention mechanism. Bioinformatics 2024, 40, btae346. [Google Scholar] [CrossRef]
- Barh, D.; Yiannakopoulou, E.C.; Salawu, E.O.; Bhattacharjee, A.; Chowbina, S.; Nalluri, J.J.; Ghosh, P.; Azevedo, V. In silico disease model: From simple networks to complex diseases. In Animal Biotechnology; Academic Press: Cambridge, MA, USA, 2020; pp. 441–460. [Google Scholar]
- Ma, Y.; Jamdade, S.; Konduri, L.; Sailem, H. AI in Histopathology Explorer for comprehensive analysis of the evolving AI landscape in histopathology. npj Digit. Med. 2025, 8, 156. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flex. Electron. 2023, 7, 26. [Google Scholar] [CrossRef]
- Wu, X.; Yang, X.; Dai, Y.; Zhao, Z.; Zhu, J.; Guo, H.; Yang, R. Single-cell sequencing to multi-omics: Technologies and applications. Biomark. Res. 2024, 12, 110. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G. Applications of multi-omics analysis in human diseases. MedComm 2023, 4, e315. [Google Scholar] [CrossRef]
- Zhu, P.; Shu, H.; Wang, Y.; Wang, X.; Zhao, Y.; Hu, J.; Peng, J.; Shang, X.; Tian, Z.; Chen, J.; et al. MAEST: Accurately spatial domain detection in spatial transcriptomics with graph masked autoencoder. Brief. Bioinform. 2025, 26, bbaf086. [Google Scholar] [CrossRef]
- Ballard, J.L.; Wang, Z.; Li, W.; Shen, L.; Long, Q. Deep learning-based approaches for multi-omics data integration and analysis. BioData Min. 2024, 17, 38. [Google Scholar] [CrossRef] [PubMed]
- Hagos, D.H.; Aryal, S.K.; Ymele-Leki, P.; Burge, L.L. AI-driven multimodal colorimetric analytics for biomedical and behavioral health diagnostics. Comput. Struct. Biotechnol. J. 2025, 27, 2219–2232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, J.; Wang, Y.; Wang, X.; Hu, J.; Peng, J.; Shang, X.; Wang, Y.; Wang, T. cfMethylPre: Deep transfer learning enhances cancer detection based on circulating cell-free DNA methylation profiling. Brief. Bioinform. 2025, 26, bbaf303. [Google Scholar] [CrossRef] [PubMed]
- Mezei, T.; Kolcsár, M.; Joó, A.; Gurzu, S. Image analysis in histopathology and cytopathology: From early days to current perspectives. J. Imaging 2024, 10, 252. [Google Scholar] [CrossRef]
- Ma, D.; Fan, C.; Sano, T.; Kawabata, K.; Nishikubo, H.; Imanishi, D.; Sakuma, T.; Maruo, K.; Yamamoto, Y.; Matsuoka, T.; et al. Beyond Biomarkers: Machine Learning-Driven Multiomics for Personalized Medicine in Gastric Cancer. J. Pers. Med. 2025, 15, 166. [Google Scholar] [CrossRef]
- Austin, C.P. Opportunities and challenges in translational science. Clin. Transl. Sci. 2021, 14, 1629–1647. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Y.; Zou, Q.; Xu, L.; Ioshikhes, I. Recall DNA methylation levels at low coverage sites using a CNN model in WGBS. PLoS Comput. Biol. 2023, 19, e1011205. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, H.; Cao, D.; Ning, Z.; Zhu, L.; Liu, X. A Novel Prognostic Model for Gastric Cancer with EP_Dis-Based Co-Expression Network Analysis. Appl. Sci. 2023, 13, 7108. [Google Scholar] [CrossRef]
- Łukaszuk, T.; Krawczuk, J.; Żyła, K.; Kęsik, J. Stability of Feature Selection in Multi-Omics Data Analysis. Appl. Sci. 2024, 14, 11103. [Google Scholar] [CrossRef]
- Raudonis, V.; Bartasiene, R.; Minajeva, A.; Saare, M.; Drejeriene, E.; Kozlovskaja-Gumbriene, A.; Salumets, A. Towards metric-driven difference detection between receptive and nonreceptive endometrial samples using automatic histology image analysis. Appl. Sci. 2024, 14, 5715. [Google Scholar] [CrossRef]
- Islam, T.; Washington, P. Individualized stress mobile sensing using self-supervised pre-training. Appl. Sci. 2023, 13, 12035. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Z. Unlocking Efficiency in Fine-Grained Compositional Image Synthesis: A Single-Generator Approach. Appl. Sci. 2023, 13, 7587. [Google Scholar] [CrossRef]
- Gonciar, D.; Berciu, A.G.; Danku, A.E.; Lorenzovici, N.; Dulf, E.-H.; Mocan, T.; Nicula, S.-M.; Agoston-Coldea, L. The Quantification of Myocardial Fibrosis on Human Histopathology Images by a Semi-Automatic Algorithm. Appl. Sci. 2024, 14, 7696. [Google Scholar] [CrossRef]
- Kim, T.W.; Kwak, K.C. Speech emotion recognition using deep learning transfer models and explainable techniques. Appl. Sci. 2024, 14, 1553. [Google Scholar] [CrossRef]
- Aguilar-Gallardo, C.; Bonora-Centelles, A. Integrating artificial intelligence for academic advanced therapy medicinal products: Challenges and opportunities. Appl. Sci. 2024, 14, 1303. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, X.; Wang, Y.; Peng, J. Recent Progress and Challenges of Artificial Intelligence in Bioinformatics and New Medicine. Appl. Sci. 2025, 15, 9598. https://doi.org/10.3390/app15179598
Wang T, Zhang X, Wang Y, Peng J. Recent Progress and Challenges of Artificial Intelligence in Bioinformatics and New Medicine. Applied Sciences. 2025; 15(17):9598. https://doi.org/10.3390/app15179598
Chicago/Turabian StyleWang, Tao, Xuchao Zhang, Yongtian Wang, and Jiajie Peng. 2025. "Recent Progress and Challenges of Artificial Intelligence in Bioinformatics and New Medicine" Applied Sciences 15, no. 17: 9598. https://doi.org/10.3390/app15179598
APA StyleWang, T., Zhang, X., Wang, Y., & Peng, J. (2025). Recent Progress and Challenges of Artificial Intelligence in Bioinformatics and New Medicine. Applied Sciences, 15(17), 9598. https://doi.org/10.3390/app15179598