Enhancement of Phenolic Recovery by Probe-Type Ultrasound-Assisted Extraction of Acerola By-Product and Evaluation of Antioxidant and Antibacterial Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Acerola By-Product
2.2. Extraction Procedure
2.3. Total Phenolic Compounds
2.4. Antioxidant Activity
2.5. Characterization of the Extract Obtained Under Optimized Conditions
2.5.1. Composition Determined by UHPLC-MS/MS
2.5.2. Antibacterial Activity Evaluation
2.6. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content and Antioxidant Activity
3.2. Effect of Extraction Variables on TPC and Antioxidant Activity
3.3. Development of the Mathematical Model
3.4. Extract Composition by UHPLC-MS/MS
3.5. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belwal, T.; Devkota, H.P.; Hassan, H.A.; Ahluwalia, S.; Ramadan, M.F.; Mocan, A.; Atanasov, A.G. Phytopharmacology of Acerola (Malpighia spp.) and its potential as functional food. Trends Food Sci. Technol. 2018, 74, 99–106. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Produção de Acerola no Brasil. 2023. Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/acerola/br (accessed on 3 March 2025).
- Silva, P.B.; Duarte, C.R.; Barrozo, M.A.S. Dehydration of acerola (Malpighia emarginata D.C.) residue in a new designed Rotary dryer: Effect of process variables on main bioactive compounds. Food Bioprod. Process. 2016, 98, 62–70. [Google Scholar] [CrossRef]
- Poletto, P.; Álvarez-Rivera, G.; López, G.; Borges, O.M.A.; Mendiola, J.A.; Ibáñez, E.; Cifuentes, A. Recovery of ascorbic acid, phenolic compounds and carotenoids from acerola by-products: An opportunity for their valorization. LWT-Food Sci. Technol. 2021, 146, 111654. [Google Scholar] [CrossRef]
- Sousa, B.A.A.; Correia, R.T.P. Biotechnological Reuse of Fruit Residues as a Rational Strategy for Agro-industrial Resources. J. Technol. Manag. Innov. 2010, 5, 105–112. [Google Scholar] [CrossRef]
- Rezende, Y.R.R.S.; Nogueira, J.P.; Narain, N. Comparison and optimization of conventional and ultrasound assisted extraction for bioactive compounds and antioxidant activity from agro-industrial acerola (Malpighia emarginata DC) residue. LWT-Food Sci. Technol. 2017, 85, 158–169. [Google Scholar] [CrossRef]
- Silva, P.B.; Mendes, L.G.; Rehder, A.P.B.; Duarte, C.R.; Barrozo, M.A.S. Optimization of ultrasound-assisted extraction of bioactive compounds from acerola waste. J. Food Sci. Technol. 2020, 57, 4627–4636. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, M.P.; Lourenço, C.A.M.; Garcia, V.A.S.; Vanin, F.M.; Carvalho, R.A. Drying of Acerola (Malpighia emarginata D. C.) by-product: Evolution of active compounds in function of time. Braz. Arch. Biol. Technol. 2021, 64, e21200031. [Google Scholar] [CrossRef]
- Fernández, I.M.; Chagas, E.A.; Maldonado, S.A.S.; Takahashi, J.A.; Alemán, R.S.; Melo Filho, A.A.M.; Santos, R.C.; Ribeiro, P.R.E.; Fuentes, J.A.M.; Chagas, P.C.; et al. Antimicrobial activity and acetilcolinesterase inhibition of oils and Amazon fruit extracts. J. Med. Plants Res. 2020, 14, 88–97. [Google Scholar] [CrossRef]
- Carneiro, A.P.G.; Aguiar, A.L.L.; Lima, A.C.S.; Silva, L.M.R.; Sousa, P.H.M.; Figueiredo, R.W. Potencial bioativo de nanopartícula de subproduto de acerola (Malpighia sp. L): Bioacessibilidade em néctar. Res. Soc. Dev. 2020, 9, e159996691. [Google Scholar] [CrossRef]
- Silva, L.M.R.; Figueiredo, E.A.T.; Ricardo, N.M.P.S.; Vieira, I.G.P.; Figueiredo, R.W.; Brasil, I.M.; Gomes, C.L. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014, 143, 398–404. [Google Scholar] [CrossRef]
- Mesquita, P.C.; Rodrigues, L.G.G.; Mazzutti, S.; Ribeiro, P.R.V.; Brito, E.S.; Lanza, M. Untargeted metabolomic profile of recovered bioactive compounds by subcritical water extraction of acerola (Malpighia emarginata DC.) pomace. Food Chem. 2022, 397, 133718. [Google Scholar] [CrossRef]
- Bitwell, C.; Sen, I.S.; Luke, C.; Kakoma, M.K. A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Sci. Afr. 2023, 19, e01585. [Google Scholar] [CrossRef]
- Bhadange, Y.A.; Saharan, V.K.; Sonawane, S.H.; Boczkaj, G. Intensification of catechin extraction from the bark of Syzygium cumini using ultrasonication: Optimization, characterization, degradation analysis and kinetic studies. Chem. Eng. Process. Process Intensif. 2022, 181, 109147. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Yusoff, I.M.; Taher, Z.M.; Rahmat, Z.; Chua, L.S. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef]
- Gan, Y.; Wang, C.; Xu, C.; Zhang, P.; Chen, S.; Tang, L.; Zhang, J.; Zhang, H.; Jiang, S. Simultaneous extraction of crocin and geniposide from gardenia fruits (Gardenia jasminoides Ellis) by probe-type ultrasound-assisted natural deep eutectic solvents and their inhibition effects on low density lipoprotein oxidation. Ultrason. Sonochem. 2023, 101, 106658. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.S.; Abert-Vian, M. Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 2017, 41, 357–377. [Google Scholar] [CrossRef]
- Bertolo, M.R.V.; Martins, V.C.A.; Plepis, A.M.G.; Bogusz Junior, S. Acerola (Malpighia emarginata) and açaí (Euterpe oleracea) extracts as active compounds of starch/gelatin-based solutions: Rheological characterization. Colloids Surf. A Physicochem. Eng. Asp. 2023, 676, 132288. [Google Scholar] [CrossRef]
- Silva, N.C.; Assis, O.B.G.; Sartori, A.G.O.; Alencar, S.M.; Martelli-Tosi, M. Chitosan suspension as extractor and encapsulating agent of phenolics from acerola by-product. Food Res. Int. 2022, 161, 111855. [Google Scholar] [CrossRef] [PubMed]
- Borges, O.M.A.; Cesca, K.; Arend, G.D.; Alvarez-Rivera, G.; Cifuentes, A.; Zielinski, A.A.F.; Poletto, P. Integrated green-based methods to recover bioactive compounds from by-product of acerola processing. LWT-Food Sci. Technol. 2021, 151, 112104. [Google Scholar] [CrossRef]
- Santos, E.N.; Neto, D.C.S.; Cordeiro, A.M.T.M.; Meireles, B.R.L.A.; Ferreira, V.C.S.; Silva, F.A.P. From waste to wonder: Unleashing the antimicrobial and antioxidant potential of acerola residue using a central composite rotatable design. J. Environ. Chem. Eng. 2023, 11, 111184. [Google Scholar] [CrossRef]
- Peixoto, E.C.; Fonseca, L.M.; Zavareze, E.R.; Gandra, E.A. Antimicrobial active packaging for meat using thyme essential oil (Thymus vulgaris) encapsulated on zein ultrafine fibers membranes. Biocatal. Agric. Biotechnol. 2023, 51, 102778. [Google Scholar] [CrossRef]
- Olvera-Aguirre, G.; Piñeiro-Vázquez, Á.T.; Sanginés-García, J.R.; Sánchez Zárate, A.; Ochoa-Flores, A.A.; Segura-Campos, M.R.; Vargas-Bello-Pérez, E.; Chay-Canul, A.J. Using plant-based compounds as preservatives for meat products: A review. Heliyon 2023, 9, e17071. [Google Scholar] [CrossRef]
- Horbańczuk, O.K.; Kurek, M.A.; Atanasov, A.G.; Brnčić, M.; Brnčić, S.R. The Effect of Natural Antioxidants on Quality and Shelf Life of Beef and Beef Products. FTB-Food Technol. Biotechnol. 2019, 57, 439–447. [Google Scholar] [CrossRef]
- Granato, D.; Nunes, D.S.; Barba, F.J. An integrated strategy between food chemistry, biology, nutrition, pharmacology, and statistics in the development of funcional foods: A proposal. Trends Food Sci. Technol. 2017, 62, 13–22. [Google Scholar] [CrossRef]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Ravichandran, K.; Ahmed, A.R.; Knorr, D.; Smetanska, I. The effect of different processing methods on phenolic acid content and antioxidant activity of read beet. Food Res. Int. 2012, 48, 16–20. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferrica reducing ability of plasma (FRAP) as a measure of “antioxidante power”: Teh FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Bertoco, F.D., Jr.; Coelho, É.M.P.; Feiten, M.C.; Barros, B.C.B. Ultrasound-Assisted Extraction of Phenolic Compounds and Flavonoids from Banana Inflorescence and Characterization of Its Fibrous Residue. Separations 2025, 12, 109. [Google Scholar] [CrossRef]
- Approved Standard M07-A10; Methods for Dilution Antimicrobial Susceptibility Tests. CLSI-Clinical and Laboratory Standards Institute: Wayne, IL, USA, 2015.
- Stafussa, A.; Maciel, G.M.; Rampazzo, V.; Bona, E.; Makara, C.N.; Demczuk, J.B.; Haminiuk, C.W.I. Bioactive compounds of traditional and exotic Brazilian fruit pulps: Phenolic compounds and antioxidant activity. Int. J. Food Prop. 2018, 21, 106–118. [Google Scholar] [CrossRef]
- Gualberto, N.C.; Oliveira, C.S.; Nogueira, J.P.; Jesus, M.S.; Araujo, H.C.S.; Rajan, M.; Neta, M.T.S.L.; Narain, N. Bioactive compounds and antioxidant activities in the agro-industrial residues of acerola (Malpighia emarginata L.), guava (Psidium guajava L.), genipap (Genipa americana L.) and umbu (Spondias tuberosa L.) fruits assisted by ultrasonic or shaker extraction. Food Res. Int. 2021, 147, 110538. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, X.; Gao, X.; Zhou, X.; Gao, W.; Sang, Y.; Yang, B. Characterization, digestive properties and glucose metabolism regulation of curcumin-loaded Pickering emulsion. Carbohydr. Polym. 2025, 356, 123408. [Google Scholar] [CrossRef]
- More, P.R.; Arya, S.S. Intensification of bio-actives extraction from pomegranate peel using pulsed ultrasound: Effect of factors, correlation, optimization and antioxidant bioactivities. Ultrason. Sonochem. 2021, 72, 105423. [Google Scholar] [CrossRef]
- Sharmila, G.; Nikitha, V.S.; Ilaiyarasi, S.; Dhivya, K.; Rajasekar, V.; Kumar, N.M.; Muthukumaran, K.; Muthukumaran, C. Ultrasound assisted extraction of total phenolics from Cassia auriculata leaves and evaluation of its antioxidant activities. Ind. Crops Prod. 2016, 84, 13–21. [Google Scholar] [CrossRef]
- Silva, E.S.; Nunes, A.O.; Hoskin, R.T. Ultrasound-assisted polyphenol extraction of acerola and jambolan pomaces: Comparison of extraction protocols, kinetic modeling, and life cycle assessment. Chem. Eng. Process. Process Intensif. 2023, 191, 109443. [Google Scholar] [CrossRef]
- Oliveira, A.M.B.; Viganó, J.; Sanches, V.L.; Rostagno, M.A.; Martínez, J. Extraction of potential bioactive compounds from industrial Tahiti lime (Citrus latifolia Tan.) by-product using pressurized liquids and ultrasound-assisted extraction. Food Res. Int. 2022, 157, 111381. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, B.; Ferreira-Santos, P.; Gullón, B.; Teixeira, J.A.; Botelho, C.M.; Yáñez, R. Exploiting the Potential of Bioactive Molecules Extracted by Ultrasounds from Avocado Peels—Food and Nutraceutical Applications. Antioxidants 2021, 10, 1475. [Google Scholar] [CrossRef] [PubMed]
- Iftikhar, M.; Zhang, H.; Iftikhar, A.; Raza, A.; Begum, N.; Tahamina, A.; Syed, H.; Khan, M.; Wang, J. Study on optimization of ultrasonic assisted extraction of phenolic compounds from rye bran. LWT-Food Sci. Technol. 2020, 134, 110243. [Google Scholar] [CrossRef]
- Airouyuwa, J.O.; Mostafa, H.; Riaz, A.; Maqsood, S. Utilization of natural deep eutectic solvents and ultrasound-assisted extraction as green extraction technique for the recovery of bioactive compounds from date palm (Phoenix dactylifera L.) seeds: An investigation into optimization of process parameters. Ultrason. Sonochem. 2022, 91, 106233. [Google Scholar] [CrossRef]
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M.; Bordbar, S.; Serjouie, A. Optimisation of ultrasound-assisted extraction of oil from papaya seed by response surface methodology: Oil recovery, radical scavenging antioxidant activity, and oxidation stability. Food Chem. 2015, 172, 7–17. [Google Scholar] [CrossRef]
- Guandalini, B.B.V.; Rodrigues, N.P.; Marczak, L.D.F. Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Res. Int. 2019, 119, 455–461. [Google Scholar] [CrossRef]
- Montero-Calderón, A.; Cortés, C.; Zulueta, A.; Frigola, A.; Esteve, M.J. Green solvents and ultrasound-assisted extraction of bioactive orange (Citrus sinensis) peel compounds. Sci. Rep. 2019, 9, 16120. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Patle, D.S.; Kumar, S. Microwave- and Ultrasonication-Based Intensified and Synergetic Approaches for Extraction of Bioactive Compounds from Pomegranate Peels: Parametric and Kinetic Studies. Ind. Eng. Chem. Res. 2024, 63, 9214–9224. [Google Scholar] [CrossRef]
- Koriem, K.M.M.; Tharwat, H.A.K. Malic Acid Improves Behavioral, Biochemical, and Molecular Disturbances in the Hypothalamus of Stressed Rats. J. Integr. Neurosci. 2023, 22, 98. [Google Scholar] [CrossRef]
- Barragán-Zarate, G.S.; Lagunez-Rivera, L.; Solano, R.; Pineda-Peña, E.A.; Landa-Juárez, A.Y.; Chávez-Piña, A.E.; Carranza-Álvarez, C.; Hernández-Benavides, D.M. Prosthechea karwinskii, an orchid used as traditional medicine, exerts anti-inflammatory activity and inhibits ROS. J. Ethnopharmacol. 2020, 253, 112632. [Google Scholar] [CrossRef]
- Tanasiewicz, M.; Hildebrandt, T.; Obersztyn, I. Xerostomia of various etiologies: A review of the literature. Adv. Clin. Exp. Med. 2016, 25, 199–206. [Google Scholar] [CrossRef]
- Tang, X.; Liu, J.; Dong, W.; Li, P.; Li, L.; Lin, C.; Zheng, Y.; Hou, J.; Li, D. The Cardioprotective Effects of Citric Acid and L-Malic Acid on Myocardial Ischemia/Reperfusion Injury. Evid. Based. Complement. Alternat. Med. 2013, 2013, 820695. [Google Scholar] [CrossRef] [PubMed]
- BRASIL; Ministério da Saúde/Agência Nacional de Vigilância Sanitária/Diretoria Colegiada. Instrução Normativa-IN nº 211, de 1° de março de 2023. Estabelece as Funções Tecnológicas, os Limites Máximos e as Condições de uso para os Aditivos Alimentares e os Coadjuvantes de Tecnologia Autorizados para uso em Alimentos; Diário Oficial da União: Brasília, Brazil, 2023. [Google Scholar]
- Lee, Y.; Kodama, T.; Morita, H. Novel insights into the antibacterial activities of cannabinoid biosynthetic intermediate, olivetolic acid, and its alkyl-chain derivatives. J. Nat. Med. 2023, 77, 298–305. [Google Scholar] [CrossRef]
- Yang, M.H.; Baek, S.H.; Chinnathambi, A.; Alharbi, S.A.; Ahn, K.S. Identification of protocatechuic acid as a novel blocker of epithelial-to-mesenchymal transition in lung tumor cells. Phytother. Res. 2021, 35, 1953–1966. [Google Scholar] [CrossRef]
- Kakkar, S.; Bais, S. A review on protocatechuic acid and its pharmacological potential. Int. Sch. Res. Not. 2014, 2014, 952943. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, Q.; Li, G.; Chen, F.; Qian, Y.; Wang, R. In vitro antioxidant, anti-mutagenic, anti-cancer and anti-angiogenic effects of Chinese Bowl tea. J. Funct. Foods. 2014, 7, 590–598. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef]
- Mendes-Junior, L.G.; Monteiro, M.M.O.; Carvalho, A.S.; Queiroz, T.M.; Braga, V.A. Oral supplementation with the rutin improves cardiovagal baroreflex sensitivity and vascular reactivity in hypertensive rats. Appl. Physiol. Nutr. Metab. 2013, 38, 1099–1106. [Google Scholar] [CrossRef]
- Javed, H.; Khan, M.M.; Ahmad, A.; Vaibhav, K.; Ahmad, M.E.; Khan, A.; Ashafaq, M.; Islam, F.; Siddiqui, M.S.; Safhi, M.M.; et al. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. NeuroSci 2012, 210, 340–352. [Google Scholar] [CrossRef]
- Lin, J.; Yang, J.; Lin, J.; Lai, K.; Lu, H.; Ma, C.; Wu, R.S.; Wu, R.; Chueh, F.; Wood, W.G.; et al. Rutin inhibits human leukemia tumor growth in murine xenograft model in vivo. Environ. Toxicol. 2012, 27, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Marques, T.R.; Caetano, A.A.; Simão, A.A.O.; Castro, F.C.; Ramos, V.O.; Corrêa, A.D. Metanolic extract of Malpighia emarginata bagasse: Phenolic compounds and inhibitory potential on digestive enzymes. Rev. Bras. Farmacogn. 2016, 26, 191–196. [Google Scholar] [CrossRef]
- Marques, T.R.; Cesar, P.H.S.; Braga, M.A.; Marcussi, S.; Corrêa, A.D. Fruit Bagasse Phytochemicals from Malpighia emarginata Rich in Enzymatic Inhibitor with Modulatory Action on Hemostatic Processes. J. Food Sci. 2018, 83, 2840–2849. [Google Scholar] [CrossRef]
- Davydova, A.; Fastl, C.; Mughini-Gras, L.; Bai, L.; Kubota, K.; Hoffmann, S.; Rachmawati, T.; Pires, S.M. Source attribution studies of foodborne pathogens, 2010–2023: A review and collection of estimates. Food Microbiol. 2025, 131, 104812. [Google Scholar] [CrossRef] [PubMed]
- Comichio, F.M.; Barichello, A.; Kielb, G.G.; Capoani, G.T.; Colpani, G.L.; Fiori, M.A.; Gutiérrez, M.V.; Corralo, V.S.; Roman Junior, W.A.; Zanetti, M. Enhanced antioxidant and antimicrobial properties of lyophilized vitamin c concentrates from Malpighia emarginata (acerola): A comparative study. Ciênc. Nat. 2024, 46, e83711. [Google Scholar]
- Stafussa, A.P.; Maciel, G.M.; Bortolini, D.G.; Maroldi, W.V.; Ribeiro, V.R.; Fachi, M.M.; Pontarolo, R.; Bach, F.; Pedro, A.C.; Haminiuk, C.W.I. Bioactivity and bioaccessibility of phenolic compounds from Brazilian fruit purees. Future Foods 2021, 4, 100066. [Google Scholar] [CrossRef]
- Paz, M.; Gúllon, P.; Barroso, M.F.; Carvalho, A.P.; Domingues, V.F.; Gomes, A.M.; Becker, H.; Longhinotti, E.; Delerue-Matos, C. Brazilian fruit pulps as functional foods and additives: Evaluation of bioactive compounds. Food Chem. 2015, 172, 462–468. [Google Scholar] [CrossRef] [PubMed]
- González-Fandos, E.; Herrera, B. Efficacy of malic acid against Listeria monocytogenes attached to poultry skin during refrigerated storage. Poult. Sci. 2013, 92, 1936–1941. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Habibu, R.S.; Saidu, K.; Haliru, F.Z.; Ajiboye, H.O.; Aliyu, N.O.; Ibitoye, O.B.; Uwazie, J.N.; Muritala, H.F.; Bello, S.A.; et al. Involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality. MicrobiologyOpen 2017, 6, e472. [Google Scholar] [CrossRef] [PubMed]
- Alvarado-Martinez, Z.; Bravo, P.; Kennedy, N.F.; Krishna, M.; Hussain, S.; Young, A.C.; Biswas, D. Antimicrobial and Antivirulence Impacts of Phenolics on Salmonella Enterica Serovar Typhimurium. Antibiotics 2020, 9, 668. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, R.B.Q.; Costa, C.A.; Albuquerque, P.M.; Duvoisin Junior, S. Antimicrobial activity and rutin identification of honey produced by the stingless bee Melipona compressipes manaosensis and commercial honey. BMC Complement. Altern. Med. 2013, 13, 151. [Google Scholar] [CrossRef]
- Orhan, D.D.; Özçelik, B.; Özgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res. 2010, 165, 496–504. [Google Scholar] [CrossRef]
- Liu, Y.; Zhi, J.; Liu, Z.; Zhi, Y.; Mei, C.; Wang, H. Flavonoids as promising natural compounds for combating bacterial infections. Int. J. Mol. Sci. 2025, 26, 2455. [Google Scholar] [CrossRef]
- Oulahal, N.; Degraeve, P. Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides? Front. Microbiol. 2022, 12, 753518. [Google Scholar] [CrossRef]
- Martinengo, P.; Arunachalam, K.; Shi, C. Polyphenolic antibacterials for food preservation: Review, challenges, and current applications. Foods 2021, 10, 2469. [Google Scholar] [CrossRef]
- Carvalho, F.M.; Martins, J.T.A.; Lima, E.M.F.; Santos, H.V.; Pereira, P.A.P.; Pinto, U.M.; Cunha, L.R. Pitanga and grumixama extracts: Antioxidant and antimicrobial activities and incorporation into cellulosic films against Staphylococcus aureus. Res. Soc. Dev. 2020, 9, e1759119362. [Google Scholar] [CrossRef]
- Vilne, B.; Meistere, I.; Grantina-Ievina, L.; Kibilds, J. Machine Learning Approaches for Epidemiological Investigations of Food-Borne Disease Outbreaks. Front. Microbiol. 2019, 10, 1722. [Google Scholar] [CrossRef] [PubMed]
- Fernández, Y.A.; Damasceno, J.L.; Abraão, F.; Silva, T.S.; Cândido, A.L.P.; Fregonezi, N.F.; Resende, F.A.; Ramos, S.B.; Ambrosio, S.R.; Veneziani, R.C.S.; et al. Antibacterial, preservative, and mutagenic potential of Copaifera spp. oleoresins against causative agents of foodborne diseases. Foodborne Pathog. Dis. 2018, 15, 790–797. [Google Scholar] [CrossRef] [PubMed]
Variables | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
Power (W)—X1 | 350 | 500 | 650 |
Ethanol concentration (%, v/v)—X2 | 20 | 50 | 80 |
Time (min)–X3 | 20 | 40 | 60 |
Experiment | Variables | Total Phenolic Content (g GAE 100 g−1 d.b.) * | Antioxidant Activity | |||
---|---|---|---|---|---|---|
Power (W) | Ethanol Concentration (%, v/v) | Time (min) | DPPH (mM TE 100 g−1 d.b.) * | FRAP (mM TE 100 g−1 d.b.) * | ||
1 | −1 (350) | −1 (20) | 0 (40) | 1.74 ± 0.02 c,d | 1.68 ± 0.03 a,b | 6.59 ± 0.09 d |
2 | 1 (650) | −1 (20) | 0 (40) | 1.60 ± 0.05 a,b,c | 1.49 ± 0.03 a | 5.70 ± 0.05 b,c |
3 | −1 (350) | 1 (80) | 0 (40) | 1.62 ± 0.02 a,b,c | 1.97 ± 0.01 c | 5.20 ± 0.19 a,b |
4 | 1 (650) | 1 (80) | 0 (40) | 1.65 ± 0.01 b,c,d | 2.00 ± 0.05 c | 5.15 ± 0.05 a |
5 | −1 (350) | 0 (50) | −1 (20) | 2.53 ± 0.01 e | 3.12 ± 0.08 e | 8.72 ± 0.09 e |
6 | 1 (650) | 0 (50) | −1 (20) | 3.36 ± 0.04 h | 4.97 ± 0.24 h | 11.35 ± 0.21 g |
7 | −1 (350) | 0 (50) | 1 (60) | 3.08 ± 0.16 f | 3.91 ± 0.05 f | 9.76 ± 0.02 f |
8 | 1 (650) | 0 (50) | 1 (60) | 3.14 ± 0.10 f,g | 4.40 ± 0.13 g | 10.70 ± 0.03 g |
9 | 0 (500) | −1 (20) | −1 (20) | 1.63 ± 0.03 b,c,d | 1.75 ± 0.01 a,b,c | 6.05 ± 0.13 c,d |
10 | 0 (500) | 1 (80) | −1 (20) | 1.44 ± 0.04 a | 1.94 ± 0.01 b,c | 5.32 ± 0.13 a,b |
11 | 0 (500) | −1 (20) | 1 (60) | 1.50 ± 0.03 a,b | 1.52 ± 0.12 a | 5.42 ± 0.14 a,b |
12 | 0 (500) | 1 (80) | 1 (60) | 1.79 ± 0.02 d | 2.60 ± 0.11 d | 6.03 ± 0.08 c |
13 | 0 (500) | 0 (50) | 0 (40) | 3.28 ± 0.05 g,h | 3.89 ± 0.02 f | 11.06 ± 0.18 g |
14 | 0 (500) | 0 (50) | 0 (40) | 3.13 ± 0.07 f,g | 3.93 ± 0.10 f | 10.81 ± 0.52 g |
15 | 0 (500) | 0 (50) | 0 (40) | 3.17 ± 0.02 f,g,h | 3.91± 0.05 f | 10.80 ± 0.05 g |
Total Phenolic Compounds | |||
---|---|---|---|
Variables | Effect a | p b | Coefficient c |
X1-Power (linear) | 0.195 | 0.065 | 0.098 |
X1-Power (quadratic) | 0.051 | 0.313 | 0.026 |
X2-Ethanol concentration (linear) | 0.013 | 0.827 | 0.006 |
X2-Ethanol concentration (quadratic) | 1.492 | <0.010 | −1.480 |
X3-Time (linear) | 0.135 | 0.124 | 0.067 |
X3-Time (quadratic) | 0.111 | 0.102 | 0.056 |
X1 (linear) ∗ X2 (linear) | 0.089 | 0.354 | 0.044 |
X1 (linear) ∗ X3 (linear) | −0.387 | 0.035 | −0.194 |
X2 (linear) ∗ X3 (linear) | 0.238 | 0.085 | 0.119 |
Antioxidant activity determined by DPPH method | |||
X1-Power (linear) | 0.545 | <0.010 | 0.272 |
X1-Power (quadratic) | −0.013 | 0.314 | −0.006 |
X2-Ethanol concentration (linear) | 0.515 | <0.010 | 0.258 |
X2-Ethanol concentration (quadratic) | 2.138 | <0.010 | −2.139 |
X3-Time (linear) | 0.164 | <0.010 | 0.082 |
X3-Time (quadratic) | −0.176 | <0.010 | 0.175 |
X1 (linear) ∗ X2 (linear) | 0.113 | 0.025 | 0.056 |
X1 (linear) ∗ X3 (linear) | −0.684 | <0.010 | −0.342 |
X2 (linear) ∗ X3 (linear) | 0.443 | <0.010 | 0.222 |
Antioxidant activity determined by FRAP method | |||
X1-Power (linear) | 0.657 | 0.037 | 0.328 |
X1-Power (quadratic) | 0.384 | 0.057 | 0.192 |
X2-Ethanol concentration (linear) | −0.514 | 0.058 | −0.257 |
X2-Ethanol concentration (quadratic) | 4.812 | <0.010 | −4.761 |
X3-Time (linear) | 0.116 | 0.466 | 0.058 |
X3-Time (quadratic) | 0.338 | 0.072 | 0.169 |
X1 (linear) ∗ X2 (linear) | 0.422 | 0.148 | 0.211 |
X1 (linear) ∗ X3 (linear) | −0.847 | 0.044 | −0.424 |
X2 (linear) ∗ X3 (linear) | 0.670 | 0.068 | 0.335 |
Class | Compound | Content (µg g−1 d.b.) * |
---|---|---|
Organic acid | Malic acid | 825.71 ± 12.82 |
Fumaric acid | 5.29 ± 0.72 | |
Nicotinic acid | 0.95 ± 0.00 | |
Quinic acid | 0.33 ± 0.02 | |
∑ Organic acids | 832.28 ± 13.56 | |
Phenolic acid | Protocatechuic acid | 28.34 ± 0.45 |
Resorcilic acid | 25.94 ± 1.33 | |
p-hydroxybenzoic acid | 9.98 ± 0.13 | |
p-coumaric acid | 7.12 ± 0.11 | |
Vanillic acid | 1.57 ± 0.06 | |
Salicylic acid | 0.83 ± 0.17 | |
Caffeic acid | 0.73 ± 0.00 | |
Syringic acid | 0.64 ± 0.04 | |
Gallic acid | 0.45 ± 0.01 | |
Ferulic acid | 0.15 ± 0.10 | |
Chlorogenic acid | 0.11 ± 0.02 | |
∑ Phenolic acids | 75.86 ± 2.42 | |
Flavonoid | Rutin | 11.17 ± 0.37 |
Morin | 2.04 ± 0.04 | |
Catechin | 1.12 ± 0.08 | |
Epicatechin | 1.10 ± 0.08 | |
Kaempferol | 0.91 ± 0.05 | |
Quercetin | 0.61 ± 0.17 | |
Naringenin | 0.53 ± 0.03 | |
Crisin | 0.01 ± 0.00 | |
∑Flavonoids | 17.49 ± 0.82 | |
Phenolic aldehyde | Coniferyl aldehyde | 4.43 ± 1.30 |
Hydroxybenzaldehyde | 0.99 ± 0.02 | |
Isovanillin | 0.34 ± 0.12 | |
Sinapaldehyde | 0.32 ± 0.03 | |
Syringaldehyde | 0.17 ± 0.04 | |
∑ Phenolic aldehydes | 6.25 ± 1.51 | |
Alkaloid | Caffeine | 0.13 ± 0.02 |
Bacteria | Parameter | Extract ** (mg mL−1) | Sodium Nitrite (mg mL−1) |
---|---|---|---|
E. coli | MIC * | 11.32 ± 0.01 a | 12.50 ± 0.00 b |
MBC * | 22.65 ± 0.02 a | 25.00 ± 0.01 b | |
L. monocytogenes | MIC * | 2.89 ± 0.00 a | 25.00 ± 0.01 b |
MBC * | 11.58 ± 0.02 a | >100.00 ± 0.00 b | |
S. sonnei | MIC * | 2.89 ± 0.00 a | 12.50 ± 0.00 b |
MBC * | 2.89 ± 0.00 a | >100.00 ± 0.00 b | |
S. aureus | MIC * | 5.79 ± 0.00 a | 25.00 ± 0.02 b |
MBC * | 5.79 ± 0.01 a | 100.00 ± 0.03 b | |
P. aeruginosa | MIC * | 5.79 ± 0.00 a | 12.50 ± 0.00 b |
MBC * | 23.15 ± 0.01 a | 100.00 ± 0.01 b | |
S. enterica subs. enterica Typhi | MIC * | 2.89 ± 0.00 a | 100.00 ± 0.02 b |
MBC * | 17.37± 0.18 a | 100.00 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Donadone, D.B.; de Castro França, I.A.; Silva, D.L.G.; Faria, M.G.I.; Ruiz, S.P.; Barros, B.C.B. Enhancement of Phenolic Recovery by Probe-Type Ultrasound-Assisted Extraction of Acerola By-Product and Evaluation of Antioxidant and Antibacterial Activities. Appl. Sci. 2025, 15, 9154. https://doi.org/10.3390/app15169154
da Silva Donadone DB, de Castro França IA, Silva DLG, Faria MGI, Ruiz SP, Barros BCB. Enhancement of Phenolic Recovery by Probe-Type Ultrasound-Assisted Extraction of Acerola By-Product and Evaluation of Antioxidant and Antibacterial Activities. Applied Sciences. 2025; 15(16):9154. https://doi.org/10.3390/app15169154
Chicago/Turabian Styleda Silva Donadone, Dayara Barbosa, Izabelle Alves de Castro França, Dayane Lilian Gallani Silva, Maria Graciela Iecher Faria, Suelen Pereira Ruiz, and Beatriz Cervejeira Bolanho Barros. 2025. "Enhancement of Phenolic Recovery by Probe-Type Ultrasound-Assisted Extraction of Acerola By-Product and Evaluation of Antioxidant and Antibacterial Activities" Applied Sciences 15, no. 16: 9154. https://doi.org/10.3390/app15169154
APA Styleda Silva Donadone, D. B., de Castro França, I. A., Silva, D. L. G., Faria, M. G. I., Ruiz, S. P., & Barros, B. C. B. (2025). Enhancement of Phenolic Recovery by Probe-Type Ultrasound-Assisted Extraction of Acerola By-Product and Evaluation of Antioxidant and Antibacterial Activities. Applied Sciences, 15(16), 9154. https://doi.org/10.3390/app15169154