Functional Food as a Nutritional Countermeasure to Health Risks from Microgravity and Space Radiation in Long-Term Spaceflights: A Review
Abstract
1. Introduction
- -
- Altered gravity level;
- -
- Isolation and confinement;
- -
- Distance from Earth;
- -
- Hostile and closed environment;
- -
- Radiation.
2. Scientific Literature Review
3. Health Problems Associated with Spaceflights
- -
- Musculoskeletal deconditioning, as a loss of bone and muscle mass;
- -
- Cardiovascular degeneration;
- -
- Disruptions to gastrointestinal health;
- -
- Ocular problems;
- -
- Alterations to the immune system;
- -
- Hormonal imbalances;
- -
- Effects of oxidative stress, increasing ROS.
3.1. Loss of Bone and Muscle Mass
3.2. Cardiovascular Problems
3.3. Disruptions to Gastrointestinal Health
3.4. Ocular Problems
3.5. Alterations to the Immune System
3.6. Hormonal Imbalances
3.7. Effects of Oxidative Stress
4. The Essential Role of Functional Food in Spaceflights
5. Future Perspectives, Challenges, and Limitations
5.1. Algae
5.2. Pressure-Assisted Thermal Sterilization (PATS)
5.3. Microwave-Assisted Thermal Sterilization (MATS)
5.4. 3D Food Printing
5.5. Challenges and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prado, C.G. How Technology Is Changing Human Behavior: Issues and Benefits, 1st ed.; Praeger: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- Anderson, R.M. The Evolution of Life: Big Bang to Space Colonies; Precocity Press: Dallas, TX, USA, 2022. [Google Scholar]
- Sgobba, T.; Landon, L.B.; Marciacq, J.-B.; Groen, E.; Tikhonov, N.; Torchia, F. Chapter 16—Selection and training. In Space Safety and Human Performance; Sgobba, T., Kanki, B., Clervoy, J.-F., Sandal, G.M., Eds.; Butterworth-Heinemann: Waltham, MA, USA, 2018; pp. 721–793. [Google Scholar] [CrossRef]
- Shelhamer, M.; Fogarty, J. Chapter 3—Crew health—Psychological, biological, and medical issues and the need for a systems approach. In Interstellar Travel; Johnson, L., Roy, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 81–114. [Google Scholar] [CrossRef]
- Jandial, R.; Hoshide, R.; Waters, J.D.; Limoli, C.L. Space-brain: The negative effects of space exposure on the central nervous system. Surg. Neurol. Int. 2018, 9, 9. [Google Scholar] [CrossRef]
- Watkins, P.; Hughes, J.; Gamage, T.V.; Knoerzer, K.; Ferlazzo, M.L.; Banati, R.B. Long term food stability for extended space missions: A review. Life Sci. Space Res. 2022, 32, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Dakkumadugula, A.; Pankaj, L.; Alqahtani, A.S.; Ullah, R.; Ercisli, S.; Murugan, R. Space nutrition and the biochemical changes caused in Astronauts Health due to space flight: A review. Food Chem. X 2023, 20, 100875. [Google Scholar] [CrossRef]
- Zhao, M. Food systems for long-term spaceflight: Understanding the role of non-nutrient polyphenols in astronauts’ health. Heliyon 2024, 10, e37452. [Google Scholar] [CrossRef]
- Smith, J.K. Osteoclasts and Microgravity. Life 2020, 10, 207. [Google Scholar] [CrossRef]
- Genah, S.; Monici, M.; Morbidelli, L. The Effect of Space Travel on Bone Metabolism: Considerations on Today’s Major Challenges and Advances in Pharmacology. Int. J. Mol. Sci. 2021, 22, 4585. [Google Scholar] [CrossRef]
- Iwamoto, J.; Takeda, T.; Sato, Y. Interventions to prevent bone loss in astronauts during space flight. Keio J. Med. 2005, 54, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Narici, M.V.; de Boer, M.D. Disuse of the musculo-skeletal system in space and on earth. Eur. J. Appl. Physiol. 2011, 111, 403–420. [Google Scholar] [CrossRef]
- Hackney, K.J.; English, K.L. Protein and Essential Amino Acids to Protect Musculoskeletal Health during Spaceflight: Evidence of a Paradox? Life 2014, 4, 295–317. [Google Scholar] [CrossRef]
- Baselet, B.; Miranda, S.; Rehnberg, E.; Van Rompay, C.; Baatout, S.; Tabury, K. Chapter 30—Cardiovascular diseases in spaceflight. In Precision Medicine for Long and Safe Permanence of Humans in Space; Krittanawong, C., Ed.; Academic Press: Cambridge, MA, USA, 2025. [Google Scholar] [CrossRef]
- Hariom, S.K.; Nelson, E.J.R. Cardiovascular adaptations in microgravity conditions. Life Sci. Space Res. 2024, 42, 64–71. [Google Scholar] [CrossRef]
- Garrett-Bakelman, F.E.; Darshi, M.; Green, S.J.; Gur, R.C.; Lin, L.; Macias, B.R.; McKenna, M.J.; Meydan, C.; Mishra, T.; Nasrini, J.; et al. The NASA Twins Study: A multidimensional analysis of a year-long human spaceflight. Science 2019, 364, eaau8650. [Google Scholar] [CrossRef]
- MacNamara, J.P.; Dias, K.A.; Sarma, S.; Lee, S.M.C.; Martin, D.; Romeijn, M.; Zaha, V.G.; Levine, B.D. Cardiac Effects of Repeated Weightlessness During Extreme Duration Swimming Compared with Spaceflight. Circulation 2021, 143, 1533–1535. [Google Scholar] [CrossRef]
- Vernice, N.A.; Meydan, C.; Afshinnekoo, E.; Mason, C.E. Long-term spaceflight and the cardiovascular system. Precis. Clin. Med. 2020, 3, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Anzai, T.; Frey, M.A.; Nogami, A. Cardiac arrhythmias during long-duration spaceflights. J. Arrhythmia 2014, 30, 139–149. [Google Scholar] [CrossRef]
- Patel, Z.S.; Brunstetter, T.J.; Tarver, W.J.; Whitmire, A.M.; Zwart, S.R.; Smith, S.M.; Huff, J.L. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. NPJ Microgravity 2020, 6, 33. [Google Scholar] [CrossRef]
- Siddiqui, R.; Qaisar, R.; Al-Dahash, K.; Altelly, A.H.; Elmoselhi, A.B.; Khan, N.A. Cardiovascular changes under the microgravity environment and the gut microbiome. Life Sci. Space Res. 2024, 40, 89–96. [Google Scholar] [CrossRef]
- Ghosh, S.S.; Wang, J.; Yannie, P.J.; Ghosh, S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J. Endocr. Soc. 2020, 4, bvz039. [Google Scholar] [CrossRef] [PubMed]
- Tesei, D.; Jewczynko, A.; Lynch, A.M.; Urbaniak, C. Understanding the Complexities and Changes of the Astronaut Microbiome for Successful Long-Duration Space Missions. Life 2022, 12, 495. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.-S.; Lan, H.-Y.; Yu, Y.-B.; Li, H.-F.; Lin, J.-M. Altered fecal microbiomes and short chain fatty acids of crew members with periodic intake of prepackaged food in a ground-based space station simulator for 50 days. Travel Med. Infect. Dis. 2020, 36, 101480. [Google Scholar] [CrossRef] [PubMed]
- Brereton, N.J.B.; Pitre, F.E.; Gonzalez, E. Reanalysis of the Mars500 experiment reveals common gut microbiome alterations in astronauts induced by long-duration confinement. Comput. Struct. Biotechnol. J. 2021, 19, 2223–2235. [Google Scholar] [CrossRef]
- Ilyin, V.K. Microbiological status of cosmonauts during orbital spaceflights on Salyut and Mir orbital stations. Acta Astronaut. 2005, 56, 839–850. [Google Scholar] [CrossRef]
- Jiang, P.; Green, S.J.; Chlipala, G.E.; Turek, F.W.; Vitaterna, M.H. Reproducible changes in the gut microbiome suggest a shift in microbial and host metabolism during spaceflight. Microbiome 2019, 7, 113. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; Zhong, C.; Liu, L.; Wang, G.; Huang, X.; Yang, X.; Yang, H.; Li, L. The influence of simulated weightlessness on the composition and function of gut microbiota and bile acid metabolism products. Life Sci. Space Res. 2024, 41, 18–28. [Google Scholar] [CrossRef]
- Chylack, L.T., Jr.; Peterson, L.E.; Feiveson, A.H.; Wear, M.L.; Manuel, F.K.; Tung, W.H.; Hardy, D.S.; Marak, L.J.; Cucinotta, F.A. NASA study of cataract in astronauts (NASCA). Report 1: Cross-sectional study of the relationship of exposure to space radiation and risk of lens opacity. Radiat. Res. 2009, 172, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Rastegar, Z.; Eckart, P.; Mertz, M. Radiation-induced cataract in astronauts and cosmonauts. Graefe’s Arch. Clin. Exp. Ophthalmol. 2002, 240, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.G.; Mader, T.H.; Gibson, C.R.; Tarver, W.; Rabiei, P.; Riascos, R.F.; Galdamez, L.A.; Brunstetter, T. Spaceflight associated neuro-ocular syndrome (SANS) and the neuro-ophthalmologic effects of microgravity: A review and an update. NPJ Microgravity 2020, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.; Tarver, W.; Brunstetter, T.; Mader, T.H.; Gibson, C.R.; Mason, S.S.; Lee, A. Spaceflight associated neuro-ocular syndrome: Proposed pathogenesis, terrestrial analogues, and emerging countermeasures. Br. J. Ophthalmol. 2023, 107, 895. [Google Scholar] [CrossRef]
- Waisberg, E.; Ong, J.; Paladugu, P.; Kamran, S.A.; Zaman, N.; Lee, A.G.; Tavakkoli, A. Dynamic visual acuity as a biometric for astronaut performance and safety. Life Sci. Space Res. 2023, 37, 3–6. [Google Scholar] [CrossRef]
- Suh, A.; Ong, J.; Waisberg, E.; Lee, A.G. Neurostimulation as a technology countermeasure for dry eye syndrome in astronauts. Life Sci. Space Res. 2024, 42, 37–39. [Google Scholar] [CrossRef]
- Zayzafoon, M.; Meyers, V.E.; McDonald, J.M. Microgravity: The immune response and bone. Immunol. Rev. 2005, 208, 267–280. [Google Scholar] [CrossRef]
- Cogoli, A. Space flight and the immune system. Vaccine 1993, 11, 496–503. [Google Scholar] [CrossRef]
- Mehta, S.K.; Suresh, R.; Brandt, K.; Diak, D.M.; Smith, S.M.; Zwart, S.R.; Douglas, G.; Nelman-Gonzalez, M.; Clemett, S.; Brunstetter, T.; et al. Immune system dysregulation preceding a case of laboratory-confirmed zoster/dermatitis on board the International Space Station. J. Allergy Clin. Immunol. Glob. 2024, 3, 100244. [Google Scholar] [CrossRef] [PubMed]
- Macho, L.; Koška, J.; Kšinantová, L.; Pacak, K.; Hoff, T.; Noskov, V.B.; Grigoriev, A.I.; Vigaš, M.; Kvetňanský, R. The response of endocrine system to stress loads during space flight in human subject. Adv. Space Res. 2003, 31, 1605–1610. [Google Scholar] [CrossRef] [PubMed]
- St-Martin, P.; Le Roux, E.; Bergouignan, A. Chapter 8—Metabolic adaptations to microgravity. In Precision Medicine for Long and Safe Permanence of Humans in Space; Krittanawong, C., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 91–120. [Google Scholar] [CrossRef]
- Ronca, A.E.; Baker, E.S.; Bavendam, T.G.; Beck, K.D.; Miller, V.M.; Tash, J.S.; Jenkins, M. Effects of sex and gender on adaptations to space: Reproductive health. J. Women’s Health 2014, 23, 967–974. [Google Scholar] [CrossRef]
- Gimunová, M.; Paludo, A.C.; Bernaciková, M.; Bienertova-Vasku, J. The effect of space travel on human reproductive health: A systematic review. NPJ Microgravity 2024, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Strollo, F. Adaptation of the human endocrine system to microgravity in the context of integrative physiology and ageing. Pflüg. Arch. 2000, 441, R85–R90. [Google Scholar] [CrossRef]
- Strollo, F.; Vassilieva, G.; Ruscica, M.; Masini, M.; Santucci, D.; Borgia, L.; Magni, P.; Celotti, F.; Nikiporuc, I. Changes in stress hormones and metabolism during a 105-day simulated Mars mission. Aviat. Space Environ. Med. 2014, 85, 793–797. [Google Scholar] [CrossRef]
- Strollo, F.; Vernikos, J. Aging-like metabolic and adrenal changes in microgravity: State of the art in preparation for Mars. Neurosci. Biobehav. Rev. 2021, 126, 236–242. [Google Scholar] [CrossRef]
- Almukhtar, L.; Halicigil, C.; Patel, S.; Kohut, A.; Mathyk, B. Chapter 21—Spaceflight implications for precision medicine in the field of obstetrics and gynecology and its subspecialties. In Precision Medicine for Long and Safe Permanence of Humans in Space; Krittanawong, C., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 319–334. [Google Scholar] [CrossRef]
- Mathyk, B.A.; Tabetah, M.; Karim, R.; Zaksas, V.; Kim, J.; Anu, R.I.; Muratani, M.; Tasoula, A.; Singh, R.S.; Chen, Y.-K.; et al. Spaceflight induces changes in gene expression profiles linked to insulin and estrogen. Commun. Biol. 2024, 7, 692. [Google Scholar] [CrossRef]
- Nguyen, H.P.; Tran, P.H.; Kim, K.-S.; Yang, S.-G. The effects of real and simulated microgravity on cellular mitochondrial function. NPJ Microgravity 2021, 7, 44. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.W.; Pecaut, M.J.; Stanbouly, S.; Nelson, G. Oxidative stress, neuroinflammation, and the blood-brain barrier biomarkers on the brain response to spaceflight. Life Sci. Space Res. 2024, 43, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.B.; Mi, K.L.; Nelson, G.A.; Norman, R.B.; Patel, Z.S.; Huff, J.L. Ionizing radiation, cerebrovascular disease, and consequent dementia: A review and proposed framework relevant to space radiation exposure. Front. Physiol. 2022, 13, 1008640. [Google Scholar] [CrossRef] [PubMed]
- Taroncher, M.; Vila-Donat, P.; Tolosa, J.; Ruiz, M.J.; Rodríguez-Carrasco, Y. Biological activity and toxicity of plant nutraceuticals: An overview. Curr. Opin. Food Sci. 2021, 42, 113–118. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Riaz, S.; Verma, D.K.; Waseem, M.; Goksen, G.; Ali, A.; Zeng, X.-A. Nutraceutical tablets: Manufacturing processes, quality assurance, and effects on human health. Food Res. Int. 2024, 197, 115197. [Google Scholar] [CrossRef]
- Pennings, B.; Boirie, Y.; Senden, J.M.G.; Gijsen, A.P.; Kuipers, H.; van Loon, L.J.C. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr. 2011, 93, 997–1005. [Google Scholar] [CrossRef]
- Dijk, F.J.; Hofman, Z.; Luiking, Y.C.; Furber, M.J.W.; Roberts, J.D.; van Helvoort, A.; van Dijk, M. Muscle Protein Synthesis with a Hybrid Dairy and Plant-Based Protein Blend (P4) Is Equal to Whey Protein in a Murine Ageing Model after Fasting. Nutrients 2023, 15, 2569. [Google Scholar] [CrossRef]
- Coxam, V.; Davicco, M.-J.; Wauquier, F.; Wittrant, Y. Vitamine K et physiologie osseuse. Cah. Nutr. Diét. 2009, 44, 163–172. [Google Scholar] [CrossRef]
- Emam-Djomeh, Z.; Behmadi, H.; Azarpazhooh, E.; Ramaswamy, H.S. Chapter 12—Functional foods for bone and joint health: Building a solid foundation. In Unleashing the Power of Functional Foods and Novel Bioactives; Sarkar, T., Smaoui, S., Petkoska, A.T., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 233–256. [Google Scholar] [CrossRef]
- Jabbari, E. Osteogenic peptides in bone regeneration. Curr. Pharm. Des. 2013, 19, 3391–3402. [Google Scholar] [CrossRef]
- Agrawal, R.S.; Nirmal, N.P. Chapter 3—Functional foods for cardiovascular health: Nurturing a strong heart. In Unleashing the Power of Functional Foods and Novel Bioactives; Sarkar, T., Smaoui, S., Petkoska, A.T., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 29–40. [Google Scholar] [CrossRef]
- Syed, D.; Blasco, S.; Hopkins, S.; Kelley, T.; Thompson, R.; Wilson, C.; Pecaut, M.; Fleshner, M. Impacts of prebiotic diet and altered gravity on mouse immune response, gut microbiome, and home cage behavior. Brain Behav. Immun. 2023, 114, 33. [Google Scholar] [CrossRef]
- Buckley, N.D.; Champagne, C.P.; Masotti, A.I.; Wagar, L.E.; Tompkins, T.A.; Green-Johnson, J.M. Harnessing functional food strategies for the health challenges of space travel—Fermented soy for astronaut nutrition. Acta Astronaut. 2011, 68, 731–738. [Google Scholar] [CrossRef]
- Castro-Wallace, S.; Stahl, S.; Voorhies, A.; Lorenzi, H.; Douglas, G.L. Response of Lactobacillus acidophilus ATCC 4356 to low-shear modeled microgravity. Acta Astronaut. 2017, 139, 463–468. [Google Scholar] [CrossRef]
- Sonali, L.; Drisya Raj, M.P.; Pavithra, R.; Kanimozhi, N.V.; Suneetha, C.; Roopa Shri, B.; Sukumar, M. Functional foods for astronauts: Enhancing health and performance in microgravity and extreme environments. Space Habitat. 2025, 1, 100005. [Google Scholar] [CrossRef]
- Grahn, B.H.; Paterson, P.G.; Gottschall-Pass, K.T.; Zhang, Z. Zinc and the Eye. J. Am. Coll. Nutr. 2001, 20, 106–118. [Google Scholar] [CrossRef]
- Bernstein, P.S.; Li, B.; Vachali, P.P.; Gorusupudi, A.; Shyam, R.; Henriksen, B.S.; Nolan, J.M. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog. Retin. Eye Res. 2016, 50, 34–66. [Google Scholar] [CrossRef] [PubMed]
- Britten-Jones, A.C.; Craig, J.P.; Downie, L.E. Omega-3 polyunsaturated fatty acids and corneal nerve health: Current evidence and future directions. Ocul. Surf. 2023, 27, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Goz, B.; Ersoy, B.; Gulsunoglu-Konuskan, Z. Chapter 18—Functional foods for ocular health and vision. In Unleashing the Power of Functional Foods and Novel Bioactives; Sarkar, T., Smaoui, S., Petkoska, A.T., Eds.; Academic Press: Cambridge, MA, USA, 2025; pp. 355–372. [Google Scholar] [CrossRef]
- Shojadoost, B.; Yitbarek, A.; Alizadeh, M.; Kulkarni, R.R.; Astill, J.; Boodhoo, N.; Sharif, S. Centennial Review: Effects of vitamins A, D, E, and C on the chicken immune system. Poult. Sci. 2021, 100, 100930. [Google Scholar] [CrossRef]
- Vaclav, V.; Petr, S.; Luca, V. Chapter 8—Beta Glucan as Therapeutic Food. In Therapeutic Foods; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 239–256. [Google Scholar] [CrossRef]
- Banik, B.K.; Das, A. Chapter 9—Anticancer drugs from hormones and vitamins. In Natural Products as Anticancer Agents; Krishna Banik, B., Das, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 369–414. [Google Scholar] [CrossRef]
- Taslim, N.A.; Rampengan, D.D.C.H.; Ramadhan, R.N.; Rahmawati, B.A.; Yumnanisha, D.A.; Wiyarta, E.; Mayulu, N.; Kim, B.; Surya, E.; Nurkolis, F. The Effect of Zinc Supplementation on Endocrine Parameters and Hormonal Profiles in Women Diagnosed with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Curr. Dev. Nutr. 2024, 8, 103758. [Google Scholar] [CrossRef]
- Xu, H.; Liu, J.; Li, R.; Lin, J.; Gui, L.; Wang, Y.; Jin, Z.; Xia, W.; Liu, Y.; Cheng, S.; et al. Novel promising boron agents for boron neutron capture therapy: Current status and outlook on the future. Coord. Chem. Rev. 2024, 511, 215795. [Google Scholar] [CrossRef]
- Liu, Y.; Pang, D.; Xing, D.; Wang, W.; Li, Q.; Liao, S.; Li, E.; Zou, Y. Cinnamon free phenolic extract regulates glucose absorption in intestinal cells by inhibiting glucose transporters. Food Biosci. 2023, 52, 102405. [Google Scholar] [CrossRef]
- Longo, M.; Paolini, E.; Meroni, M.; Jericó, D.; Córdoba, K.M.; Battistin, M.; Gatti, S.; Di Pierro, E.; Fontanellas, A.; Dongiovanni, P. The Alpha-Lipoic Acid Improves Glucose Metabolism and Hyperinsulinemia in Acute Intermittent Porphyria: A Nutritional Concept for the Management of Rare Disorders. Cell. Mol. Gastroenterol. Hepatol. 2024, 17, 511–514. [Google Scholar] [CrossRef]
- Palai, S. Chapter 21—Berberine. In Nutraceuticals and Health Care; Kour, J., Nayik, G.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 359–368. [Google Scholar] [CrossRef]
- Başak, F.; Kuşat, T.; Ersan, Y.; Kahraman, T. Titanium dioxide-induced fibrotic liver model and the therapeutic effect of resveratrol by modulation of α-SMA and 8-oHdG expressions, oxidative stress, and inflammation. Tissue Cell 2025, 93, 102748. [Google Scholar] [CrossRef] [PubMed]
- Dubey, P. Chapter 13—Tea catechins as potent antioxidant and anti-inflammatory agents: Possibilities of drug development to promote healthy aging. In Plant Bioactives as Natural Panacea Against Age-Induced Diseases; Pandey, K.B., Suttajit, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 253–269. [Google Scholar] [CrossRef]
- Gao, H.; Seidi, F.; Cai, Y.; Sun, Z.; Bian, H.; Dai, H.; Xu, T. Construction of curcumin-conjugated pH-responsive lignin-based nanoparticles for alleviating oxidative stress: Stability, antioxidant activity and biocompatibility. Int. J. Biol. Macromol. 2025, 302, 140036. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Sly, P.D.; Khachatryan, L.; Begum, N.; Yeo, A.J.; Robinson, P.D.; Cormier, S.A.; Fantino, E. Astaxanthin protects against environmentally persistent free radical-induced oxidative stress in well-differentiated respiratory epithelium. Redox Biol. 2025, 81, 103542. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Agathokleous, E.; Dhawan, G.; Kapoor, R.; Calabrese, V. Protective effects of alpha lipoic acid (ALA) are mediated by hormetic mechanisms. Food Chem. Toxicol. 2023, 177, 113805. [Google Scholar] [CrossRef]
- Oliveira, C.P.M.; Carlos, L.; Gayotto, C.; Tatai, C.; Della Nina, B.I.; Oliveira, M.G.; Shishido, S.M.; Lima, E.S.; Abdalla, D.S.; Laurindo, F.R.; et al. Protective effect of S-nitroso-acetilcysteine (SNAC) in experimental liver steatosis induced by choline deficient diet. Gastroenterology 2003, 124, A757. [Google Scholar] [CrossRef]
- Mortazavi, A.; Yarbaksh, H.; Zarandi, B.F.B.B.; Yarbakhsh, R.; Ghadimi-Moghaddam, F.; Mortazavi, S.M.J.; Haghani, M.; Firoozi, D.; Sihver, L. Cultivation of Vitamin C-Rich Vegetables for Space-Radiation Mitigation. Radiation 2024, 4, 101–114. [Google Scholar] [CrossRef]
- Chandradhara, D.; Amalraj, A.; Gopi, S. Chapter 12—Efficacy of dietary polyphenols for neuroprotective effects and cognitive improvements. In Nutraceuticals in Brain Health and Beyond; Ghosh, D., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 169–173. [Google Scholar] [CrossRef]
- Huang, H.; Zhao, T.; Ma, W. Omega-3 polyunsaturated fatty acids attenuate cognitive impairment via the gut-brain axis in diabetes-associated cognitive dysfunction rats. Brain Behav. Immun. 2025, 127, 147–169. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.H.; Sun, M.Y.Y.; Sommerville, N.; Ngan, M.P.; Ponomarev, E.D.; Lin, G.; Rudd, J.A. Soy flavonoids prevent cognitive deficits induced by intra-gastrointestinal administration of beta-amyloid. Food Chem. Toxicol. 2020, 141, 111396. [Google Scholar] [CrossRef]
- Brawley, H.N.; Smith, S.M.; Zwart, S.R. Chapter 3—Spaceflight precision nutrition. In Precision Medicine for Long and Safe Permanence of Humans in Space; Krittanawong, C., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 47–55. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Bai, N.; Sun, Y.; Li, K.; Ruan, H.; Yan, B.; Hu, J.; Zhang, N.; Zhang, H.; et al. Spirulina platensis components mitigate bone density loss induced by simulated microgravity: A mechanistic insight. Food Chem. 2025, 463, 141361. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, J.A. The care and feeding of spacemen. Eng. Sci. 1959, 22, 11–13. [Google Scholar]
- Chellamanimegalai, P.; Deshmukhe, G.; Balange, A.K.; Layana, P. Unveiling the nutritional and antioxidant properties of brown algae resources (Dictyota J.V. Lamouroux) from the Bay of Bengal and Arabian Sea, Indian coast. Heliyon 2025, 11, e40693. [Google Scholar] [CrossRef]
- Kumar, V.; Bhoyar, M.S.; Mohanty, C.S.; Chauhan, P.S.; Toppo, K.; Ratha, S.K. Untapping the potential of algae for β-glucan production: A review of biological properties, strategies for enhanced production and future perspectives. Carbohydr. Polym. 2025, 348, 122895. [Google Scholar] [CrossRef]
- Luhila, Õ.; Paalme, T.; Tanilas, K.; Sarand, I. Omega-3 fatty acid and B12 vitamin content in Baltic algae. Algal Res. 2022, 67, 102860. [Google Scholar] [CrossRef]
- Vinayak, V. Chapter 20—Algae as sustainable food in space missions. In Biomass, Biofuels, Biochemicals; Varjani, S., Pandey, A., Bhaskar, T., Mohan, S.V., Tsang, D.C.W., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 517–540. [Google Scholar] [CrossRef]
- Perchonok, M.H.; Douglas, G.L. The Spaceflight Food System: A Case Study in Long Duration Preservation. In Encyclopedia of Food Chemistry; Melton, L., Shahidi, F., Varelis, P., Eds.; Academic Press: Oxford, UK, 2019; pp. 183–187. [Google Scholar] [CrossRef]
- Tao, Y.; Sun, D.-W.; Hogan, E.; Kelly, A.L. Chapter 1—High-Pressure Processing of Foods: An Overview. In Emerging Technologies for Food Processing, 2nd ed.; Sun, D.-W., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 3–24. [Google Scholar] [CrossRef]
- Barbosa-Cánovas, G.V.; Medina-Meza, I.; Candoğan, K.; Bermúdez-Aguirre, D. Advanced retorting, microwave assisted thermal sterilization (MATS), and pressure assisted thermal sterilization (PATS) to process meat products. Meat Sci. 2014, 98, 420–434. [Google Scholar] [CrossRef] [PubMed]
- Douglas, G.L.; Cooper, M.R.; Bermudez-Aguirre, D.; Sirmons, T. Risk of Performance Decrement and Crew Illness Due to an Inadequate Food System; NTRS-NASA Technical Reports Server: Washington, DC, USA, 2016. [Google Scholar]
- Wong, J.Y. 3D Printing Applications for Space Missions. Aerosp. Med. Hum. Perform. 2016, 87, 580–582. [Google Scholar] [CrossRef] [PubMed]
- Santhoshkumar, P.; Negi, A.; Moses, J.A. 3D printing for space food applications: Advancements, challenges, and prospects. Life Sci. Space Res. 2024, 40, 158–165. [Google Scholar] [CrossRef]
- Theagarajan, R.; Nimbkar, S.; Moses, J.A.; Anandharamakrishnan, C. Effect of post-processing treatments on the quality of three-dimensional printed rice starch constructs. J. Food Process Eng. 2021, 44, e13772. [Google Scholar] [CrossRef]
- Caulier, S.; Doets, E.; Noort, M. An exploratory consumer study of 3D printed food perception in a real-life military setting. Food Qual. Prefer. 2020, 86, 104001. [Google Scholar] [CrossRef]
Variables | Initial Reaction | ST Response | LT Response |
---|---|---|---|
Blood Volume | ↑ | ↓ 10–15% | ↓ 10–15% |
Hematocrit | ↑ | ↓ 10–15% | Unchanged or ↓ |
Cardiac Output | ↑ | ↑ 18–24% | ↑ 41% |
Stroke Volume | ↑ | ↑ 46% | ↑ 35% |
Ventricular Size | ↑ 20% | ↓ 10% | ↓ 10% |
Cause | Mechanism |
---|---|
Microgravity | Alters mitochondrial function → Increases ROS production |
Radiation | Causes DNA damage → Leads to cellular mutations |
Altered Metabolism | Disrupts calcium balance → Affects mitochondrial energy production |
Exercise | High oxygen consumption → Increases ROS levels |
Probiotic Strain | Spaceflight Suitability | Radiation/Microgravity Tolerance |
---|---|---|
Lactobacillus rhamnosus GG | Freeze-dried formulation tested in simulated spaceflight | Moderate–Simulated microgravity and stress-resistance studies |
Bifidobacterium breve | Shown to survive microgravity-like conditions | Limited–Simulated microgravity only |
Saccharomyces boulardii | Stable at variable temperatures | Limited–No radiation data available |
Lactobacillus plantarum | Withstands extreme temperatures in Earth simulations | Moderate–Simulated radiation tolerance observed |
Bacillus coagulans | Shelf-stable and heat-resistant | High–Resistant spores tested in space-like radiation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Clemente-Villalba, J.; Cerdá-Bernad, D. Functional Food as a Nutritional Countermeasure to Health Risks from Microgravity and Space Radiation in Long-Term Spaceflights: A Review. Appl. Sci. 2025, 15, 9220. https://doi.org/10.3390/app15169220
Clemente-Villalba J, Cerdá-Bernad D. Functional Food as a Nutritional Countermeasure to Health Risks from Microgravity and Space Radiation in Long-Term Spaceflights: A Review. Applied Sciences. 2025; 15(16):9220. https://doi.org/10.3390/app15169220
Chicago/Turabian StyleClemente-Villalba, Jesús, and Débora Cerdá-Bernad. 2025. "Functional Food as a Nutritional Countermeasure to Health Risks from Microgravity and Space Radiation in Long-Term Spaceflights: A Review" Applied Sciences 15, no. 16: 9220. https://doi.org/10.3390/app15169220
APA StyleClemente-Villalba, J., & Cerdá-Bernad, D. (2025). Functional Food as a Nutritional Countermeasure to Health Risks from Microgravity and Space Radiation in Long-Term Spaceflights: A Review. Applied Sciences, 15(16), 9220. https://doi.org/10.3390/app15169220