Mantle Magmatic Activity and Source Material Supply for the Jinchuan Cu–Ni Deposit in Northern China Revealed by Seismic Tomography
Abstract
1. Introduction
2. Geological and Geophysical Setting
2.1. Geological Setting
2.2. Geophysic Setting
3. Method
4. Results
4.1. P-Wave Seismic Tomography
4.2. The Process of Mantle Magma Activity
4.2.1. Shallow Low-Velocity Matter (0 km–90 km)
4.2.2. Deep Low-Velocity Matter (~400 km)
4.2.3. Deep Mantle Material Effect on the Supply of Jinchuan Ni–Cu Deposit
5. Discussion
6. Conclusions
- (1)
- A shallow low-velocity anomaly trending northeast extends to ~80 km depth and gradually diffuses toward the Longshoushan continental margin, splitting into two segments: the northern part of the North Qilian suture zone and the southern segment of the Hexi Corridor arc–back-arc basin. This anomaly reflects multiple episodes of magmatic activity, interpreted as the geophysical signature of magmatism induced by the collision and subduction of the Qilian–Qaidam and Alxa blocks following the closure of the Paleozoic Qilian Ocean.
- (2)
- Beneath the shallow low-velocity anomaly, a deeper anomaly at a depth of 320–400 km spatially corresponds to the shallow anomaly. Based on the interaction between mantle plumes and the lithosphere, this deep anomaly is interpreted as a residual feature of a mantle plume, indicating that the deep mantle provided a long-term source of heat and fusible material to sustain magmatic activity beneath the deposit.
- (3)
- High-velocity anomalies flanking the North Qilian suture zone record the lithospheric structure of the Qaidam and Alxa blocks. The western anomaly, at a 80–300 km depth with a curved front, corresponds to the high-velocity, refractory lithospheric mantle of the Qaidam block, while the eastern anomaly, at a 80–240 km depth, represents the stable lithospheric mantle of the Alxa block. Following the closure of the Qilian Ocean, subduction of the Qaidam lithospheric mantle beneath the Alxa block not only supplied the driving force for regional magmatic activity but also controlled its spatial distribution, contributing to the Cenozoic tectonic evolution of the Longshoushan continental margin.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naldrett, A. Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2004; pp. 1–727. [Google Scholar]
- Porter, T.M. Regional tectonics, geology, magma chamber processes and mineralisation of the Jinchuan nickel-copper-PGE deposit, Gansu Province, China: A review. Geosci. Front. 2016, 7, 431–451. [Google Scholar] [CrossRef]
- Li, W. Study of ore-forming theoretical innovation and prospecting breakthrough of magmatic copper-nickel-cobalt sulfide deposits in China. J. Geomech. 2022, 28, 793–820, (In Chinese with Abstract in English). [Google Scholar]
- Tang, Z.; Li, W. Metallogenic Model and Geological Comparison of Copper-Nickel Sulfide (Platinum-Bearing) Deposits in Jinchuan; Geological Publishing House: Beijing, China, 1995; pp. 14–209. (In Chinese) [Google Scholar]
- Chai, G.; Naldrett, A. The Jinchuan ultramafic intrusion: Cumulate of a high-Mg basaltic magma. J. Petrol. 1992, 33, 277–303. [Google Scholar] [CrossRef]
- Chai, G.; Naldrett, A. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, northwest China U. Econ. Geol. 1992, 87, 1475–1495. [Google Scholar] [CrossRef]
- Song, X.Y.; Danyushevsky, L.V.; Keays, R.R.; Chen, L.M.; Wang, Y.S.; Tian, Y.L.; Xiao, J.F. Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni-Cu sulfide deposit, NW China. Miner. Depos. 2012, 47, 277–297. [Google Scholar] [CrossRef]
- Kang, J.; Chen, L.M.; Yu, S.Y.; Zheng, W.Q.; Dai, Z.H.; Zhou, S.H.; Ai, Q.X. Chromite geochemistry of the Jinchuan Ni-Cu sulfide-bearing ultramafic intrusion (NW China) and its petrogenetic implications. Ore Geol. Rev. 2022, 141, 104644. [Google Scholar] [CrossRef]
- Mao, X.; Li, L.; Liu, Z.; Zeng, R.; Dick, J.M.; Yue, B.; Ai, Q. Multiple Magma Conduits Model of the Jinchuan Ni-Cu-(PGE)Deposit, Northwestern China: Constraints from the Geochemistry of Platinum-Group Elements. Minerals 2019, 9, 187. [Google Scholar] [CrossRef]
- Mao, X.; Liu, P.; Deng, H.; Liu, Z.; Li, L.; Wang, Y.; Ai, Q.; Liu, J. A Novel Approach to Three-Dimensional Inference and Modeling of Magma Conduits with Exploration Data: A Case Study from the Jinchuan Ni-Cu Sulfide Deposit, NW China. Nat. Resour. Res. 2023, 32, 32–901. [Google Scholar] [CrossRef]
- Su, S.; Tang, Z.; Luo, Z.; Deng, J.; Wu, G.; Zhou, M.; Song, C.; Xiao, Q. Magmatic Conduit Metallogenic System. Acta Petrol. Sin. 2014, 30, 3120–3130, (In Chinese with Abstract in English). [Google Scholar]
- Liu, M.Y.; Su, S.G.; Liu, X.R.; Guo, X.D.; Li, Y.M. Magmatic Conduit Metallogenic System of Jinchuan Cu-Ni (PGE) Sulfide Deposit: Evidence from Mineralogy. Earth Sci. Front. 2025, 32, 390–411. [Google Scholar] [CrossRef]
- Zeng, R.; Lai, J.; Mao, X. Metallogenic Model of Magma Conduit System of Jinchuan Cu-Ni Sulfide Deposit. Miner. Resour. Geol. 2013, 27, 276–282, (In Chinese with Abstract in English). [Google Scholar]
- Yang, G.; Du, A.; Lu, J.; Qu, W.; Chen, J. Re-Os (ICP-MS) dating of the massive sulfide ores from the Jinchuan Ni-Cu-PGE deposit. Sci. China Ser. D-Earth Sci. 2005, 48, 1672–1677. (In Chinese) [Google Scholar] [CrossRef]
- Tian, Y.L.; Wu, S.J.; Meng, R.; Wang, Y.S.; Lin, C.L.; Xiao, L.Z. LA-ICPMS zircon U-Pb age of the Jinchuan ultramafic intrusion. Acta Mineral. Sin. 2007, 27, 211–217, (In Chinese with Abstract in English). [Google Scholar]
- Zhang, M.; Kamo, S.L.; Li, C.; Hu, P.; Ripley, E.M. Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, Western China. Miner. Depos. 2010, 45, 3–9. [Google Scholar] [CrossRef]
- Tao, N.; Duan, J.; Danišík, M.; Jiao, J.; Dong, Y.; Evans, N.J.; Gao, Y.; Jiao, R.; Rahn, M. Paleozoic tectonothermal evolution of the Jinchuan Ni-Cu sulfide deposit, NW China: New constraints from 40Ar/39Ar and (U-Th)/He thermochronology. J. Asian Earth Sci. 2023, 250, 105622. [Google Scholar] [CrossRef]
- Yang, H.Q.; Tang, Z.L.; Su, L.; Li, W.Y.; Song, S.G.; Yang, D.J. Discussion on characters of minerogenic magma and source area in Jinchuan Cu-Ni sulfide deposit. Acta Geol. Gansu 1997, 6, 45–53, (In Chinese with Abstract in English). [Google Scholar]
- Li, X.H.; Su, L.; Chung, S.L.; Li, Z.X.; Liu, Y.; Song, B.; Liu, D.Y. Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni-Cu sulfide deposit: Associated with the∼825 Ma south China mantle plume? Geochem. Geophys. Geosyst. 2005, 6, Q11004. [Google Scholar] [CrossRef]
- Ripley, E.; Sarkar, A.; Li, C. Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni-Cu deposit, China. Econ. Geol. 2005, 100, 1349–1361. [Google Scholar] [CrossRef]
- Yang, S.; Qu, W.; Tian, Y.; Chen, J.; Yang, G.; Du, A. Origin of the inconsistent apparent Re-Os ages of the Jinchuan Ni-Cu sulfide ore deposit, China: Post-segregation diffusion of Os. Chem. Geol. 2008, 247, 401–418. [Google Scholar] [CrossRef]
- Duan, J.; Li, C.; Qian, Z.; Jiao, J.; Ripley, E.M.; Feng, Y. Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China. Miner. Depos. 2016, 51, 557–574. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, S.A.; Xue, C.; Li, M.L. Copper isotope evidence for a Cu-rich mantle source of the world-class Jinchuan magmatic Ni-Cu deposit. Am. Mineral. 2022, 107, 673–683. [Google Scholar] [CrossRef]
- Zhang, C.L.; Yang, D.S.; Wang, H.Y.; Takahashi, Y.; Ye, H.M. Neoproterozoic mafic-ultramafic layered intrusion in Quruqtagh of northeastern Tarim Block, NW China: Two phases of mafic igneous activity with different mantle sources. Gondwana Res. 2011, 19, 177–190. [Google Scholar] [CrossRef]
- Piraino, F. The Geology and Tectonic Settings of China’s Mineral Deposits; Springer: Dordrecht, The Netherlands, 2013; 679p. [Google Scholar]
- Tang, Z.; Bai, Y.; Li, W.; Xu, H.Z.; Li, F.Q.; Yan, H.Q.; Huang, C.X.; Wang, Z. Metallogenic System and Metallogenic Structure Dynamics on the Southwestern Margin of the North China Paleocontinent (Longshou Mountain-Qilian Mountain); Geological Publishing House: Beijing, China, 2002; 393p. (In Chinese) [Google Scholar]
- Li, C.; Ripley, E.M. The giant Jinchuan Ni-Cu(PGE) deposit tectonic setting, magma evolution, ore genesis, and exploration implications. Rev. Econ. Geol. 2011, 17, 163–180. [Google Scholar]
- Song, S.; Zhang, L.; Niu, Y.; Su, L.; Song, B.; Liu, D. Evolution from oceanic subduction to continental collision: A case study from the northern Tibetan Plateau based on geochemical and geochronological data. J. Petrol. 2006, 47, 435–455. [Google Scholar] [CrossRef]
- Barnes, S.J.; Tang, Z. Chrome spinels from the Jinchuan Ni-Cu sulfide Deposit, Gansu Province, Peoples’ Republic of China. Econ. Geol. 1999, 94, 343–356. [Google Scholar] [CrossRef]
- Tang, Z.; Qian, Z.; Jiang, C. Ni-Cu-PGE Magmatic Sulfide Metallogeny and Deposit Prediction in China; Geological Publishing House: Beijing, China, 2006. (In Chinese) [Google Scholar]
- French, S.W.; Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nat. Geosci. 2015, 8, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Garnero, E.J.; McNamara, A.K.; Shim, S.H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Rev. Earth Environ. 2020, 1, 39–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, F.; Zhang, X.; Zhang, T.; Lin, J.; Zhou, Z.; Zhang, J. Modification of Along-Ridge Topography and Crustal Structure by Mantle Plumes Beneath Mid-Ocean Ridges. Geophys. Res. Lett. 2023, 50, e2023GL105871. [Google Scholar] [CrossRef]
- Zhao, D.; Hasegawa, A.; Kanamori, H. Deep structure of Japan subduction zone as derived from local, regional, and teleseismic events. J. Geophys. Res. Solid Earth 1994, 99, 22313–22329. [Google Scholar] [CrossRef]
- Zhao, D.; Tian, Y.; Lei, J.; Liu, L.; Zheng, S. Seismic image and origin of the Changbai intraplate volcano in East Asia: Role of big mantle wedge above the stagnant Pacific slab. Phys. Earth Planet. Inter. 2009, 173, 197–206. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, G.; Lü, Q.; Shi, D.; Xu, Y. 3-D velocity model beneath the Middle-LowerYangtze River and its implication to the deep geodynamics. Tectonophysics 2013, 606, 36–47. [Google Scholar] [CrossRef]
- Zhao, D.; Hasegawa, A.; Horiuchi, S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res. Solid Earth 1992, 97, 19909–19928. [Google Scholar] [CrossRef]
- Um, J.; Thurber, C. A fast algorithm for two-point seismic ray tracing. Bull. Seismol. Soc. Am. 1987, 77, 972–986. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. New, improved version of GenericMapping Tools released. EOS 1998, 79, 579. [Google Scholar] [CrossRef]
- Tang, Z.; Bai, Y. Geotectonic framework and metallogenic system in the southwest margin of north China paleocontinent. Earth Sci. Front. 1999, 6, 78–90, (In Chinese with Abstract in English). [Google Scholar]
- Zhang, K. Paleozoic Magma Evolution and Super Imposed Mineralization in the Jinchuan Cu-Ni Mining Area of Gansu Province. Master’s Thesis, Chang’an University, Xi’an, China, 2023. (In Chinese with Abstract in English). [Google Scholar]
- Xia, L.; Li, X.; Yu, J.; Wang, G. Mid-Late Neoproterozoic to Early Paleozoic volcanism and tectonic evolution of the Qilian Mountain. Geol. China 2016, 43, 1087–1138, (In Chinese with Abstract in English). [Google Scholar]
- Zhang, X.; Su, S.; Liu, M.; Wang, W. Characteristics and tectonic significance of the early Paleozoic syenite granite from Jinchuan Gansu Province. Earth Sci. Front. 2021, 28, 283–298. [Google Scholar]
- Piraino, F. Ore Deposits and Mantle Plumes; Kluwer Academic Publishers: London, UK, 2000; pp. 1–540. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Duan, S.; Peng, R. Mantle Magmatic Activity and Source Material Supply for the Jinchuan Cu–Ni Deposit in Northern China Revealed by Seismic Tomography. Appl. Sci. 2025, 15, 9420. https://doi.org/10.3390/app15179420
Zhao J, Duan S, Peng R. Mantle Magmatic Activity and Source Material Supply for the Jinchuan Cu–Ni Deposit in Northern China Revealed by Seismic Tomography. Applied Sciences. 2025; 15(17):9420. https://doi.org/10.3390/app15179420
Chicago/Turabian StyleZhao, Jianyu, Shigang Duan, and Rong Peng. 2025. "Mantle Magmatic Activity and Source Material Supply for the Jinchuan Cu–Ni Deposit in Northern China Revealed by Seismic Tomography" Applied Sciences 15, no. 17: 9420. https://doi.org/10.3390/app15179420
APA StyleZhao, J., Duan, S., & Peng, R. (2025). Mantle Magmatic Activity and Source Material Supply for the Jinchuan Cu–Ni Deposit in Northern China Revealed by Seismic Tomography. Applied Sciences, 15(17), 9420. https://doi.org/10.3390/app15179420