Discrete Element Model of Different Moisture Hygroscopic Fertilizer Particles
Abstract
1. Introduction
2. Materials and Methods
2.1. Hygroscopic Fertilizer Particles Parameter Determinations
2.1.1. Physical Characteristics of Hygroscopic Fertilizer Particles
2.1.2. Preparation of Hygroscopic Fertilizer Particles
2.1.3. Angle of Repose of Hygroscopic Fertilizer Particles
2.2. Discrete Elemental Modeling of Hygroscopic Fertilizer Particles
2.2.1. Intrinsic Parameters
2.2.2. Contact Model Parameters
2.3. Construction of the Repose Angle-Discrete Element Parameter Model for HFP
2.3.1. Repose Angle EDEM Simulation of HFP
2.3.2. Simulation Parameter Calibration
2.4. Mathematical Model for Correlating Repose Angle with EDEM Parameters of HFP
3. Results and Discussion
3.1. Modeling the Correlation Between Moisture Content and Repose Angle
3.2. Plackett–Burman Test
3.3. Steepest Ascent Test
3.4. Box–Behnken Test
+ 15.99FI + 5.177 × 10−16B2 − 10.55F2 − 49.59I2
3.5. DEM Parameter Prediction and Validation
3.6. Discussion
4. HFP Discharge Process Simulation and Verification
4.1. HFP Discharge Process EDEM-RecurDyn Joint Simulation
4.2. Bench Experiment of HFP Discharge Process
4.3. Results and Analysis
5. Conclusions
- (1)
- A polynomial regression model of repose angle versus moisture content (Equation (1)) in the HFP moisture content range of 0–6% was established based on physical tests by the cylinder lifting method, and the model correlation coefficient value indicates its high accuracy.
- (2)
- The significant parameters (shear modulus of fertilizer, surface energy, and fertilizer-PC recovery coefficient) and their optimal intervals for DEM of HFP were determined. A repose angle–DEM parameter model (Equation (2)) was also established. Using this model along with the moisture content–repose angle regression equation (Equation (1)), the DEM parameters of HFP with 2% and 6% moisture content were predicted. The repose angle errors of viscous HFP at these moisture contents were 0.39% and 1.42%, respectively, demonstrating the model’s accuracy in predicting HFP discrete element parameters across different moisture contents.
- (3)
- Fertilizer discharge simulations and bench validation tests were conducted using the cam top plate self-cleaning fertilizer discharge device. The relative errors between the simulated single-loop discharge volumes of HFP and the actual volumes were 8.32%, 7.70%, and 6.67%, respectively. These results confirm that the moisture content–DEM parameter correlation model can directly and precisely predict HFP model parameters across varying moisture contents. This study provides research methodologies and theoretical models for predicting DEM parameters of HFP, as well as for designing and developing precision fertilizer discharge technology devices.
- (4)
- This study has limitations as it only examined contact parameters using one brand of granular compound fertilizer as a representative of viscous granular materials. Future research should include comparative studies on other granular fertilizer types (e.g., slow-release and controlled-release fertilizers) to further refine the contact parameter law model for viscous granular materials in granular fertilizers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, C.; He, R.; Shi, Y.; He, L. Structure and operation mode of centrifugal side-throwing organic fertilizer spreader for greenhouses. Powder Technol. 2024, 438, 119457. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Jiang, R.; Song, Y.; Yang, D.; Wang, Z. Influences of grooved wheel structural parameters on fertilizer discharge performance: Optimization by simulation and experiment. Powder Technol. 2023, 418, 118309. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Weng, W.; Wang, Z.; Wang, J.; Yang, D. Design and test of tapered and push plated twin-row fertilizer discharger for deep fertilization in paddy field. Trans. Chin. Soc. Agric. Mach. 2023, 54, 53–62. [Google Scholar] [CrossRef]
- Dun, G.Q.; Wu, X.P.; Ji, X.X.; Ji, W.Y.; Ma, H.Y. Optimized design and test of precisely controlled fertilizer discharger with bevel spirals. Trans. Chin. Soc. Agric. Mach. 2023, 54, 167–174. [Google Scholar] [CrossRef]
- Zeng, Z.W.; Ma, X.; Cao, X.L.; Li, Z.H.; Wang, X.C. Current status and perspectives of the application of discrete element method in agricultural engineering research. Trans. Chin. Soc. Agric. Mach. 2021, 52, 1–20. [Google Scholar] [CrossRef]
- Zhang, G.Z.; Wang, Y.; Liu, H.; Ji, C.; Hou, Q.; Zhou, Y. Design and test of centrifugal side-throw type fertilizer spreader for lotus root field. Trans. Chin. Soc. Agric. Eng. 2021, 37, 37–47. [Google Scholar] [CrossRef]
- Yang, W.W.; Fang, L.Y.; Luo, X.W.; Li, H.; Ye, Y.Q.; Liang, Z.H. Experimental study on the effect of fertilizer outlet parameters of spiral fertilizer discharger on the fertilizing performance. Trans. Chin. Soc. Agric. Eng. 2020, 36, 1–8. [Google Scholar] [CrossRef]
- Yan, Y.F.; Zhao, Q.; Wang, R.; Han, S.; Song, Z.; Tian, F. Discrete element analysis and optimization of collision blending of fertilizer particles in four fluted roller feed distributor. Trans. Chin. Soc. Agric. Mach. 2023, 54, 49–59. [Google Scholar] [CrossRef]
- Sun, X.; Niu, L.; Cai, M.; Liu, Z.; Wang, Z.; Wang, J. Particle motion analysis and performance investigation of a fertilizer discharge device with helical staggered groove wheel. Comput. Electron. Agric. 2023, 213, 108241. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhong, X.K.; Geng, Y.L.; Wei, Z.C.; Hu, H.; Geng, R.Y. Calibration of no-tillage soil parameters based on discrete element nonlinear elasto-plastic contact models. Trans. Chin. Soc. Agric. Eng. 2021, 37, 100–107. [Google Scholar] [CrossRef]
- Yuan, Q.C.; Xu, L.M.; Xing, J.J.; Duan, Z.Z.; Ma, S.; Yu, C.C.; Chen, C. Parameter calibration of a discrete elemental model of organic fertilizer bulk particles in machine applied organic fertilizers. Trans. Chin. Soc. Agric. Eng. 2018, 34, 21–27. [Google Scholar] [CrossRef]
- Wen, X.Y.; Yuan, H.F.; Wang, G.; Jia, H.L. Study on the calibration method of friction factor for discrete element simulation of granular fertilizers. Trans. Chin. Soc. Agric. Mach. 2020, 51, 115–122. [Google Scholar] [CrossRef]
- Han, S.J.; Qi, J.T.; Kan, Z.; Li, Y.P.; Meng, H.W. Study on the calibration of discrete elemental parameters for deep application of bulk stable fertilizer in Xinjiang orchards. Trans. Chin. Soc. Agric. Mach. 2021, 52, 101–108. [Google Scholar] [CrossRef]
- Wang, L.M.; Fan, S.Y.; Cheng, H.S.; Meng, H.P.; Shen, Y.J.; Wang, J.; Zhou, H.B. EDEM-based calibration of swine manure contact parameters. Trans. Chin. Soc. Agric. Eng. 2020, 36, 95–102. [Google Scholar] [CrossRef]
- Zhu, X.H.; Fu, S.K.; Li, X.D.; Wei, Y.Q.; Zhao, W. Study on the generalized calibration method of discrete elemental parameters of sheep manure with different moisture contents. Trans. Chin. Soc. Agric. Mach. 2022, 53, 34–41. [Google Scholar] [CrossRef]
- Bai, J.; Xie, B.; Yan, J.; Zheng, Y.; Liu, N.; Zhang, Q. Moisture content characterization method of wet particles of brown rice based on discrete element simulation. Powder Technol. 2023, 428, 118775. [Google Scholar] [CrossRef]
- Zhao, S.H.; Zhang, X.; Yuan, Y.W.; Hou, L.T.; Yang, R.Q. Design and test of strip fertilizer discharger for powdered organic fertilizer. Trans. Chin. Soc. Agric. Mach. 2022, 53, 98–107. [Google Scholar] [CrossRef]
- Geldart, D.; Abdullah, E.; Hassanpour, A.; Nwoke, L.; Wouters, I. Characterization of powder flowability using measurement of angle of repose. China Particuol. 2006, 4, 104–107. [Google Scholar] [CrossRef]
- Sun, J.; Chen, H.; Duan, J.; Liu, Z.; Zhu, Q. Mechanical properties of the grooved-wheel drilling particles under multivariate interaction influenced based on 3D printing and EDEM simulation. Comput. Electron. Agric. 2020, 172, 105329. [Google Scholar] [CrossRef]
- Zhang, W. Research on Moisture Absorption and Caking Properties and Prevention of Compound Fertilizers. Ph.D. Thesis, East China University of Science and Technology, Shanghai, China, 2012. [Google Scholar]
- Chen, X.F.; Wang, Z.M.; Luo, X.W.; Zang, Y.; Mo, Z.W.; Yang, W.W.; Zhang, M.H. Design and test of 2BDF-3.0 synchronized deep fertilization rice hole directing machine. J. Shenyang Agric. Univ. 2018, 49, 309–314. [Google Scholar]
- Sun, Z.Y.; Li, X.Y.; Wang, S.J.; Feng, G.Z.; Yan, L.; Gao, Q. Study on the influencing factors of hygroscopic bonding of commercial organic fertilizers mixed with inorganic fertilizers. J. Jilin Agric. Univ. 2025, 47, 481–488. [Google Scholar] [CrossRef]
- Lu, F. Design and Test of Cam Top Plate Self-Cleaning Fertilizer Device. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2020. [Google Scholar] [CrossRef]
- Liu, D.W.; Duan, J.P.; Chen, X.Y.; Xiong, Z.K.; Wang, X.S.; Xie, F.P. EDEM-based calibration of discrete elemental friction parameters for rice seeds. J. Shenyang Agric. Univ. 2023, 54, 189–195. [Google Scholar]
- Zhao, J.J. ModModeling and Study of Fertilizer Particle Density in Pipelines Based on Discrete Elemental Analysis. Master’s Thesis, Heilongjiang Bayi Agricultural University, Daqing, China, 2022. [Google Scholar] [CrossRef]
- Chen, G.B.; Wang, Q.J.; Li, H.W.; He, J.; Lu, C.Y.; Zhang, X.Y. Design and test of solid organic fertilizer crushing strip applicator. Trans. Chin. Soc. Agric. Eng. 2023, 39, 13–24. [Google Scholar] [CrossRef]
- Zhu, B.Y.; Liu, J.A.; Chen, X.F.; Yu, J.J.; Liu, M.H.; Zhang, Q.S. Parameter Calibration of Soil in the Poyang Lake Region Based on Discrete Element Method. Am. J. Biochem. Biotechnol. 2020, 16, 538–548. [Google Scholar] [CrossRef]
- Feng, X.; Liu, T.; Wang, L.; Yu, Y.; Zhang, S.; Song, L. Investigation on JKR surface energy of high-humidity maize grains. Powder Technol. 2021, 382, 406–419. [Google Scholar] [CrossRef]
- Aori, G.L.; Zhang, W.J.; Wang, S.; Liu, W.H. Determination of physical contact parameters in sunflower seeds and calibration by discrete element simulation. J. Agric. Mech. Res. 2023, 45, 139–147. [Google Scholar] [CrossRef]
- Liu, H.; Lu, Q.; Wang, J.; Zhou, W.; Wang, N. Rapid calibration method for discrete element simulation parameters of columnar granular organic fertilizer with variable moisture content. Powder Technol. 2024, 448, 120354. [Google Scholar] [CrossRef]
- Deng, X.; Wu, W.; You, J.; Jiang, R.; Li, M.; Li, J.; Tao, Y.; Cheng, H.; Zhou, W.; Deng, F.; et al. Calibration of the Edinburgh Elasto-Plastic Adhesion contact model for modelling clay-moist soil with high moisture content. Comput. Electron. Agric. 2025, 237, 110518. [Google Scholar] [CrossRef]
- Elskamp, F.; Kruggel-Emden, H. DEM simulations of screening processes under the influence of moisture. Chem. Eng. Res. Des. 2018, 136, 593–609. [Google Scholar] [CrossRef]
- Kim, H.; Park, S.-W. DEM simulation for shear behavior in unsaturated granular materials at low-stress state. Comput. Geotech. 2020, 122, 103551. [Google Scholar] [CrossRef]
Materials | Density g/cm3 | Poisson Ratio | Shear Modulus/pa |
---|---|---|---|
Fertilizers | 1.662~1.766 | 0.2~0.5 | 1 × 107~3.6 × 107 |
PC board | 1.18 | 0.39 | 9 × 109 |
Parameters | Values |
---|---|
Static friction coefficient of fertilizer-fertilizer | 0.2~1.5 |
Dynamic friction coefficient of fertilizer-fertilizer | 0.4~1 |
Recover coefficient of fertilizer-fertilizer | 0~0.5 |
surface energy of fertilizer-fertilizer, J/m2 | 0~2 |
Static friction coefficient of fertilizer-pc | 0.2~0.6 |
Dynamic friction coefficient of fertilizer-pc | 0.2~0.5 |
Recover coefficient of fertilizer-pc | 0.1~0.5 |
Moisture Content of HFP/% | Repose Angle/° |
---|---|
2 | 29.54 |
3 | 30.00 |
4 | 32.50 |
5 | 34.89 |
6 | 42.87 |
Element | Parameters | Low-Level (−1) | High-Level (+1) |
---|---|---|---|
A | Poisson ratio of fertilizer | 0.2 | 0.5 |
B | Shear modulus of fertilizer, (MPa) | 10 | 36 |
C | Static friction coefficient of fertilizer–fertilizer | 0.2 | 1.5 |
D | Dynamic friction coefficient of fertilizer–fertilizer | 0.4 | 1 |
E | Recover coefficient of fertilizer–fertilizer | 0 | 0.5 |
F | JKR surface energy of fertilizer–fertilizer, J/m2 | 0 | 2 |
G | Static friction coefficient of fertilizer–PC | 0.2 | 0.6 |
H | Dynamic friction coefficient of fertilizer–PC | 0.2 | 0.5 |
I | Recover coefficient of fertilizer–PC | 0.1 | 0.5 |
Experimental Number | Experimental Factors | Angle of Rest/° | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | H | I | ||
1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 19.16 |
2 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | 21.54 |
3 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | 45.75 |
4 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 21.84 |
5 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 44.68 |
6 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 44.02 |
7 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 18.47 |
8 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 22.00 |
9 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 90.00 |
10 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 31.73 |
11 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 90.00 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 50.59 |
13 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | 46.35 |
Element | Effect | Mean Square | Contribution/% | Significance Rank |
---|---|---|---|---|
A | −12.54 | 471.59 | 6.61 | 4 |
B | −13.70 | 563.44 | 7.90 | 3 |
C | 1.71 | 8.73 | 0.12 | 8 |
D | −1.79 | 9.65 | 0.14 | 7 |
E | −2.05 | 12.60 | 0.18 | 6 |
F | 37.68 | 4258.71 | 59.71 | 1 |
G | 2.12 | 13.53 | 0.19 | 5 |
H | −1.48 | 6.54 | 0.092 | 9 |
I | 16.22 | 788.99 | 11.06 | 2 |
No. | Shear Modulus of Fertilizer (B) | Surface Energy of Fertilizer-Fertilizer (F) | Recover Coefficient of Fertilizer-PC (I) | Repose Angle/(°) | Repose Angle Error (%) |
---|---|---|---|---|---|
1 | 1 × 107 | 0 | 0.1 | 25.77 | −20.70 |
2 | 1.65 × 107 | 0.5 | 0.2 | 37.76 | 16.17 |
3 | 2.3 × 107 | 1 | 0.3 | 51.60 | 58.77 |
4 | 2.95 × 107 | 1.5 | 0.4 | 42.35 | 30.32 |
5 | 3.6 × 107 | 2 | 0.5 | 43.82 | 34.84 |
Codes | Factors | ||
---|---|---|---|
Shear Modulus of Fertilizer (B) | Surface Energy of Fertilizer-Fertilizer (F) | Recover Coefficient of Fertilizer-PC (I) | |
−1 | 1 × 107 | 0 | 0.1 |
0 | 1.65 × 107 | 0.5 | 0.2 |
1 | 2.3 × 107 | 1 | 0.3 |
Number | Shear Modulus of Fertilizer (B) | Surface Energy of Fertilizer-Fertilizer (F) | Recover Coefficient of Fertilizer-PC (I) | Angle of Rest/° |
---|---|---|---|---|
1 | 1.65 × 107 | 0.5 | 0.2 | 38.865 |
2 | 2.30 × 107 | 0 | 0.2 | 22.671 |
3 | 2.30 × 107 | 0.5 | 0.1 | 37.110 |
4 | 1.65 × 107 | 1 | 0.3 | 50.324 |
5 | 1.65 × 107 | 0.5 | 0.2 | 38.865 |
6 | 1.00 × 107 | 0 | 0.2 | 27.042 |
7 | 1.65 × 107 | 0.5 | 0.2 | 38.865 |
8 | 2.30 × 107 | 0.5 | 0.3 | 36.818 |
9 | 1.00 × 107 | 0.5 | 0.1 | 39.376 |
10 | 1.00 × 107 | 1 | 0.2 | 46.242 |
11 | 2.30 × 107 | 1 | 0.2 | 49.047 |
12 | 1.65 × 107 | 0.5 | 0.2 | 38.865 |
13 | 1.65 × 107 | 1 | 0.1 | 47.319 |
14 | 1.65 × 107 | 0.5 | 0.2 | 38.865 |
15 | 1.65 × 107 | 0 | 0.3 | 22.548 |
16 | 1.65 × 107 | 0 | 0.1 | 22.740 |
17 | 1.00 × 107 | 0.5 | 0.3 | 40.260 |
Source of Variance | Sum of Squares | Degree of Freedom | Mean Square | F | p |
---|---|---|---|---|---|
Model | 1053.71 | 9 | 139.30 | 114.64 | <0.0001 ** |
B-Shear modulus of fertilizer | 6.61 | 1 | 6.61 | 5.44 | 0.0524 |
F-Surface energy of fertilizer | 1198.81 | 1 | 1198.81 | 986.62 | <0.0001 ** |
I-Static friction coefficient of fertilizer-PC | 1.45 | 1 | 1.45 | 1.19 | 0.3109 |
BF | 12.87 | 1 | 12.87 | 10.60 | 0.0140 * |
BI | 0.35 | 1 | 0.35 | 0.28 | 0.6102 |
FI | 2.56 | 1 | 2.56 | 2.10 | 0.1903 |
B2 | 2.015 × 10−3 | 1 | 2.015 × 10−3 | 1.658 × 10−3 | 0.9687 |
F2 | 29.27 | 1 | 29.27 | 24.09 | 0.0017 ** |
I2 | 1.04 | 1 | 1.04 | 0.85 | 0.3867 |
Residual | 8.51 | 7 | 1.22 | ||
Lack of Fit | 8.51 | 3 | 2.84 | ||
Pure Error | 0.000 | 4 | |||
Cor Total | 1262.22 | 16 | |||
R2 = 0.9933; R2adj = 0.9846; CV = 2.95%; Adeq Precision = 33.203 |
Moisture Content | Shear Modulus of Fertilizer (B) | Surface Energy of Fertilizer (F) (J/m2) | Recover Coefficient of Fertilizer-PC (I) | Simulated Repose Angle (°) | Physical Repose Angle (°) | Repose Angle Error (%) |
---|---|---|---|---|---|---|
2% | 15,555,112.15 | 0.17 | 0.28 | 29.664 | 29.548 | 0.39% |
4% | 18,787,070.99 | 0.28 | 0.21 | 32.489 | 32.499 | 0.03% |
6% | 11,417,529.40 | 0.65 | 0.26 | 42.264 | 42.873 | 1.42% |
Moisture | Stimulated Single Loop Fertilizer Discharging Volume (g) | Actual Single Loop Fertilizer Discharging Volume (g) | Relative Error (%) |
---|---|---|---|
2% | 48.58 | 52.99 | 8.32% |
4% | 46.74 | 50.64 | 7.70% |
6% | 39.07 | 41.86 | 6.67% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Sun, Z.; Shi, Y.; Liu, M.; Yu, J.; Liu, J. Discrete Element Model of Different Moisture Hygroscopic Fertilizer Particles. Appl. Sci. 2025, 15, 9425. https://doi.org/10.3390/app15179425
Chen X, Sun Z, Shi Y, Liu M, Yu J, Liu J. Discrete Element Model of Different Moisture Hygroscopic Fertilizer Particles. Applied Sciences. 2025; 15(17):9425. https://doi.org/10.3390/app15179425
Chicago/Turabian StyleChen, Xiongfei, Zeyu Sun, Yize Shi, Muhua Liu, Jiajia Yu, and Junan Liu. 2025. "Discrete Element Model of Different Moisture Hygroscopic Fertilizer Particles" Applied Sciences 15, no. 17: 9425. https://doi.org/10.3390/app15179425
APA StyleChen, X., Sun, Z., Shi, Y., Liu, M., Yu, J., & Liu, J. (2025). Discrete Element Model of Different Moisture Hygroscopic Fertilizer Particles. Applied Sciences, 15(17), 9425. https://doi.org/10.3390/app15179425