Precision Fermentation as a Tool for Sustainable Cosmetic Ingredient Production
Abstract
1. Introduction
2. Market and Consumer Perspectives
3. Technological and Scientific Mapping of Fermentation-Based Innovations in the Cosmetic Sector
3.1. Bibliometric Networks Visualization (Fermentation Technologies into Cosmetic Industry) by VOS Viewer
- The first cluster (red) was mainly related to sustainable ingredients and functional additives obtained by fermentation technologies with the following keyword: “absorption”, “additives”, “substrate”, and “agro-industrial by-products”, which indicates an emphasis on bio-based formulations and environmentally friendly processing. Thus, this cluster encompasses ongoing research interests in optimizing ingredient functionality while ensuring sustainability.
- The second cluster (green) focuses on the enzymatic, metabolic engineering, and microbial bio-transformations characterized by the following keywords: “acyltransferase”, “alcohol dehydrogenase”, “amino acids”, and “fermentation.” It encompasses the biochemistry process and the pathways involved in bioactive compounds production and aroma profiles in cosmetics.
- The third cluster (blue) is related to antioxidant activity and skin applications, with keywords such as “ABTS radical scavenging assay”, “acne”, and “antioxidant capacity”, encompassing research on oxidative stress mitigation and dermatological benefits. Additionally, it is interesting to note that it was possible to identify a higher frequency of reactive oxygen species related terms; this suggests that there is a current interest in developing novel formulations to improve skin health and longevity via oxidative stress modulation.
- The fourth cluster (yellow) is related to the obtention of “Volatile Compounds and Sensory Attributes”, with keywords such as “p2-phenylethanol”, “acetic acid”, and “aroma compounds”. This cluster highlights current research interest in the recovery of aromatic components by integrating fermentation technologies with potential applications in other sectors, such as the food industry, where the products’ sensory attributes play a crucial role in consumer acceptance.
3.2. Intellectual Property Screening (Fermentation Technologies into Cosmetic Industry) by WIPO-Patentscope
4. Fermentation
4.1. Traditional Versus Precision Fermentation
4.2. Cost Effectiveness of Traditional Versus Precision Fermentation
4.3. Cosmetic Ingredients Produced via Fermentation
4.3.1. Hyaluronic Acid
4.3.2. Collagen
4.3.3. Squalene
4.3.4. Ubiquinone (Coenzyme Q10)
4.3.5. Resveratrol
4.4. Selection of the Biological Platform for Precision Fermentations
4.4.1. Productivity
4.4.2. Metabolic Compatibility, Engineering, and Post-Translational Requirements
4.4.3. Suitability for Industrial-Scale Processes
4.4.4. Regulatory Framework
4.4.5. Other Aspects
5. Technological Challenges in Scale-Up
6. Regulatory Framework
6.1. Classification and Registration of Precision Fermentation Ingredients
6.2. Safety and Toxicological Assessment Framework for Precision-Fermentation-Derived Cosmetics
6.2.1. Toxicological Evaluation
6.2.2. Microbiological Risk Assessment and Contaminant Control
6.2.3. Stability Studies
6.3. Environmental and Manufacturing Compliance Framework for Precision Fermentation Ingredients
6.4. Labeling and Market Claims
6.5. Market Authorization and Notification
7. Future Perspectives
7.1. Digital–Biotech Fusion and AI-Driven Optimization in Precision Fermentation
7.2. Advances in Bioreactor Technologies, Real-Time Monitoring, and Adaptative Automation
7.3. Circular Bioeconomy and Sustainable Feedstocks
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GlcUA | D-glucuronic acid |
MVA | Mevalonate pathway |
FPP | Farnesyl diphosphate |
MEP | 2-C-methyl-D-erythritol 4-phosphate |
pHBA | p-hydroxybenzoate |
EU | European Union |
INCI | International Nomenclature of Cosmetic Ingredients |
REACH | Registration, Evaluation, Authorization and Restriction of Chemicals |
CSR | Chemical Safety Report |
GMO | Genetically Modified Organisms |
GMM | Genetically Modified Micro-organisms |
GMP | Good Manufacturing Practices |
GRAS | Generally Recognized as Safe |
LCA | Life Cycle Assessment |
PCPC | Personal Care Products Council |
ECHA | European Chemicals Agency |
CPSR | Cosmetic Product Safety Report |
OECD | Organization for Economic Co-operation and Development |
QPS | Qualified Presumption of Safety |
SCCS | Scientific Committee on Consumer Safety |
IED | Industrial Emissions Directive |
PCR | Polymerase Chain Reaction |
PIF | Product Information File |
CPNP | Cosmetic Product Notification Portal |
References
- Eccles, R.G.; Ioannou, I.; Serafeim, G. The Impact of Corporate Sustainability on Organizational Processes and Performance. Manag. Sci. 2014, 60, 2835–2857. [Google Scholar] [CrossRef]
- Isaac, R.; Conti, D.D.M.; Ghobril, C.N.; Netto, L.F.; Tucci, C., Jr. Sustainability and competitive advantage: A study in a brazilian cosmetic company. Int. Bus. Res. 2017, 10, 96. [Google Scholar] [CrossRef]
- Xie, Q.; Su, Y.-Y.; Khan, A.; Hishan, S.S.; Ahmad Lone, S. The investigation of sustainable environmental performance of manufacturing companies: Mediating role of organizational support and moderating role of CSR. Econ. Res. Ekon. Istraživanja 2022, 35, 4128–4148. [Google Scholar] [CrossRef]
- Sasounian, R.; Martinez, R.M.; Lopes, A.M.; Giarolla, J.; Rosado, C.; Magalhães, W.V.; Velasco, M.V.R.; Baby, A.R. Innovative approaches to an eco-friendly cosmetic industry: A review of sustainable ingredients. Clean Technol. 2024, 6, 176–198. [Google Scholar] [CrossRef]
- Krzyżostan, M.; Wawrzyńczak, A.; Nowak, I. Use of waste from the food industry and applications of the fermentation process to create sustainable cosmetic products: A review. Sustainability 2024, 16, 2757. [Google Scholar] [CrossRef]
- Pérez-Rivero, C.; López-Gómez, J.P. Unlocking the potential of fermentation in cosmetics: A review. Fermentation 2023, 9, 463. [Google Scholar] [CrossRef]
- Baeshen, N.A.; Baeshen, M.N.; Sheikh, A.; Bora, R.S.; Ahmed, M.M.M.; Ramadan, H.A.I.; Saini, K.S.; Redwan, E.M. Cell factories for insulin production. Microb. Cell Factories 2014, 13, 141. [Google Scholar] [CrossRef]
- van Leeuwen, M.; Gonzalez-Martinez, A.; Sturm, V. EU Outlook for Biomass Flows and Bio-based Products. EuroChoices 2023, 22, 13–20. [Google Scholar] [CrossRef]
- Tiwari, A.; Khawas, R. Food Waste and Agro By-Products: A Step Towards Food Sustainability. In Innovation in the Food Sector Through the Valorization of Food and Agro-Food By-Products; IntechOpen: London, UK, 2021; pp. 1–14. [Google Scholar]
- Imarc. Cosmetics Market Size, Share, Trends and Forecast by Product Type, Category, Gender, Distribution Channel, and Region, 2025–2033; Imarc: Noida, India, 2024. [Google Scholar]
- Martins, A.M.; Silva, A.T.; Marto, J.M. Advancing Cosmetic Sustainability: Upcycling for a Circular Product Life Cycle. Sustainability 2025, 17, 5738. [Google Scholar] [CrossRef]
- Personal Care Products Council. 2019 Sustainability Report|Creating a More Beautiful World; Personal Care Products Council: Washington, DC, USA, 2019. [Google Scholar]
- Amberg, N.; Fogarassy, C. Green consumer behavior in the cosmetics market. Resources 2019, 8, 137. [Google Scholar] [CrossRef]
- Acharya, S.; Bali, S.; Bhatia, B. Exploring Consumer Behavior Towards Sustainability of Green Cosmetics. In Proceedings of the 2021 International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20 February 2021; pp. 1–6. [Google Scholar]
- Bom, S.; Jorge, J.; Ribeiro, H.; Marto, J. A step forward on sustainability in the cosmetics industry: A review. J. Clean. Prod. 2019, 225, 270–290. [Google Scholar] [CrossRef]
- Martins, A.M.; Marto, J.M. A sustainable life cycle for cosmetics: From design and development to post-use phase. Sustain. Chem. Pharm. 2023, 35, 101178. [Google Scholar] [CrossRef]
- Vijay, V.; Pimm, S.L.; Jenkins, C.N.; Smith, S.J. The Impacts of Oil Palm on Recent Deforestation and Biodiversity Loss. PLoS ONE 2016, 11, e0159668. [Google Scholar] [CrossRef]
- Kim, H.; Kim, D.; An, Y.-J. Microplastics enhance the toxicity and phototoxicity of UV filter avobenzone on Daphnia magna. J. Hazard. Mater. 2023, 445, 130627. [Google Scholar] [CrossRef]
- Hilgendorf, K.; Wang, Y.; Miller, M.J.; Jin, Y.-S. Precision fermentation for improving the quality, flavor, safety, and sustainability of foods. Curr. Opin. Biotechnol. 2024, 86, 103084. [Google Scholar] [CrossRef]
- Miguel, F.-N.; Daniela, B.-T. Chapter 2—Engineering microbial biofactories for a sustainable future. In Genomics and the Global Bioeconomy; Lopez-Correa, C., Suarez-Gonzalez, A., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 25–58. [Google Scholar]
- Elazzazy, A.M.; Baeshen, M.N.; Alasmi, K.M.; Alqurashi, S.I.; Desouky, S.E.; Khattab, S.M. Where Biology Meets Engineering: Scaling up microbial nutraceuticals to bridge nutrition, therapeutics, and global impact. Microorganisms 2025, 13, 566. [Google Scholar] [CrossRef] [PubMed]
- Shalu, S.; Karthikanath, P.K.R.; Vaidyanathan, V.K.; Blank, L.M.; Germer, A.; Balakumaran, P.A. Microbial Squalene: A Sustainable Alternative for the Cosmetics and Pharmaceutical Industry—A Review. Eng. Life Sci. 2024, 24, e202400003. [Google Scholar] [CrossRef]
- Macdonald, C.; Soll, J. Shark conservation risks associated with the use of shark liver oil in SARS-CoV-2 vaccine development. bioRxiv 2020. [Google Scholar] [CrossRef]
- Finucci, B.; Pacoureau, N.; Rigby, C.L.; Matsushiba, J.H.; Faure-Beaulieu, N.; Sherman, C.S.; VanderWright, W.J.; Jabado, R.W.; Charvet, P.; Mejía-Falla, P.A. Fishing for oil and meat drives irreversible defaunation of deepwater sharks and rays. Science 2024, 383, 1135–1141. [Google Scholar] [CrossRef]
- Andries, A.; Popa, I.; Babeanu, N.E.; Nita, S.; Popa, O. Squalene-natural resources and applications. Farmacia 2014, 62, 840–862. [Google Scholar]
- Patel, A.; Bettiga, M.; Rova, U.; Christakopoulos, P.; Matsakas, L. Microbial genetic engineering approach to replace shark livering for squalene. Trends Biotechnol. 2022, 40, 1261–1273. [Google Scholar] [CrossRef]
- Hadinoto, S.; Idrus, S.; Smith, H.; Radiena, M. Characteristics squalene of smallfin gulper shark (Centrophorus moluccensis) livers from Aru Islands, Mollucas, Indonesia. J. Phys. Conf. Ser. 2020, 1463, 012021. [Google Scholar] [CrossRef]
- Krulj, J.; Brlek, T.; Pezo, L.; Brkljača, J.; Popović, S.; Zeković, Z.; Bodroža Solarov, M. Extraction methods of Amaranthus sp. grain oil isolation. J. Sci. Food Agric. 2016, 96, 3552–3558. [Google Scholar] [CrossRef]
- Lozano-Grande, M.A.; Gorinstein, S.; Espitia-Rangel, E.; Dávila-Ortiz, G.; Martínez-Ayala, A.L. Plant Sources, Extraction Methods, and Uses of Squalene. Int. J. Agron. 2018, 2018, 1829160. [Google Scholar] [CrossRef]
- Xu, W.; Ma, X.; Wang, Y. Production of squalene by microbes: An update. World J. Microbiol. Biotechnol. 2016, 32, 195. [Google Scholar] [CrossRef] [PubMed]
- Paramasivan, K.; Mutturi, S. Recent advances in the microbial production of squalene. World J. Microbiol. Biotechnol. 2022, 38, 91. [Google Scholar] [CrossRef]
- Naziri, E.; Mantzouridou, F.; Tsimidou, M.Z. Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means. J. Agric. Food Chem. 2011, 59, 9980–9989. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, P.; Singhal, R. Extraction of squalene from yeast by supercritical carbon dioxide. World J. Microbiol. Biotechnol. 2003, 19, 605–608. [Google Scholar] [CrossRef]
- Blagović, B.; Rupčić, J.; Mesarić, M.; Georgiú, K.; Marić, V. Lipid composition of brewer’s yeast. Food Technol. Biotechnol. 2001, 39, 175–181. [Google Scholar]
- Wei, L.-J.; Cao, X.; Liu, J.-J.; Kwak, S.; Jin, Y.-S.; Wang, W.; Hua, Q. Increased accumulation of squalene in engineered Yarrowia lipolytica through deletion of PEX10 and URE2. Appl. Environ. Microbiol. 2021, 87, e00481-21. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Jian, X.-X.; Lv, Y.-B.; Nian, K.-Q.; Gao, Q.; Chen, J.; Wei, L.-J.; Hua, Q. Enhanced squalene biosynthesis in Yarrowia lipolytica based on metabolically engineered acetyl-CoA metabolism. J. Biotechnol. 2018, 281, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Martz, P.; Phan, T.V.T.; L’Haridon, J.; Beausoleil, M.-H.; Lafaye, K.; Gérand, Y.; Gallardo, C. Environmental profile of the production of fragrance ingredients used in cosmetic products: Comparative analysis of results obtained by life cycle assessment and the green chemistry-based eco-design tool GREEN MOTIONTM. Green Chem. 2023, 25, 6365–6382. [Google Scholar] [CrossRef]
- Nip, J.; Hermanson, K.; Lee, J.-m. n-3 PUFAs docosahexaenoic acid and eicosapentaenoic acid are effective natural pro-resolution ingredients for topical skin applications. Int. J. Cosmet. Sci. 2025. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Silva, S.; Costa, E.M. Byproducts as a Sustainable Source of Cosmetic Ingredients. Appl. Sci. 2024, 14, 10241. [Google Scholar] [CrossRef]
- Serra, M.; Casas, A.; Toubarro, D.; Barros, A.N.; Teixeira, J.A. Microbial hyaluronic acid production: A review. Molecules 2023, 28, 2084. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Inokuma, K.; Matsuda, M.; Kondo, A.; Hasunuma, T. Resveratrol production of a recombinant Scheffersomyces stipitis strain from molasses. Biotechnol. Notes 2022, 3, 1–7. [Google Scholar] [CrossRef]
- Pierrel, F.; Burgardt, A.; Lee, J.H.; Pelosi, L.; Wendisch, V.F. Recent advances in the metabolic pathways and microbial production of coenzyme Q. World J. Microbiol. Biotechnol. 2022, 38, 58. [Google Scholar] [CrossRef]
- Hoppenreijs, L.J.G.; Annibal, A.; Vreeke, G.J.C.; Boom, R.M.; Keppler, J.K. Food proteins from yeast-based precision fermentation: Simple purification of recombinant β-lactoglobulin using polyphosphate. Food Res. Int. 2024, 176, 113801. [Google Scholar] [CrossRef]
- Knychala, M.M.; Boing, L.A.; Ienczak, J.L.; Trichez, D.; Stambuk, B.U. Precision Fermentation as an Alternative to Animal Protein, a Review. Fermentation 2024, 10, 315. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, J.; Xu, G.; Han, R.; Zhou, J.; Ni, Y. Efficient production of hyaluronic acid by Streptococcus zooepidemicus using two-stage semi-continuous fermentation. Bioresour. Technol. 2023, 377, 128896. [Google Scholar] [CrossRef]
- Fang, J.; Ma, Z.; Liu, D.; Wang, Z.; Cheng, S.; Zheng, S.; Wu, H.; Xia, P.; Chen, X.; Yang, R.; et al. Co-expression of recombinant human collagen α1(III) chain with viral prolyl 4-hydroxylase in Pichia pastoris GS115. Protein Expr. Purif. 2023, 201, 106184. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, Y.; Chen, S.; Lin, Y.; Wu, Y.; Liang, S. Engineering Pichia pastoris for high-level biosynthesis of squalene. Biochem. Eng. J. 2025, 217, 109677. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, M.; Chen, H.; Lu, X.; Tian, Y.; Hu, P.; Zhao, Q.; Li, P.; Li, C.; Ji, X.; et al. Metabolic engineering of Yarrowia lipolytica for high-level production of squalene. Bioresour. Technol. 2024, 394, 130233. [Google Scholar] [CrossRef]
- Xia, L.; Lv, Y.; Liu, S.; Yu, S.; Zeng, W.; Zhou, J. Enhancing squalene production in Saccharomyces cerevisiae by metabolic engineering and random mutagenesis. Front. Chem. Eng. 2022, 3, 790261. [Google Scholar] [CrossRef]
- Chen, W.-C.; Liu, T.-H.; Wang, L.-F.; Chien, C.-C.; Chen, S.-Y.; Wei, Y.-H. Enhanced production and characterization of coenzyme Q10 from Rhodobacter sphaeroides using a potential fermentation strategy. J. Taiwan Inst. Chem. Eng. 2022, 137, 104201. [Google Scholar] [CrossRef]
- Park, J.Y.; Lim, J.-H.; Ahn, J.-H.; Kim, B.-G. Biosynthesis of resveratrol using metabolically engineered Escherichia coli. Appl. Biol. Chem. 2021, 64, 20. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Inokuma, K.; Matsuda, M.; Kondo, A.; Hasunuma, T. Resveratrol production from several types of saccharide sources by a recombinant Scheffersomyces stipitis strain. Metab. Eng. Commun. 2021, 13, e00188. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.E.; Møller-Hansen, I.; Romaní, A.; Teixeira, J.A.; Borodina, I.; Domingues, L. Resveratrol Production from Hydrothermally Pretreated Eucalyptus Wood Using Recombinant Industrial Saccharomyces cerevisiae Strains. ACS Synth. Biol. 2021, 10, 1895–1903. [Google Scholar] [CrossRef] [PubMed]
- Bo, S.; Chang, S.K.; Zhou, T.; Zhu, H.; Jiang, Y.; Yang, B. Heterologous biosynthesis of prenylated resveratrol and evaluation of antioxidant activity. Food Chem. 2022, 378, 132118. [Google Scholar] [CrossRef]
- Vinestock, T.; Short, M.; Ward, K.; Guo, M. Computer-aided chemical engineering research advances in precision fermentation. Curr. Opin. Food Sci. 2024, 58, 101196. [Google Scholar] [CrossRef]
- Battle, M.; Carter, M.; Colley Clarke, J.; Eastham, L.; Fathman, L.; Gertner, D.; Leet-Otley, T.; Leman, A.; Swartz, E. Fermentation: Meat, Seafood, Eggs, and Dairy; Good Food Institute: Washington, DC, USA, 2024. [Google Scholar]
- Chai, W.Y.; Teo, K.T.K.; Tan, M.K.; Tham, H.J. Fermentation Process Control and Optimization. Chem. Eng. Technol. 2022, 45, 1731–1747. [Google Scholar] [CrossRef]
- Iaconisi, G.N.; Gallo, N.; Caforio, L.; Ricci, V.; Fiermonte, G.; Della Tommasa, S.; Bernetti, A.; Dolce, V.; Farì, G.; Capobianco, L. Clinical and Biochemical Implications of Hyaluronic Acid in Musculoskeletal Rehabilitation: A Comprehensive Review. J. Pers. Med. 2023, 13, 1647. [Google Scholar] [CrossRef]
- Ferreira, R.G.; Azzoni, A.R.; Santana, M.H.A.; Petrides, D. Techno-Economic Analysis of a Hyaluronic Acid Production Process Utilizing Streptococcal Fermentation. Processes 2021, 9, 241. [Google Scholar] [CrossRef]
- Cerminati, S.; Leroux, M.; Anselmi, P.; Peirú, S.; Alonso, J.C.; Priem, B.; Menzella, H.G. Low cost and sustainable hyaluronic acid production in a manufacturing platform based on Bacillus subtilis 3NA strain. Appl. Microbiol. Biotechnol. 2021, 105, 3075–3086. [Google Scholar] [CrossRef]
- Case Studies Exploring the Impact of Synthetic Biology on Natural Products, Livelihoods and Sustainable Use of Biodiversity; ETC Group: Montreal, QC, Canada, 2016.
- ETC Group. Synthetic Squalane Market; 2025. Available online: https://www.etcgroup.org/sites/www.etcgroup.org/files/files/etc_synbiocasestudies_2016.pdf (accessed on 18 August 2025).
- Miyamoto, K.; Munakata, Y.; Fujii, K.; Lei, C.; Yang, L.; Sudarsana, S.; Furue, M. Quantification of In Vivo Epidermal Keratinocyte Architecture Associated with the Signs of Skin Aging and the Skin Benefit Evaluation by Application of Galactomyces Ferment Filtrate (Pitera)-Containing Skin Care Product. J. Cosmet. Dermatol. Sci. Appl. 2024, 14, 12–28. [Google Scholar] [CrossRef]
- Chan, C.-F.; Huang, C.-C.; Lee, M.-Y.; Lin, Y.-S. Fermented broth in tyrosinase-and melanogenesis inhibition. Molecules 2014, 19, 13122–13135. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Y.; Li, J.; Du, G.; Chen, J. Microbial production of hyaluronic acid: Current state, challenges, and perspectives. Microb. Cell Factories 2011, 10, 99. [Google Scholar] [CrossRef]
- Marwan-Abdelbaset, E.; Samy-Kamal, M.; Tan, D.; Lu, X. Microbial production of hyaluronic acid: The current advances, engineering strategies and trends. J. Biotechnol. 2025, 403, 52–72. [Google Scholar] [CrossRef] [PubMed]
- Rossatto, A.; Trocado Dos Santos, J.; Zimmer Ferreira Arlindo, M.; Saraiva de Morais, M.; Denardi de Souza, T.; Saraiva Ogrodowski, C. Hyaluronic acid production and purification techniques: A review. Prep. Biochem. Biotechnol. 2023, 53, 1–11. [Google Scholar] [CrossRef]
- Ucm, R.; Aem, M.; Lhb, Z.; Kumar, V.; Taherzadeh, M.J.; Garlapati, V.K.; Chandel, A.K. Comprehensive review on biotechnological production of hyaluronic acid: Status, innovation, market and applications. Bioengineered 2022, 13, 9645–9661. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-X.; Zhang, Y.-Y.; Yang, J.; Yan, M.-H.; Jia, Y.; Jiang, S. An overview of progress in the application of recombinant collagen in cosmetics. J. Dermatol. Sci. Cosmet. Technol. 2024, 1, 100059. [Google Scholar] [CrossRef]
- Xiang, Z.X.; Gong, J.S.; Li, H.; Shi, W.T.; Jiang, M.; Xu, Z.H.; Shi, J.S. Heterologous expression, fermentation strategies and molecular modification of collagen for versatile applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 5268–5289. [Google Scholar] [CrossRef]
- Ma, L.; Liang, X.; Yu, S.; Zhou, J. Expression, characterization, and application potentiality evaluation of recombinant human-like collagen in Pichia pastoris. Bioresour. Bioprocess. 2022, 9, 119. [Google Scholar] [CrossRef]
- Chai, L.; Che, J.; Qi, Q.; Hou, J. Metabolic Engineering for Squalene Production: Advances and Perspectives. J. Agric. Food Chem. 2024, 72, 27715–27725. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Xu, W.; Xu, X.; Wang, Y. Production of Coenzyme Q(10) by microbes: An update. World J. Microbiol. Biotechnol. 2022, 38, 194. [Google Scholar] [CrossRef]
- He, S.; Lu, H.; Zhang, G.; Ren, Z. Production of coenzyme Q10 by purple non-sulfur bacteria: Current development and future prospect. J. Clean. Prod. 2021, 307, 127326. [Google Scholar] [CrossRef]
- Burgardt, A.; Moustafa, A.; Persicke, M.; Sproß, J.; Patschkowski, T.; Risse, J.M.; Peters-Wendisch, P.; Lee, J.H.; Wendisch, V.F. Coenzyme Q(10) Biosynthesis Established in the Non-Ubiquinone Containing Corynebacterium glutamicum by Metabolic Engineering. Front. Bioeng. Biotechnol. 2021, 9, 650961. [Google Scholar] [CrossRef]
- Burgardt, A.; Pelosi, L.; Chehade, M.H.; Wendisch, V.F.; Pierrel, F. Rational Engineering of Non-Ubiquinone Containing Corynebacterium glutamicum for Enhanced Coenzyme Q(10) Production. Metabolites 2022, 12, 12050428. [Google Scholar] [CrossRef] [PubMed]
- Braga, A.; Ferreira, P.; Oliveira, J.; Rocha, I.; Faria, N. Heterologous production of resveratrol in bacterial hosts: Current status and perspectives. World J. Microbiol. Biotechnol. 2018, 34, 122. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, T.; Liu, H.; Wen, L.; Jiang, Y.; Yang, B. Heterologous biosynthesis of prenylated resveratrol through multiplex metabolic engineering in Escherichia coli††Electronic supplementary information (ESI). Green Chem. 2024, 26, 4792–4802. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, T.; Sun, W.; Chen, Y.; Ying, H. Optimizing Escherichia coli strains and fermentation processes for enhanced L-lysine production: A review. Front. Microbiol. 2024, 15, 1485624. [Google Scholar] [CrossRef]
- Rosano, G.L.; Morales, E.S.; Ceccarelli, E.A. New tools for recombinant protein production in Escherichia coli: A 5-year update. Protein Sci. 2019, 28, 1412–1422. [Google Scholar] [CrossRef]
- Chen, R. Bacterial expression systems for recombinant protein production: E. coli and beyond. Biotechnol. Adv. 2012, 30, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Shukla, P. Advanced technologies for improved expression of recombinant proteins in bacteria: Perspectives and applications. Crit. Rev. Biotechnol. 2016, 36, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Hirz, M.; Pichler, H.; Schwab, H. Protein expression in Pichia pastoris: Recent achievements and perspectives for heterologous protein production. Appl. Microbiol. Biotechnol. 2014, 98, 5301–5317. [Google Scholar] [CrossRef] [PubMed]
- Gasser, B.; Prielhofer, R.; Marx, H.; Maurer, M.; Nocon, J.; Steiger, M.; Puxbaum, V.; Sauer, M.; Mattanovich, D. Pichia pastoris: Protein production host and model organism for biomedical research. Future Microbiol. 2013, 8, 191–208. [Google Scholar] [CrossRef]
- Madzak, C. Yarrowia lipolytica: Recent achievements in heterologous protein expression and pathway engineering. Appl. Microbiol. Biotechnol. 2015, 99, 4559–4577. [Google Scholar] [CrossRef]
- Dujon, B. Yeast evolutionary genomics. Nat. Rev. Genet. 2010, 11, 512–524. [Google Scholar] [CrossRef]
- Mattanovich, D.; Branduardi, P.; Dato, L.; Gasser, B.; Sauer, M.; Porro, D. Recombinant protein production in yeasts. Methods Mol. Biol. 2012, 824, 329–358. [Google Scholar] [CrossRef]
- Leu, S.; Boussiba, S. Advances in the Production of High-Value Products by Microalgae. Ind. Biotechnol. 2014, 10, 169–183. [Google Scholar] [CrossRef]
- Kallscheuer, N.; Vogt, M.; Stenzel, A.; Gätgens, J.; Bott, M.; Marienhagen, J. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab. Eng. 2016, 38, 47–55. [Google Scholar] [CrossRef]
- Lemuth, K.; Steuer, K.; Albermann, C. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microb. Cell Factories 2011, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Cravens, A.; Payne, J.; Smolke, C.D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat. Commun. 2019, 10, 2142. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, H.U.; Park, J.H.; Park, J.M.; Kim, T.Y. Metabolic engineering of microorganisms: General strategies and drug production. Drug Discov. Today 2009, 14, 78–88. [Google Scholar] [CrossRef]
- Bi, H.; Xv, C.; Su, C.; Feng, P.; Zhang, C.; Wang, M.; Fang, Y.; Tan, T. β-Farnesene Production from Low-Cost Glucose in Lignocellulosic Hydrolysate by Engineered Yarrowia lipolytica. Fermentation 2022, 8, 532. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, W.; Liang, C.; Zhu, L.; Li, Y.; Mo, Q.; Xu, S.; Chu, A.; Zhang, L.; Ding, Z.; et al. Overproduction of α-Farnesene in Saccharomyces cerevisiae by Farnesene Synthase Screening and Metabolic Engineering. J. Agric. Food Chem. 2021, 69, 3103–3113. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhan, C.; Nie, S.; Tian, D.; Lu, J.; Wen, M.; Qiao, J.; Zhu, H.; Caiyin, Q. Enzyme and Metabolic Engineering Strategies for Biosynthesis of α-Farnesene in Saccharomyces cerevisiae. J. Agric. Food Chem. 2023, 71, 12452–12461. [Google Scholar] [CrossRef]
- Görner, C.; Redai, V.; Bracharz, F.; Schrepfer, P.; Garbe, D.; Brück, T. Genetic engineering and production of modified fatty acids by the non-conventional oleaginous yeast Trichosporon oleaginosus ATCC 20509. Green Chem. 2016, 18, 2037–2046. [Google Scholar] [CrossRef]
- Ghogare, R.; Chen, S.; Xiong, X. Metabolic Engineering of Oleaginous Yeast Yarrowia lipolytica for Overproduction of Fatty Acids. Front. Microbiol. 2020, 11, 1717. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, J.; Zhao, H.; Shi, S. Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. Biotechnol. Biofuels 2021, 14, 115. [Google Scholar] [CrossRef] [PubMed]
- Park, B.G.; Kim, J.; Kim, E.-J.; Kim, Y.; Kim, J.; Kim, J.Y.; Kim, B.-G. Application of Random Mutagenesis and Synthetic FadR Promoter for de novo Production of ω-Hydroxy Fatty Acid in Yarrowia lipolytica. Front. Bioeng. Biotechnol. 2021, 9, 624838. [Google Scholar] [CrossRef]
- Durairaj, P.; Malla, S.; Nadarajan, S.P.; Lee, P.-G.; Jung, E.; Park, H.H.; Kim, B.-G.; Yun, H. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb. Cell Factories 2015, 14, 45. [Google Scholar] [CrossRef]
- Novoveská, L.; Nielsen, S.L.; Eroldoğan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Robbens, J.; Vasquez, M.; Einarsson, H. Overview and challenges of large-scale cultivation of photosynthetic microalgae and cyanobacteria. Mar. Drugs 2023, 21, 445. [Google Scholar] [CrossRef]
- Patel, A.K. Microalgae in Dual Role: An Effective Platform for Biological Carbon Capturing and High-Value Carotenoid Production. Curr. Pollut. Rep. 2025, 11, 34. [Google Scholar] [CrossRef]
- Hu, J.; Wang, D.; Chen, H.; Wang, Q. Advances in genetic engineering in improving photosynthesis and microalgal productivity. Int. J. Mol. Sci. 2023, 24, 1898. [Google Scholar] [CrossRef]
- Lee, M.E.; DeLoache, W.C.; Cervantes, B.; Dueber, J.E. A highly characterized yeast toolkit for modular, multipart assembly. ACS Synth. Biol. 2015, 4, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Cai, P.; Yao, L.; Zhou, Y.J. Genetic tools for metabolic engineering of Pichia pastoris. Eng. Microbiol. 2023, 3, 100094. [Google Scholar] [CrossRef]
- Nielsen, J.; Keasling, J.D. Engineering cellular metabolism. Cell 2016, 164, 1185–1197. [Google Scholar] [CrossRef]
- Walsh, G. Biopharmaceutical benchmarks 2014. Nat. Biotechnol. 2014, 32, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Lew, J.; Premkumar, J.; Poh, C.L.; Win Naing, M. Production of recombinant collagen: State of the art and challenges. Eng. Biol. 2017, 1, 18–23. [Google Scholar] [CrossRef]
- Nokelainen, M.; Tu, H.; Vuorela, A.; Notbohm, H.; Kivirikko, K.I.; Myllyharju, J. High-level production of human type I collagen in the yeast Pichia pastoris. Yeast 2001, 18, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Hillas, P.J.; Báez, J.A.; Nokelainen, M.; Balan, J.; Tang, J.; Spiro, R.; Polarek, J.W. The application of recombinant human collagen in tissue engineering. BioDrugs 2004, 18, 103–119. [Google Scholar] [CrossRef]
- Avila Rodríguez, M.I.; Rodríguez Barroso, L.G.; Sánchez, M.L. Collagen: A review on its sources and potential cosmetic applications. J. Cosmet. Dermatol. 2018, 17, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Chien, L.J.; Lee, C.K. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol Prog. 2007, 23, 1017–1022. [Google Scholar] [CrossRef]
- Rykov, S.; Battalova, I.; Mironov, A. Construction of Recombinant Bacillus subtilis Strains Producing Hyaluronic Acid. Russ. J. Genet. 2022, 58, 507–527. [Google Scholar] [CrossRef]
- Gasser, B.; Saloheimo, M.; Rinas, U.; Dragosits, M.; Rodríguez-Carmona, E.; Baumann, K.; Giuliani, M.; Parrilli, E.; Branduardi, P.; Lang, C.; et al. Protein folding and conformational stress in microbial cells producing recombinant proteins: A host comparative overview. Microb. Cell Factories 2008, 7, 11. [Google Scholar] [CrossRef]
- Niyigaba, T.; Küçükgöz, K.; Kołożyn-Krajewska, D.; Królikowski, T.; Trząskowska, M. Advances in Fermentation Technology: A Focus on Health and Safety. Appl. Sci. 2025, 15, 3001. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, H.U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 2015, 33, 1061–1072. [Google Scholar] [CrossRef]
- Mukhriza, T. Microbial hyaluronic acid production: A comprehensive review of strategies, challenges and sustainable approaches. J. Serambi Eng. 2024, 9, 1529. [Google Scholar]
- Hummel, J.; Pagkaliwangan, M.; Gjoka, X.; Davidovits, T.; Stock, R.; Ransohoff, T.; Gantier, R.; Schofield, M. Modeling the downstream processing of monoclonal antibodies reveals cost advantages for continuous methods for a broad range of manufacturing scales. Biotechnol. J. 2019, 14, 1700665. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Li, C.; Teng, Y.; Zhang, R.; Yan, Y. Recent advances in improving metabolic robustness of microbial cell factories. Curr. Opin. Biotechnol. 2020, 66, 69–77. [Google Scholar] [CrossRef]
- Chaudhary, R.; Nawaz, A.; Fouillaud, M.; Dufossé, L.; Haq, I.u.; Mukhtar, H. Microbial Cell Factories: Biodiversity, Pathway Construction, Robustness, and Industrial Applicability. Microbiol. Res. 2024, 15, 247–272. [Google Scholar] [CrossRef]
- Fernández-Cabezón, L.; Cros, A.; Nikel, P.I. Evolutionary Approaches for Engineering Industrially Relevant Phenotypes in Bacterial Cell Factories. Biotechnol. J. 2019, 14, 1800439. [Google Scholar] [CrossRef]
- Kumar, S.; Hasty, J. Stability, robustness, and containment: Preparing synthetic biology for real-world deployment. Curr. Opin. Biotechnol. 2023, 79, 102880. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 2009, 27, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Gumulya, Y.; Peng, H.; Ebert, B.E.; Johnson, H.; van der Pols, J.C.; Bansal, N.; Marcellin, E.; Turner, M.S. Advancing Australia’s food future: Opportunities and challenges in precision fermentation. Future Foods 2025, 11, 100630. [Google Scholar] [CrossRef]
- Eastham, J.L.; Leman, A.R. Precision fermentation for food proteins: Ingredient innovations, bioprocess considerations, and outlook—A mini-review. Curr. Opin. Food Sci. 2024, 58, 101194. [Google Scholar] [CrossRef]
- Teng, T.S.; Chin, Y.L.; Chai, K.F.; Chen, W.N. Fermentation for future food systems: Precision fermentation can complement the scope and applications of traditional fermentation. EMBO Rep. 2021, 22, e52680. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Regulation (EC) No 1223/2009 on Cosmetic Products. 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32009R1223 (accessed on 18 August 2025).
- Lionetti, N.; Rigano, L. Labeling of cosmetic products. Cosmetics 2018, 5, 22. [Google Scholar] [CrossRef]
- Pauwels, M.; Rogiers, V. EU legislations affecting safety data availability of cosmetic ingredients. Regul. Toxicol. Pharmacol. 2007, 49, 308–315. [Google Scholar] [CrossRef]
- European Parliament, Council of the European Union. Regulation (EC) No 1907/2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Establishing a European Chemicals Agency, Amending Directive 1999/45/EC and Repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. 2006. Available online: https://eur-lex.europa.eu/legal-content/PT/TXT/?uri=celex:32006R1907 (accessed on 18 August 2025).
- Kim, K.-B.; Kwack, S.J.; Lee, J.Y.; Kacew, S.; Lee, B.-M. Current opinion on risk assessment of cosmetics. J. Toxicol. Environ. Health Part B 2021, 24, 137–161. [Google Scholar] [CrossRef]
- ISO 22716:2007Cosmetics—Good Manufacturing Practices (GMP)—Guidelines on Good Manufacturing Practices, ISO: Geneva, Switzerland, 2007; p. 21.
- European Parliament, Council of the European Union. Directive 2008/98/EC on Waste and Repealing Certain Directives. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008L0098&qid=1755775068881 (accessed on 18 August 2025).
- European Parliament, Council of the European Union. Directive 2010/75/EU on Industrial Emissions (Integrated Pollution Prevention and Control) (Recast). 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0075&qid=1755775120607 (accessed on 18 August 2025).
- ISO 14044:2006; Environmental Management—Life cycle assessment—Requirements and guidelines. ISO: Geneva, Switzerland, 2006.
- European Commission. Commission Regulation (EU) No 655/2013 Laying Down Common Criteria for the Justification of Claims Used in Relation to Cosmetic Products Text with EEA Relevance; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- European Parliament, Council of the European Union. Regulation (EC) No 1830/2003 Concerning the Traceability and Labelling of Genetically Modified Organisms and the Traceability of Food and Feed Products Produced from Genetically Modified Organisms and Amending Directive 2001/18/EC. 2003. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32003R1830&qid=1755732818227 (accessed on 18 August 2025).
- Abbate, E.; Andrion, J.; Apel, A.; Biggs, M.; Chaves, J.; Cheung, K.; Ciesla, A.; Clark-ElSayed, A.; Clay, M.; Contridas, R. Optimizing the strain engineering process for industrial-scale production of bio-based molecules. J. Ind. Microbiol. Biotechnol. 2023, 50, kuad025. [Google Scholar] [CrossRef]
- Gargalo, C.L.; Udugama, I.; Pontius, K.; Lopez, P.C.; Nielsen, R.F.; Hasanzadeh, A.; Mansouri, S.S.; Bayer, C.; Junicke, H.; Gernaey, K.V. Towards smart biomanufacturing: A perspective on recent developments in industrial measurement and monitoring technologies for bio-based production processes. J. Ind. Microbiol. Biotechnol. Off. J. Soc. Ind. Microbiol. Biotechnol. 2020, 47, 947–964. [Google Scholar] [CrossRef] [PubMed]
- Demesmaeker, M.; Kopec, D.; Arsénio, A.M. Bioprocessing 4.0–Where Are We with Smart Manufacturing in 2020? Pharm. Outsourcing 2020, 21, 28–31. [Google Scholar]
- Dzurendova, S.; Olsen, P.M.; Byrtusová, D.; Tafintseva, V.; Shapaval, V.; Horn, S.J.; Kohler, A.; Szotkowski, M.; Marova, I.; Zimmermann, B. Raman spectroscopy online monitoring of biomass production, intracellular metabolites and carbon substrates during submerged fermentation of oleaginous and carotenogenic microorganisms. Microb. Cell Factories 2023, 22, 261. [Google Scholar] [CrossRef] [PubMed]
- Yee, C.S.; Zahia-Azizan, N.A.; Abd Rahim, M.H.; Mohd Zaini, N.A.; Raja-Razali, R.B.; Ushidee-Radzi, M.A.; Ilham, Z.; Wan-Mohtar, W.A.A.Q.I. Smart Fermentation Technologies: Microbial Process Control in Traditional Fermented Foods. Fermentation 2025, 11, 323. [Google Scholar] [CrossRef]
- Dakhia, Z.; Russo, M.; Merenda, M. AI-Enabled IoT for Food Computing: Challenges, Opportunities, and Future Directions. Sensors 2025, 25, 2147. [Google Scholar] [CrossRef]
- de Almeida, E.L.M.; Ventorim, R.Z.; Dias, R.G.; de Moura Ferreira, M.A.; Bôas, S.G.V.; da Silveira, W.B. Novel Insights About Precision Fermentation. In Trending Topics on Fermented Foods; Martin, J.G.P., De Dea Lindner, J., Melo Pereira, G.V.d., Ray, R.C., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 161–200. [Google Scholar]
- Augustin, M.A.; Hartley, C.J.; Maloney, G.; Tyndall, S. Innovation in precision fermentation for food ingredients. Crit. Rev. Food Sci. Nutr. 2024, 64, 6218–6238. [Google Scholar] [CrossRef]
- Rafieenia, R.; Klemm, C.; Hapeta, P.; Fu, J.; García, M.G.; Ledesma-Amaro, R. Designing synthetic microbial communities with the capacity to upcycle fermentation byproducts to increase production yields. Trends Biotechnol. 2025, 43, 601–619. [Google Scholar] [CrossRef]
- Costa, C.E.; Romaní, A.; Domingues, L. Overview of resveratrol properties, applications, and advances in microbial precision fermentation. Crit. Rev. Biotechnol. 2025, 45, 788–804. [Google Scholar] [CrossRef]
- Nadar, C.G.; Fletcher, A.; Moreira, B.R.d.A.; Hine, D.; Yadav, S. Waste to protein: A systematic review of a century of advancement in microbial fermentation of agro-industrial byproducts. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13375. [Google Scholar] [CrossRef] [PubMed]
Patent | Title | Main Core | Scope | Publication | Country |
---|---|---|---|---|---|
US20060051847 | Metabolically engineered Saccharomyces cells for the production of polyunsaturated fatty acids | The present invention relates to the construction and engineering of cells, more particularly micro-organisms for producing PUFAs with four or more double bonds from non-fatty acid substrates through heterologous expression of an oxygen-requiring pathway. | PUFAs production | 9 March 2006 | USA |
CN105969742 | Arabidopsis thaliana SOD (Superoxide Dismutase)1 protein and application thereof in cosmetics | The invention relates to arabidopsis thaliana SOD (Superoxide Dismutase) protein and the application of the arabidopsis thaliana SOD1 protein in cosmetics and belongs to the technical field of gene engineering. The obtained protein can be applied to the development of the cosmetics. | Bioactive molecule production | 28 September 2016 | China |
CN113234764 | Heterologous expression method of gamma-polyglutamic acid | The invention discloses a heterologous expression method of gamma-PGA (gamma-polyglutamic acid) with different D/L monomer ratios from a saccharic raw material by one-step fermentation; a strain of C. glutamicum F343 with high yields of L-Glu is used as a chassis. | Bioactive molecule production | 10 August 2021 | China |
CN116987179 | Long-acting heat-resistant collagen as well as preparation method and application thereof | The invention relates to a long-acting, heat-resistant collagen, which comprises a collagen with an amino acid sequence and a nucleotide sequence for coding the collagen. The recombinant humanized collagen is obtained on the basis of human collagen sequence optimization and heterologous expression, and the collagen does not easily generate toxins, is safer to use, and has better heat resistance and certain long-term effect. | Structural protein production | 3 November 2023 | China |
CN118480553 | Recombinant silk fibroin as well as expression system and application thereof | The invention provides recombinant silk fibroin as well as an expression system and application thereof and belongs to the technical field of cosmetic raw material development. The method not only can solve the quality control problem of naturally extracted protein products but also can realize the effects of high-efficiency and high-purity heterologous expression and low large-scale production cost and has higher industrial application potential. | Structural protein production | 13 August 2024 | China |
Product | Micro-Organism | Media | Scale | Parameters | Yield | Reference |
---|---|---|---|---|---|---|
Hyaluronic acid (HA) | Streptococcus zooepidemicus | 20 g/L peptone, 12.5 g/L phosphates, 10 g/L Pyruvate, 6 g/L Yeast extract, 3 g/L MgSO4·7H2O, 1 g/L N-acetylglucosamine, 80 mg/L phosphatidylcholines and 80 g/L glucose. | 3 L | pH 7.0–7.5 (37 °C), aeration rate 3 L/min, and 200 to 600 rpm DO 20–30% | 1.01 gHA/L/h | [45] |
Human collagen α1(III) chain with viral prolyl 4-hydroxylase | P. pastoris GS115 | Buffered methanol medium (0.2% biotin, 1% methanol, 1% yeast nitrogen base, 1% yeast extract, 2% peptone, 100 mM potassium phosphate) | Flask | 30 °C (200 rpm), Methanol supplementation (24 h, 1% methanol) and the culture lasted for 144 h. | 0.7 mg/mL | [46] |
Squalene | P. pastoris GS115 | BMGY medium (1% glycerol, 1.34% YNB, 2% peptone, and 1% yeast extract). | Flask | 250 rpm (30 °C); methanol addition (1%, 24 h), and dodecane (10%) were initially supplemented. | 20.80 ± 0.02 g/L | [47] |
Yarrowia lipolyticae | YNB-60 (60 g/L glucose and contained 8 g/L yeast nitrogen base without amino acids, and 9 g/L yeast extract. | Flask | YNB-60 medium, a C/N ratio of 10:1, the addition of 1 mM isoprenol, no addition of terbinafine, and 28 °C | 1628.2 mg/L | [48] | |
S. cerevisiae C800 | YPD medium (containing 10 g/L CaCO3. Including 400 g/L glucose, 10.24 g/L MgSO4·7H2O, 50 g/L (NH4)2SO4, 18 g/L KH2PO4, 0.56 g/L Na2SO4, 7 g/L K2SO4, 20 mL/L vitamin solution, and 24 mL/L trace metal solution. | 5 L | pH 5.5 (30 °C), dissolved oxygen (DO) at 50%, stirring rate (250–800 rpm) up to 72 h, then at 30% after 72 h. The feeding medium was added at 6 mL/h from 14 to 24 h, then 8 mL/h from 24 to 72 h for maintaining the cell growth. | 8.2 g/L of squalene | [49] | |
Rhodobacter sphaerodies BCRC 13,100 | The basal medium: sucrose (20 g/L), molasses (44 g/L), corn steep liquor (35 g/L), Soytone (56 g/L), and (NH4)2SO4 (2 g/L). | Feed batch | pH 7, 30 °C and 200 rpm; 2 g/L Vitamin B1 and 100% medium replacement at 48 h. | 138.24 mg/L | [50] | |
Resveratrol | E. coli BL21 (DE3) | LB medium | Flask | 30 °C for 48 h with shaking at 200 rpm, glycerol 8% | 80.4 mg/L | [51] |
Scheffersomyces stipitis NBRC10063 | YP medium (10 g/L yeast extract; 20 g/L peptone) containing 50 g/L of glucose, cellobiose, or sucrose. | Flask | 30 °C, 100 rpm, Initial inoculum size: 0.1 OD600 | 529.8 mg/L (cellobiose) 668.6 mg/L (Sucrose) 237.6 mg/L (glucose) | [52] | |
Saccharomyces cerevisiae | Synthetic media (YPD20 (1% yeast extract, 2% peptone, 2% dextrose). | Flask | 300 rpm at 30 °C or 39 °C | 187.07 ± 19.88 mg/L | [53] | |
Eucalyptus globulus wood (Pretreated with hydrothermal treatment) | NE | 39 °C | 151.65 ± 3.84 mg/L resveratrol from 2.95% of cellulose from Eucalyptus globulus | |||
E. coli | EZ medium with 100 μg/mL ampicillin. | Flask | Initial inocolum size: 0.1 OD600, 30 °C and IPTG 25 μm. Induction at 18 °C for 12 h, 60 μL of 10 mM resveratroil in DMSO, and 24 h at 30 °C | 36.99% | [54] |
Regulation | Scope | Implications for precision Fermentation Ingredients |
---|---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Assay | Natural Derivative | Chemically Synthesized | |
---|---|---|---|
Toxicity assessment |
|
|
|
|
|
| |
|
|
| |
|
|
| |
|
|
| |
|
|
| |
Stability assessment |
|
|
|
|
|
| |
|
|
| |
Microbial and Contaminant control |
|
|
|
|
|
| |
|
|
| |
|
|
|
Regulation | Scope and Relevance to Anti-Greenwashing | Implications for Precision Fermentation Ingredients |
---|---|---|
Directive (EU) 2005/29/EC on Unfair Commercial Practices | Prohibits misleading or unsubstantiated sustainability claims in marketing and product labeling. |
|
Regulation (EU) No 655/2013 on Common Criteria for Cosmetic Claims | Stipulates the need for scientific validation for all claims used in cosmetic products. |
|
Directive (EU) 2019/2161 (Omnibus Directive) | Strengthens consumer protection against deceptive green claims and introduces financial penalties for non-compliance (up to 4% of annual turnover). |
|
Directive 94/62/EC on Packaging and Packaging Waste | Ensures that packaging materials and sustainability claims are aligned with recyclability and environmental impact standards. |
|
Directive (EU) 2018/851 on Waste Framework (Circular Economy Directive) | Prevents false claims about circular economic benefits by requiring scientific evidence for waste reduction and sustainability claims. |
|
Regulation (EU) 2018/848 on Organic Production and Labeling of Organic Products | Defines the use of the term organic in food and cosmetics, restricting its use to products that meet organic certification criteria. |
|
Directive 2014/95/EU on Non-Financial Reporting 1 | Requires large companies to disclose sustainability, environmental, and ethical impact data. |
|
Directive 2024/825/E Green Claims Directive | Introduces stricter regulations on environmental claims, requiring all sustainability statements to be independently verified before being used in marketing. Ensures that terms like “carbon neutral”, “eco-friendly”, and “biodegradable” are scientifically substantiated and prevents misleading greenwashing practices. |
|
Specific Information Needed | |
---|---|
Ingredient identity and characterization |
|
Toxicological and safety assessment |
|
Environmental impact |
|
Compliance with GMP |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.; Bautista-Hérnandez, I.; Gomez-García, R.; Costa, E.M.; Machado, M. Precision Fermentation as a Tool for Sustainable Cosmetic Ingredient Production. Appl. Sci. 2025, 15, 9246. https://doi.org/10.3390/app15179246
Silva S, Bautista-Hérnandez I, Gomez-García R, Costa EM, Machado M. Precision Fermentation as a Tool for Sustainable Cosmetic Ingredient Production. Applied Sciences. 2025; 15(17):9246. https://doi.org/10.3390/app15179246
Chicago/Turabian StyleSilva, Sara, Israel Bautista-Hérnandez, Ricardo Gomez-García, Eduardo M. Costa, and Manuela Machado. 2025. "Precision Fermentation as a Tool for Sustainable Cosmetic Ingredient Production" Applied Sciences 15, no. 17: 9246. https://doi.org/10.3390/app15179246
APA StyleSilva, S., Bautista-Hérnandez, I., Gomez-García, R., Costa, E. M., & Machado, M. (2025). Precision Fermentation as a Tool for Sustainable Cosmetic Ingredient Production. Applied Sciences, 15(17), 9246. https://doi.org/10.3390/app15179246