Development of a Decision Support System for Biomaterial Selection Based on MCDM Methods †
Abstract
1. Introduction
2. Development of DSS for Biomaterial Selection
2.1. DSS
- A large amount of data to be processed in the decision-making process;
- Time to decide is often limited, i.e., there is a period in which a decision should be made;
- There is a need for a decision-maker to make a correct and objective decision.
- Database subsystem—a DSS component where input and output data are stored.
- Model base subsystem—a DSS component consisting of a decision model. This subsystem, based on the input data and the decision-making model, generates output data.
- User interface subsystem—a component that enables communication between the DSS and the user. Since decision-makers are not always specialists for a particular model, this subsystem is very important.
2.2. MCDM Solver (MCSl)
- Input data for MCSl are as follows:
- Initial decision matrix with target-based criteria;
- η—confidence level of decision-maker in terms of significance of the selected criteria (where η = 1 corresponds to 100% confidence level, while η = 0 corresponds to a confidence level of 0);
- Pairwise significance evaluation of the selected criteria or directly entering the criteria weights.
2.3. General Algorithm
- P1—program for determining criteria weights;
- P2—program for solving MCDM problems using the extended TOPSIS method;
- P3—program for solving MCDM problems using the extended WASPAS method;
- P4—program for solving MCDM problems using the comprehensive VIKOR method.
- To implement the algorithm presented in Figure 2;
- To solve all MCDM problems in a simple way;
- To have upgradable and modular architecture;
- Software models located on the server;
- User-friendly interface, eliminating the need for expert knowledge. Based on the general algorithm, the MCSl is designed in such a way that the database is entered by the user, where the number of criteria and alternatives is not limited. The data must be in Excel format (.xlsx), organized as given in Figure A2.
2.4. Algorithm of P1—Determination of Criteria Weights
2.5. Criteria Assessment
- “=”—equal importance of both criteria that are assessed;
- “>”—if the criterion on the left is more significant than the criterion on the right;
- “<”—if the criterion on the right is more significant than the criterion on the left.
2.6. Algorithm of P2 (Extended TOPSIS Method)
2.7. Algorithm of P3 (Extended WASPAS Method)
2.8. Algorithm of P4 (Comprehensive VIKOR Method)
- •
- Alternatives and if only the C2 is not satisfied, or;
- •
- Alternatives if the C1 is not satisfied; is determined by the relation for maximum k.
3. Biomaterial Selection
- Exceptional biocompatibility with the surrounding tissue.
- Non-toxicity of biomaterials or their degradation products.
- Adequate mechanical properties (mechanical continuity with the surrounding bone tissue).
- High corrosion resistance.
- High wear resistance.
- Osteo-integration (in the case of orthopedic and dental implants).
Metallic Biomaterials
4. Results and Discussion
4.1. Case Study 1: Plate for Internal Bone Fixation—Selection of Biomaterial
4.1.1. Plate for Internal Bone Fixation
4.1.2. Criteria for Plate Biomaterial Selection
- Yield stress in MPa (C1);
- Tensile strength in MPa (C2);
- Elongation in % (C3);
- Elasticity modulus in GPa (C4);
- Density in kg/m3 (C5);
- Relative toughness (C6);
- Corrosion resistance (C7);
- Biocompatibility (C8);
- Machinability (C9);
- Relative biomaterial cost (C10).
4.1.3. List of Potential Biomaterials for the Plate
4.1.4. Case Study 1—Ranking Results
4.2. Case Study 2: Femoral Component of the Hip Prosthesis—Selection of Biomaterial
4.2.1. Joint Replacement and Hip Prosthesis
4.2.2. Criteria for the Hip Prosthesis Material Selection
- Yield stress in MPa (C1);
- Tensile strength in MPa (C2);
- Fatigue strength in MPa (C3);
- Elongation in % (C4);
- Elasticity modulus in GPa (C5);
- Density in kg/m3 (C6);
- Relative toughness (C7);
- Corrosion resistance (C8);
- Biocompatibility (C9);
- Machinability (C10).
4.2.3. Case Study 2—Ranking Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DSS | Decision support system |
MCDM | Multi-criteria decision-making |
MCSl | MCDM Solver |
TOPSIS | Technique for Order of Preference by Similarity to Ideal Solution |
WASPAS | Weighted Aggregated Sum Product Assessment |
VIKOR | VIšekriterijumsko KOmpromisno Rangiranje |
Appendix A
No. | Commercial Name | Alloy | UNS Number | State | Standard |
---|---|---|---|---|---|
M1 | BioDur® 316LS Stainless * | Stainless steel | S31673 | Annealed | ASTM F138 [78] |
M2 | Carpenter 22Cr-13Ni-5Mn * | S20910 | Annealed | ASTM F1314 [79] | |
M3 | BioDur® 108 Alloy (X4CrNiMoN23-21-1) * | S29108 | Annealed | ASTM F2229 [80] | |
M4 | BioDur® 734 Stainless * | S31675 | Annealed | ASTM F1586 [81] | |
M5 | BioDur® Carpenter CCM® Alloy * | Co-Cr-based alloy | R31537 | Annealed | ASTM F799 [82], ASTM F1537 [83] |
M6 | BioDur® CCM Plus® Alloy * | R31537 | Annealed 1093 °C/1 h | ASTM F799 [82], ASTM F1537 [83] | |
M7 | Micro-Melt® BioDur® Carpenter CCM® alloy * | R31537 | Worm-worked | ASTM F1537 [83] | |
M8 | Carpenter MP35N Alloy * | R30035 | 35% cold reduction, aged 538 °C/4 h | ASTM F562 [84] | |
M9 | Carpenter L-605 Alloy * | R30605 | Annealed 1204 °C | ASTM F90 [85] | |
M10 | CP Titanium Grade 4 | Ti-based alloy | R50700 | Annealed | ASTM F67 [86] |
M11 | Ti 6Al-4V ELI | R56401 | Recrystallization annealed | ASTM F136 [87] | |
M12 | Protasul-100 **, (Ti-6Al-7Nb) * | R56700 | Annealed 700 °C/1 h | ASTM F1295 [88] | |
M13 | Ti-5Al-2.5Fe | - | Centrifugally casted | DIN 3.7110 [89] | |
M14 | HAYNES ® Ti-3Al-2.5V alloy *** | R56320 | Annealed 704 °C | ASTM F2146 [90] | |
M15 | Ti-15Mo-5Zr | - | Quenched | - |
Biomaterial | C1 (MPa) | C2 (MPa) | C3 (%) | C4 (GPa) | C5 (g/cm3) | C6 | C7 | C8 | C9 | C10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | 250 | 585 | 57 | 193 | 7.95 | 0.865 | 0.41 | 0.41 | 0.865 | 2.4 | |
M2 | 450 | 825 | 45 | 193 | 7.86 | 0.865 | 0.5 | 0.59 | 0.865 | 3.1 | |
M3 | 580 | 930 | 52 | 200 | 7.64 | 0.865 | 0.5 | 0.745 | 0.865 | 1 | |
M4 | 450 | 840 | 39 | 195 | 7.75 | 0.745 | 0.5 | 0.59 | 0.865 | 2.6 | |
M5 | 585 | 1035 | 25 | 241 | 8.28 | 0.59 | 0.745 | 0.745 | 0.335 | 21.9 | |
M6 | 880 | 1350 | 22 | 241 | 8.28 | 0.59 | 0.745 | 0.745 | 0.41 | 23.1 | |
M7 | 1115 | 1420 | 28 | 241 | 8.29 | 0.59 | 0.745 | 0.745 | 0.335 | 87 | |
M8 | 1340 | 1400 | 21 | 235 | 8.43 | 0.59 | 0.665 | 0.59 | 0.255 | 37.5 | |
M9 | 415 | 1035 | 60 | 243 | 9.22 | 0.59 | 0.665 | 0.665 | 0.335 | 36.2 | |
M10 | 550 | 670 | 22 | 103 | 4.51 | 0.335 | 0.955 | 0.955 | 0.5 | 13.1 | |
M11 | 710 | 880 | 12 | 105 | 4.43 | 0.335 | 0.865 | 0.865 | 0.41 | 18 | |
M12 | 850 | 950 | 12 | 105 | 4.52 | 0.335 | 0.955 | 0.955 | 0.41 | 15.5 | |
M13 | 820 | 900 | 6 | 112 | 4.45 | 0.335 | 0.865 | 0.955 | 0.41 | 16 | |
M14 | 570 | 690 | 15 | 103 | 4.48 | 0.335 | 0.865 | 0.865 | 0.5 | 16.5 | |
M15 | 920 | 960 | 25 | 78 | 5.06 | 0.335 | 0.865 | 0.865 | 0.41 | 19.4 | |
Target values | 1340 | 1420 | 60 | 18 | 2.1 | 0.865 | 0.955 | 0.955 | 0.865 | 1 | |
Criteria weights | η = 0.7 | 0.118 | 0.121 | 0.088 | 0.105 | 0.070 | 0.098 | 0.114 | 0.120 | 0.089 | 0.078 |
η = 0.8 | 0.121 | 0.127 | 0.083 | 0.103 | 0.067 | 0.097 | 0.119 | 0.126 | 0.085 | 0.072 | |
η = 0.9 | 0.125 | 0.133 | 0.078 | 0.102 | 0.064 | 0.096 | 0.123 | 0.132 | 0.081 | 0.067 | |
η = 1.0 | 0.128 | 0.139 | 0.072 | 0.100 | 0.061 | 0.094 | 0.128 | 0.139 | 0.078 | 0.061 |
Biomaterial | C1 (MPa) | C2 (MPa) | C3 (MPa) | C4 (%) | C5 (GPa) | C6 (g/cm3) | C7 | C8 | C9 | C10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | 250 | 585 | 330 | 57 | 193 | 7.95 | 0.865 | 0.41 | 0.41 | 0.865 | |
M2 | 450 | 825 | 320 | 45 | 193 | 7.86 | 0.865 | 0.5 | 0.59 | 0.865 | |
M3 | 580 | 930 | 380 | 52 | 200 | 7.64 | 0.865 | 0.5 | 0.745 | 0.865 | |
M4 | 450 | 840 | 370 | 39 | 195 | 7.75 | 0.745 | 0.5 | 0.59 | 0.865 | |
M5 | 585 | 1035 | 300 | 25 | 241 | 8.28 | 0.59 | 0.745 | 0.745 | 0.335 | |
M6 | 880 | 1350 | 700 | 22 | 241 | 8.28 | 0.59 | 0.745 | 0.745 | 0.41 | |
M7 | 1115 | 1420 | 760 | 28 | 241 | 8.29 | 0.59 | 0.745 | 0.745 | 0.335 | |
M8 | 1340 | 1400 | 700 | 21 | 235 | 8.43 | 0.59 | 0.665 | 0.59 | 0.255 | |
M9 | 415 | 1035 | 440 | 60 | 243 | 9.22 | 0.59 | 0.665 | 0.665 | 0.335 | |
M10 | 550 | 670 | 430 | 22 | 103 | 4.51 | 0.335 | 0.955 | 0.955 | 0.5 | |
M11 | 710 | 880 | 550 | 12 | 105 | 4.43 | 0.335 | 0.865 | 0.865 | 0.41 | |
M12 | 850 | 950 | 540 | 12 | 105 | 4.52 | 0.335 | 0.955 | 0.955 | 0.41 | |
M13 | 820 | 900 | 580 | 6 | 112 | 4.45 | 0.335 | 0.865 | 0.955 | 0.41 | |
M14 | 570 | 690 | 320 | 15 | 103 | 4.48 | 0.335 | 0.865 | 0.865 | 0.5 | |
M15 | 920 | 960 | 600 | 25 | 78 | 5.06 | 0.335 | 0.865 | 0.865 | 0.41 | |
Target values | 1340 | 1420 | 760 | 60 | 14 | 2.1 | 0.865 | 0.955 | 0.955 | 0.865 | |
Criteria weights | η = 0.7 | 0.111 | 0.095 | 0.125 | 0.090 | 0.098 | 0.071 | 0.100 | 0.119 | 0.121 | 0.071 |
η = 0.8 | 0.113 | 0.096 | 0.130 | 0.084 | 0.095 | 0.067 | 0.098 | 0.124 | 0.129 | 0.064 | |
η = 0.9 | 0.115 | 0.098 | 0.134 | 0.078 | 0.092 | 0.064 | 0.096 | 0.129 | 0.137 | 0.057 | |
η = 1.0 | 0.117 | 0.100 | 0.139 | 0.072 | 0.089 | 0.061 | 0.094 | 0.133 | 0.144 | 0.050 |
References
- Chatterjee, P.; Athawale, V.M.; Chakraborty, S. Selection of materials using compromise ranking and outranking methods. Mater. Des. 2009, 30, 4043–4053. [Google Scholar] [CrossRef]
- Bauer, S.; Schmuki, P.; Von Der Mark, K.; Park, J. Engineering biocompatible implant surfaces: Part I: Materials and surfaces. Prog. Mater. Sci. 2013, 58, 261–326. [Google Scholar] [CrossRef]
- Raković, D.; Uskoković, D. (Eds.) Introduction–Chapter 1. In Biomaterials, 1st ed.; Institute for Technical Science of the Serbian Academy of Sciences and Arts: Belgrade, Serbia, 2010; pp. 13–23. (In Serbian) [Google Scholar]
- Jahan, A.; Edwards, K.L. Weighting of dependent and target-based criteria for optimal decision-making in materials selection process: Biomedical applications. Mater. Des. 2013, 49, 1000–1008. [Google Scholar] [CrossRef]
- Ashby, M.F.; Bréchet, Y.J.M.; Cebon, D.; Salvo, L. Selection strategies for materials and processes. Mater. Des. 2004, 25, 51–67. [Google Scholar] [CrossRef]
- Chatterjee, P.; Chakraborty, S. Material selection using preferential ranking methods. Mater. Des. 2012, 35, 384–393. [Google Scholar] [CrossRef]
- Petković, D.; Madić, M.; Radenković, G. Gear material selection using WASPAS method. In Proceedings of the SMAT 2014, Craiova, Romania, 23–25 October 2014; pp. 45–48. [Google Scholar]
- Vincke, P. Multicriteria Decision-Aid, 1st ed.; John Wiley & Sons: New York, NY, USA, 1992. [Google Scholar]
- Jahan, A.; Edwards, K.L. Multi-Criteria Decision Analysis for Supporting the Selection of Engineering Materials in Product Design, 1st ed.; Butterworth-Heinemann-Elsevier: Oxford, UK, 2013. [Google Scholar]
- Jee, D.-H.; Kang, K.-J. A method for optimal material selection aided with decision making theory. Mater. Des. 2000, 21, 199–206. [Google Scholar] [CrossRef]
- Shanian, A.; Savadogo, O. A material selection model based on the concept of multiple attribute decision making. Mater. Des. 2006, 27, 329–337. [Google Scholar] [CrossRef]
- Opricovic, S.; Tzeng, G.H. Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 2004, 156, 445–455. [Google Scholar] [CrossRef]
- Chatterjee, P.; Athawale, V.M.; Chakraborty, S. Materials selection using complex proportional assessment and evaluation of mixed data methods. Mater. Des. 2011, 32, 851–860. [Google Scholar] [CrossRef]
- Milani, A.S.; Shanian, A.; Lynam, C.; Scarinci, T. An application of the analytic network process in multiple criteria material selection. Mater. Des. 2013, 44, 622–632. [Google Scholar] [CrossRef]
- Athawale, V.M.; Kumar, R.; Chakraborty, S. Decision making for material selection using the UTA method. Int. J. Adv. Manuf. Technol. 2011, 57, 11–22. [Google Scholar] [CrossRef]
- Więckowski, J.; Sałabun, W. Comparative sensitivity analysis in composite material selection: Evaluating OAT and COMSAM methods in multi-criteria decision-making. Spectr. Mech. Eng. Oper. Res. 2025, 2, 1–12. [Google Scholar] [CrossRef]
- Sofuoğlu, M.A. A new biomaterial selection approach using reference ideal method. Sādhanā 2021, 46, 36. [Google Scholar] [CrossRef]
- Rijwani, T.; Dumra, G.; Abhishek, K.; Iyer, G. Hybrid multi-criteria decision making approaches for transtibial prostheses socket material selection. Discov. Appl. Sci. 2025, 7, 348. [Google Scholar] [CrossRef]
- Kumar, R.; Dubey, R.; Singh, S.; Singh, S.; Prakash, C.; Nirsanametla, Y.; Królczyk, G.; Chudy, R. Multiple-criteria decision-making and sensitivity analysis for selection of materials for knee implant femoral component. Materials 2021, 14, 2084. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.C.; Ji, K.W.; Paek, S.N.; Om, M.S. Integrated multi-attribute decision-making methodology based on integrated comprehensive evaluation index: Application to titanium alloy selection. Appl. Phys. A-Mater. 2024, 130, 658. [Google Scholar] [CrossRef]
- Kumar, A.; Rajak, S. Selection of bio-implant materials based on metal additive manufacturing using integrated SWARA and WASPAS MCDM technique. J. Mater. Eng. Perform. 2025, 1–21. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1981. [Google Scholar]
- Yang, W.C.; Chon, S.H.; Choe, C.M.; Yang, J.Y. Materials selection method using TOPSIS with some popular normalization methods. Eng. Res. Express 2021, 3, 015020. [Google Scholar] [CrossRef]
- Jahan, A.; Bahraminasab, M.; Edwards, K.L. A target-based normalization technique for materials selection. Mater. Des. 2012, 35, 647–654. [Google Scholar] [CrossRef]
- Madić, M.; Nedić, B.; Radovanović, M. Poslovno i Inženjersko Odlučivanje Primenom Metoda Višekriterijumske Analize, 1st ed.; Univerzitet u Kragujevcu: Kragujevac, Serbia, 2015. [Google Scholar]
- Jahan, A.; Mustapha, F.; Ismail, M.Y.; Sapuan, S.M.; Bahraminasab, M. A comprehensive VIKOR method for material selection. Mater. Des. 2011, 32, 1215–1221. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Turskis, Y.; Antucheviciene, J.; Zakarevicius, A. Optimization of weighted aggregated sum product assesment. Electron. Elec. Eng. 2012, 122, 3–6. [Google Scholar]
- Petković, D.; Madić, M.; Radenković, G. Selection of the Most Suitable Non-Conventional Machining Processes for Ceramics Machining by Using MCDMs. Sci. Sinter. 2015, 47, 229–235. [Google Scholar] [CrossRef]
- Chakraborty, S.; Zavadskas, E.Z. Applications of WASPAS Method in Manufacturing Decision Making. Informatica 2014, 25, 1–20. [Google Scholar] [CrossRef]
- Petković, D. Selection of Biomaterials–Multi-Criteria Decision Analysis and Development of Decision Support System. Ph.D. Thesis, Faculty of Mechanical Engineering, University of Niš, Niš, Serbia, 2017. (In Serbian). [Google Scholar]
- Petković, D.; Madić, M.; Radenković, G. Ranking of Biomedical Materials by Using Comprehensive WASPAS Method. In Proceedings of the MASING 2015, Niš, Serbia, 17–18 September 2015; pp. 339–344. [Google Scholar]
- Stević, Ž.; Baydaş, M.; Kavacık, M.; Ayhan, E.; Marinković, D. Selection of data conversion technique via sensitivity-performance matching: Ranking of small e-vans with PROBID method. Facta Univ.-Ser. Mech. 2024, 22, 643–671. [Google Scholar] [CrossRef]
- Saha, A.; Chatterjee, P. A Fermatean Fuzzy Decision-Making Model for Manufacturing Outsourcing Vendor Selection: An Improved Combined Compromise Solution Method. Spectr. Mech. Eng. Oper. Res. 2025, 2, 231–247. [Google Scholar] [CrossRef]
- Čupić, M.; Tummala, R.; Suknović, M. Odlučivanje-Formalni Pristup, 1st ed.; Fakultet Organizacionih Nauka: Beograd, Serbia, 2001. [Google Scholar]
- Turban, E. Decision Support and Expert Systems: Management Support Systems, 4th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Ali, R.; Hussain, A.; Nazir, S.; Khan, S.; Khan, H.U. Intelligent Decision Support Systems—An Analysis of Machine Learning and Multicriteria Decision-Making Methods. Appl. Sci. 2023, 13, 12426. [Google Scholar] [CrossRef]
- Keen, P.G.W. Value analysis: Justifying decision support systems. MIS Q. 1981, 5, 1–16. [Google Scholar] [CrossRef]
- Chakraborty, S.; Saha, A.K. Selection of Forklift unit for transport handling using integrated MCDM under neutrosophic environment. Facta Univ.-Ser. Mech. 2024, 22, 235–256. [Google Scholar] [CrossRef]
- Krstić, M.; Tadić, S.; Čvorović, A.; Veljović, M. Optimization of last-mile delivery alternatives using the fuzzy FARE and ADAM multi-criteria decision-making methods. J. Eng. Manag. Syst. Eng. 2025, 4, 98–108. [Google Scholar] [CrossRef]
- Jahan, A.; Mustapha, F.; Sapuan, S.M.; Ismail, M.Y.; Bahraminasab, M. A framework for weighting of criteria in ranking stage of material selection process. Int. J. Adv. Manuf. Technol. 2012, 58, 411–420. [Google Scholar] [CrossRef]
- Farag, M.M. Materials Selection for Engineering Design, 1st ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1997. [Google Scholar]
- Gavrilov, L.A.; Heuveline, P. Aging of population. In The Encyclopedia of Population, 1st ed.; Demeny, P., McNicoll, G., Eds.; Macmillan Reference: New York, NY, USA, 2003; pp. 32–37. [Google Scholar]
- Romero, E. Powering Biomedical Devices; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Boretos, J.W.; Eden, M. Contemporary Biomaterials, Material and Host Response, Clinical Applications, New Technology and Legal Aspects; Noyes Publications: Park Ridge, IL, USA, 1984. [Google Scholar]
- Bose, S.; Bandyopadhyay, A. Introduction to Biomaterials–Chapter 1. In Characterization of Biomaterials, 1st ed.; Bandyopadhyay, A., Bose, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Niinomi, M. Low Modulus Titanium Alloys for Inhibiting Bone Atrophy–Chapter 12. In Biomaterials Science and Engineering, 1st ed.; Pignatello, R., Ed.; InTech: Rijeka, Croatia, 2011. [Google Scholar]
- Mitkovic, M.M.; Korunovic, N.D.; Milenkovic, S.S.; Stojiljkovic, P.M.; Manic, M.T.; Trajanovic, M.D. Forces required to dynamize sliding screws in gamma nail and selfdynamizable internal fixator. BMC Musculoskelet. Disord. 2024, 25, 271. [Google Scholar] [CrossRef]
- Marin, E.; Lanzutti, A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials 2024, 17, 114. [Google Scholar] [CrossRef] [PubMed]
- Mitković, M. Rezulati primene originalnih minimalno invazivnih hirurških metoda lečenja preloma. Acta Fac. Medicae Naissenis 2002, 19, 167–178. [Google Scholar]
- Fukutake, K.; Wada, A.; Kamakura, D.; Nakamura, K.; Tsuge, S.; Hasegawa, K.; Takahashi, H. Evaluation of Percutaneous Pedicle Screw Fixation in Patients with Pyogenic Spondylitis of the Thoracolumbar Spine. Open J. Orthop. 2020, 10, 303–312. [Google Scholar] [CrossRef]
- Petković, D.; Radenković, G.; Mitković, M. Fractographic investigation of failure in stainless steel orthopedic plates. Facta Univ.-Ser. Mech. 2012, 10, 7–14. [Google Scholar]
- Barber, C.C.; Burnham, M.; Ojameruaye, O.; McKee, M.D. A Systematic Review of the Use of Titanium versus Stainless Steel Implants for Fracture Fixation. OTA Int. 2021, 4, e138. [Google Scholar] [CrossRef]
- Morano, C.; Garofalo, S.; Bertuccio, P.; Sposato, A.; Zappone, I.; Pagnotta, L. A Comprehensive Literature Review of Total Hip Arthroplasty (THA): Part 1—Biomaterials. J. Funct. Biomater. 2025, 16, 179. [Google Scholar] [CrossRef]
- Anderson, T.L. Fracture Mechanics-Fundamentals and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Lazić Vulićević, L. Otpornost Prema Zamornom Lomu Zavarenih Cevi od Čelika Povišene Čvrstoće. PH.D. Thesis, Tehnološko-Metalurški Fakultet, Beograd, Serbia, 2015. [Google Scholar]
- Rao, R.V. Decision Making in the Manufacturing Environment: Using Graph Theory and Fuzzy Multiple Attribute Decision Making Methods, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Li, J.; Zhao, M.C.; Zhao, Y.C.; Yin, D.; Atrens, A. Customization and prospects of friction stir processing for improving the biomedical properties of metallic implants for orthopedic applications. J. Mater. Res. Technol. 2025, 34, 2133–2149. [Google Scholar] [CrossRef]
- Chen, L.Y.; Cui, Y.W.; Zhang, L.C. Recent Development in Beta Titanium Alloys for Biomedical Applications. Metals 2020, 10, 1139. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Mitra, I.; Goodman, S.B.; Kumar, M.; Bose, S. Improving biocompatibility for next generation of metallic implants. Prog. Mater. Sci. 2023, 133, 101053. [Google Scholar] [CrossRef] [PubMed]
- Mirea, R.; Cucuruz, A.T.; Ceatra, L.C.; Badea, T.; Biris, I.; Popescu, E.; Paraschiv, A.; Ene, R.; Sbarcea, G.; Cretu, M. In-Depth Comparative Assessment of Different Metallic Biomaterials in Simulated Body Fluid. Materials 2021, 14, 2774. [Google Scholar] [CrossRef]
- Saraiva, B.R.C.; Novotny, L.; Carpentieri, B.; Keller, T.F.; Faberova, M.; Bures, R.; Rodrigues, S.F.; Neto, J.R.B.; Antunes, L.H.M.; Masoumi, M.; et al. Effect of cyclic loading on microstructure and crack propagation in additively manufactured biomaterial Co-Cr-Mo alloy. J. Mater. Res. Technol. 2023, 26, 3905–3916. [Google Scholar] [CrossRef]
- Laskowska, D.; Bałasz, B.; Zawadka, W. Microstructure and Mechanical Properties of As-Built Ti-6Al-4V and Ti-6Al-7Nb Alloys Produced by Selective Laser Melting Technology. Materials 2024, 17, 4604. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, W.; Zeng, D.; Liang, X.; Ma, C.; Xiao, W. Additive manufacturing of titanium alloys for biomedical applications: A systematic review. Rev. Mater. Res. 2025, 1, 100011. [Google Scholar] [CrossRef]
- Chen, J.; Liao, X.; Shu, J.; Zhou, L.; Li, C.; Ren, Y.; Niu, Y. Microstructure tailoring of Ti–15Mo alloy fabricated by selective laser melting with high strength and ductility. Mater. Sci. Eng. A 2021, 826, 141962. [Google Scholar] [CrossRef]
- Bălţatu, M.S.; Vizureanu, P.; Ţierean, M.H.; Minciună, M.G.; Achiţei, D.C. Ti-Mo Alloys Used in Medical Applications. Adv. Mater. Res. 2015, 1128, 105–111. [Google Scholar] [CrossRef]
- Wang, J.B.; Shang, Z.Y.; Yuan, Z.S.; Zhou, J.; Feng, Z.W.; Miao, W.D.; Zhu, M. Study on the mechanical property and microstructure of surgical implanted Ti-6Al-7Nb titanium alloy. Adv. Mater. Res. 2012, 535, 945–949. [Google Scholar] [CrossRef]
- Gugala, Z.; Lindsey, R.W. Removal versus Retention of Orthopaedic Trauma Implants. Orthop. Knowl. Online 2015, 13, 1–20. [Google Scholar]
- Vos, D.; Hanson, B.; Verhofstad, M. Implant Removal of Osteosynthesis: The Dutch Practice. Results of a Survey. J. Trauma Manag. Outcomes 2012, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, M.; Sugita, K.; Do, K.; Ishimoto, T.; Nakano, T.; Araki, H. Stability of vacancies in β-type Ti-15Mo-5Zr-3Al alloy fabricated via laser powder bed fusion. Addit. Manuf. Lett. 2023, 7, 100162. [Google Scholar] [CrossRef]
- Mitkovic, M.; Mladenovic, D.; Golubovic, Z.; Stanojkovic, M.; Milenkovic, S.; Micic, L.; Karalejic, S.; Jovanovic, V.; Ciric, T.; Stojiljkovic, P.; et al. Novi koncept totalne endoproteze kuka i rezultati biomehaničkog ispitivanja i kliničke primene. Acta Fac. Medicae Naissenis 2002, 19, 222–229. [Google Scholar]
- Sovilj, B.; Igartua, A.; Klugmann, E.; Vukelić, Đ. Tribološki procesi veštačkog zgloba kuka. In Proceedings of the 8th International Tribology Conference, Belgrade, Serbia, 8–10 October 2003; pp. 98–102. [Google Scholar]
- Radenković, G.; Petković, D. Metallic Biomaterials. In Biomaterials in Clinical Practice, 1st ed.; Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Ristić, B.; Popović, Z.; Adamović, D.; Devedžić, G. Izbor biomaterijala u ortopedskoj hirurgiji. Vojnosanit. Preg. 2010, 67, 847–855. [Google Scholar]
- Zhang, L.C.; Chen, L.Y.; Wang, L. Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests. Adv. Eng. Mat. 2020, 22, 1901258. [Google Scholar] [CrossRef]
- Oyane, A.; Sakamaki, I.; Koga, K.; Nakamura, M. Formation of a Calcium Phosphate Layer with Immobilized Cobalt Chromite Nanoparticles on Cobalt–Chromium Alloy by a Laser-Assisted Biomimetic Process. Appl. Sci. 2020, 10, 5584. [Google Scholar] [CrossRef]
- Çelik, İ.; Eroğlu, H. Selection application of material to be used in hip prosthesis production with analytic hierarchy process: Anwendungsselektion des zu verwendenden Materials in der Hüftprothesenproduktion mit dem analytischen Hierarchieverfahren. Mater. Werkst. 2017, 48, 1125–1132. [Google Scholar] [CrossRef]
- ASTM F 138-19; Standard Specification for Wrought 18Chromium-14Nickel-2.5Molybdenum Stainless Steel Bar and Wire for Surgical Implants (UNS S31673). ASTM: West Conshohocken, PA, USA, 2019.
- F1314-24; Standard Specification for Wrought Nitrogen Strengthened 22Chromium-13Nickel-5Manganese-2.5Molybdenum Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S20910). ASTM: West Conshohocken, PA, USA, 2024.
- F2229-21; Standard Specification for Wrought, Nitrogen Strengthened 23Manganese-21Chromium-1Molybdenum Low-Nickel Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29108). ASTM: West Conshohocken, PA, USA, 2021.
- F1586-21; Standard Specification for Wrought Nitrogen Strengthened 21Chromium—10Nickel—3Manganese—2.5Molybdenum Stainless Steel Alloy Bar for Surgical Implants (UNS S31675). ASTM: West Conshohocken, PA, USA, 2021.
- F799-19; Standard Specification for Cobalt-28 Chromium-6 Molybdenum Alloy Forgings for Surgical Implants (UNS R31537, R31538, R31539). ASTM: West Conshohocken, PA, USA, 2019.
- F1537-20; Standard Specification for Wrought Cobalt-28Chromium-6Molybdenum Alloys for Surgical Implants (UNS R31537, UNS R31538, and UNS R31539). ASTM: West Conshohocken, PA, USA, 2020.
- F562-22; Standard Specification for Wrought 35Cobalt-35Nickel-20Chromium-10Molybdenum Alloy for Surgical Implant Applications (UNS R30035). ASTM: West Conshohocken, PA, USA, 2022.
- F90-24; Standard Specification for Wrought Cobalt-20Chromium-15Tungsten-10Nickel Alloy for Surgical Implant Applications (UNS R30605). ASTM: West Conshohocken, PA, USA, 2024.
- F67-24; Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS R50700). ASTM: West Conshohocken, PA, USA, 2024.
- F136—13(2021)e1; Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401). ASTM: West Conshohocken, PA, USA, 2021.
- F1295-24; Standard Specification for Wrought Titanium-6Aluminum-7Niobium Alloy for Surgical Implant Applications (UNS R56700). ASTM: West Conshohocken, PA, USA, 2024.
- DIN:17869:1992; Material Properties of Titanium and Titanium Alloys; Additional Data. Deutsches Institut für Normung (DIN): Berlin, Germany, 1992.
- F2146-22; Standard Specification for Wrought Titanium-3Aluminum-2.5Vanadium Alloy Seamless Tubing for Surgical Implant Applications (UNS R56320). ASTM: West Conshohocken, PA, USA, 2022.
No. | TOPSIS | WASPAS | VIKOR | |||
---|---|---|---|---|---|---|
C(i) | Rank | Q(i) | Rank | P(i) | Rank | |
M1 | 0.36091 | 15 | 0.47867 | 13 | 0.96259 | 15 |
M2 | 0.43561 | 12 | 0.54989 | 7 | 0.53136 | 10 |
M3 | 0.51072 | 9 | 0.6405 | 1 | 0.34875 | 7 |
M4 | 0.41394 | 14 | 0.5391 | 8 | 0.61966 | 12 |
M5 | 0.46863 | 11 | 0.46466 | 14 | 0.53465 | 11 |
M6 | 0.56775 | 4 | 0.51537 | 11 | 0.28385 | 5 |
M7 | 0.57665 | 3 | 0.51996 | 10 | 0.25942 | 4 |
M8 | 0.54337 | 6 | 0.5081 | 12 | 0.36803 | 8 |
M9 | 0.42652 | 13 | 0.44765 | 15 | 0.73832 | 14 |
M10 | 0.52587 | 8 | 0.56698 | 4 | 0.50918 | 9 |
M11 | 0.52614 | 7 | 0.55239 | 6 | 0.33352 | 6 |
M12 | 0.58704 | 1 | 0.59301 | 3 | 0.00151 | 1 |
M13 | 0.55505 | 5 | 0.55713 | 5 | 0.20215 | 3 |
M14 | 0.48953 | 10 | 0.53661 | 9 | 0.65273 | 13 |
M15 | 0.57799 | 2 | 0.60526 | 2 | 0.08705 | 2 |
MCDM Method | TOPSIS | WASPAS | VIKOR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
η | 0.7 | 0.8 | 0.9 | 1 | 0.7 | 0.8 | 0.9 | 1 | 0.7 | 0.8 | 0.9 | 1 |
M1 | 15 | 15 | 15 | 15 | 10 | 12 | 13 | 13 | 15 | 15 | 15 | 15 |
M2 | 11 | 11 | 12 | 12 | 4 | 4 | 5 | 7 | 6 | 9 | 9 | 10 |
M3 | 3 | 6 | 8 | 9 | 1 | 1 | 1 | 1 | 3 | 4 | 5 | 7 |
M4 | 12 | 13 | 14 | 14 | 6 | 6 | 8 | 8 | 11 | 11 | 12 | 12 |
M5 | 13 | 12 | 11 | 11 | 14 | 14 | 14 | 14 | 13 | 12 | 11 | 11 |
M6 | 4 | 3 | 4 | 4 | 11 | 11 | 11 | 11 | 8 | 8 | 7 | 5 |
M7 | 5 | 4 | 3 | 3 | 12 | 10 | 10 | 10 | 9 | 7 | 6 | 4 |
M8 | 8 | 7 | 6 | 6 | 13 | 13 | 12 | 12 | 7 | 6 | 8 | 8 |
M9 | 14 | 14 | 13 | 13 | 15 | 15 | 15 | 15 | 14 | 14 | 14 | 14 |
M10 | 7 | 8 | 7 | 8 | 5 | 5 | 4 | 4 | 10 | 10 | 10 | 9 |
M11 | 9 | 9 | 9 | 7 | 7 | 8 | 7 | 6 | 5 | 5 | 4 | 6 |
M12 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 1 |
M13 | 6 | 5 | 5 | 5 | 8 | 7 | 6 | 5 | 4 | 3 | 3 | 3 |
M14 | 10 | 10 | 10 | 10 | 9 | 9 | 9 | 9 | 12 | 13 | 13 | 13 |
M15 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
No. | TOPSIS | WASPAS | VIKOR | |||
---|---|---|---|---|---|---|
C(i) | Rank | Q(i) | Rank | P(i) | Rank | |
M1 | 0.31059 | 14 | 0.49658 | 14 | 0.99262 | 14 |
M2 | 0.32923 | 13 | 0.53911 | 11 | 0.94838 | 13 |
M3 | 0.41753 | 10 | 0.59748 | 9 | 0.5774 | 8 |
M4 | 0.30558 | 15 | 0.53317 | 12 | 1 | 15 |
M5 | 0.37383 | 11 | 0.49616 | 15 | 0.9333 | 12 |
M6 | 0.56664 | 5 | 0.6056 | 8 | 0.20032 | 6 |
M7 | 0.60806 | 1 | 0.63975 | 3 | 0.07027 | 4 |
M8 | 0.51629 | 8 | 0.60614 | 7 | 0.64589 | 9 |
M9 | 0.37006 | 12 | 0.50988 | 13 | 0.7612 | 11 |
M10 | 0.52711 | 7 | 0.62369 | 6 | 0.30244 | 7 |
M11 | 0.53481 | 6 | 0.63011 | 5 | 0.18257 | 5 |
M12 | 0.59714 | 2 | 0.66704 | 2 | 0 | 1 |
M13 | 0.58041 | 4 | 0.63605 | 4 | 0.06465 | 3 |
M14 | 0.44623 | 9 | 0.57241 | 10 | 0.72884 | 10 |
M15 | 0.59240 | 3 | 0.69360 | 1 | 0.06339 | 2 |
MCDM Method | TOPSIS | WASPAS | VIKOR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
η | 0.7 | 0.8 | 0.9 | 1 | 0.7 | 0.8 | 0.9 | 1 | 0.7 | 0.8 | 0.9 | 1 |
M1 | 13 | 14 | 14 | 14 | 13 | 13 | 14 | 14 | 13 | 13 | 13 | 14 |
M2 | 12 | 13 | 13 | 13 | 11 | 11 | 11 | 11 | 12 | 12 | 12 | 13 |
M3 | 9 | 9 | 10 | 10 | 7 | 7 | 7 | 9 | 8 | 8 | 8 | 8 |
M4 | 15 | 15 | 15 | 15 | 12 | 12 | 12 | 12 | 14 | 14 | 15 | 15 |
M5 | 14 | 12 | 12 | 11 | 15 | 15 | 15 | 15 | 15 | 15 | 14 | 12 |
M6 | 4 | 5 | 5 | 5 | 8 | 8 | 9 | 8 | 5 | 5 | 5 | 6 |
M7 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 1 | 4 |
M8 | 6 | 8 | 8 | 8 | 9 | 9 | 8 | 7 | 10 | 9 | 9 | 9 |
M9 | 11 | 11 | 11 | 12 | 14 | 14 | 13 | 13 | 9 | 10 | 10 | 11 |
M10 | 8 | 7 | 7 | 7 | 4 | 6 | 6 | 6 | 6 | 7 | 7 | 7 |
M11 | 7 | 6 | 6 | 6 | 5 | 5 | 5 | 5 | 7 | 6 | 6 | 5 |
M12 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
M13 | 5 | 4 | 4 | 4 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | 3 |
M14 | 10 | 10 | 9 | 9 | 10 | 10 | 10 | 10 | 11 | 11 | 11 | 10 |
M15 | 2 | 2 | 3 | 3 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petković, D.L.; Madić, M.J.; Mitković, M.M. Development of a Decision Support System for Biomaterial Selection Based on MCDM Methods. Appl. Sci. 2025, 15, 9198. https://doi.org/10.3390/app15169198
Petković DL, Madić MJ, Mitković MM. Development of a Decision Support System for Biomaterial Selection Based on MCDM Methods. Applied Sciences. 2025; 15(16):9198. https://doi.org/10.3390/app15169198
Chicago/Turabian StylePetković, Dušan Lj., Miloš J. Madić, and Milan M. Mitković. 2025. "Development of a Decision Support System for Biomaterial Selection Based on MCDM Methods" Applied Sciences 15, no. 16: 9198. https://doi.org/10.3390/app15169198
APA StylePetković, D. L., Madić, M. J., & Mitković, M. M. (2025). Development of a Decision Support System for Biomaterial Selection Based on MCDM Methods. Applied Sciences, 15(16), 9198. https://doi.org/10.3390/app15169198