A Hybrid Experimental–Machine Learning Framework for Designing Fire-Resistant Natural Fiber Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Fabrication
2.3. Small-Scale Fire Resistance Setup
2.4. Test Procedure
2.5. Data Collection and Variables
2.6. Machine Learning Models
3. Results
3.1. Exploratory Data Analysis
3.2. Linear vs. Nonlinear Regression
3.3. Machine Learning Model Performance
3.4. Summary of Findings
- -
- Fiber content alone does not meaningfully increase burn time; its main function remains structural reinforcement.
- -
- -
- Catalyst and accelerator ratios affect curing and composite homogeneity, indirectly influencing fire behavior.
- -
- Machine learning models improve prediction compared to linear regression; however, the DNN’s modest R2 underlines the need for larger datasets and cross-validation to enhance model robustness.
4. Discussion
5. Conclusions
- Sisal fiber content does not significantly affect burn time. Its role remains primarily mechanical reinforcement and sustainability enhancement.
- Magnesium hydroxide effectively extends burn time by leveraging endothermic decomposition and protective MgO layer formation, validating its use as a low-cost flame retardant for bio-based composites.
- Catalyst and accelerator ratios have moderate impact, highlighting the importance of optimal curing for consistent thermal behavior.
- Machine learning models, particularly the Deep Neural Network, outperformed simple linear regression, capturing nonlinear interactions within the small dataset. However, the predictive power (R2 = 0.334) is modest, underscoring the need for larger datasets and further parameter inclusion.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ML | Machine Learning |
FRP | Fiber-Reinforced Polymer |
FR | Flame Retardant |
ATH | Aluminum Trihydrate |
APP | Ammonium Polyphosphate |
MEKP | Methyl Ethyl Ketone Peroxide |
RF | Random Forest |
SVR | Support Vector Regression |
DNN | Deep Neural Network |
MSE | Mean Squared Error |
CFD | Computational Fluid Dynamics |
References
- Wang, X.; Chen, X.; Zhang, Y.; Liu, Y. Fire Retardancy of Bio-Based Composites: Recent Advances. Compos. Part B 2021, 185, 108856. [Google Scholar]
- Syed, A.; Ahmad, Z.; Khan, M. Recent Advances in Fire Behavior of Natural Fiber Composites. Compos. Struct. 2020, 252, 112523. [Google Scholar]
- Zhang, H.; Zhou, Z.; Guo, X. Nano-filler Enhanced Flame Retardancy of Biocomposites: A Review. Materials 2021, 14, 7089. [Google Scholar]
- Wang, L.; Qian, X.; Li, C. Intumescent Flame Retardant Systems for Polymers: Recent Developments. Polymers 2022, 14, 3330. [Google Scholar]
- Ma, C.; Zhang, D.; Liu, X.; Li, H. Flame Retardancy of Bio-Based Composites: Mechanisms, Recent Advances, and Future Perspectives. Polymers 2022, 14, 1874. [Google Scholar]
- Felix Sahayaraj, A.; Tamil Selvan, M.; Sasi Kumar, M.; Sathish, S. Fire retardant potential of natural fiber reinforced polymer composites: A review. Polym. Plast. Technol. Mater. 2024, 63, 771–797. [Google Scholar] [CrossRef]
- He, M.; Huang, J.; Gao, Z.; Tang, Y. Predicting the Fire Performance of FRP Composites Using Machine Learning: A Review. Appl. Sci. 2021, 11, 5678. [Google Scholar]
- Tran, H.; Kim, C.; Gurnani, R.; Hvidsten, O.; De Simpliciis, J.; Ramprasad, R.; Gadelrab, K.; Tuffile, C.; Molinari, N.; Kitchaev, D.; et al. Polymer Composites Informatics for Flammability, Thermal, Mechanical and Electrical Property Predictions. Polym. Chem. 2025, 16, 3459–3467. [Google Scholar] [CrossRef]
- Jafari, P.; Zhang, R.; Huo, S.; Wang, Q.; Yong, J.; Hong, M.; Deo, R.; Wang, H.; Song, P. Machine learning for expediting next-generation of fire-retardant polymer composites. Compos. Commun. 2024, 45, 101806. [Google Scholar] [CrossRef]
- Luo, H.; Li, Y.; Lin, Z. Synergistic Flame Retardant Effects of Magnesium Hydroxide and Ammonium Polyphosphate in PP Composites. Polym. Degrad. Stab. 2023, 210, 110468. [Google Scholar]
- Pan, W.H.; Yang, W.J.; Wei, C.X.; Hao, L.Y.; Lu, H.D.; Yang, W. Recent Advances in Zinc Hydroxystannate-Based Flame Retardant Polymer Blends. Polymers 2022, 14, 2175. [Google Scholar] [CrossRef]
- Chen, F.; Weng, L.; Wang, J.; Ding, P. An adaptive framework to accelerate optimization of high flame–retardant composites using machine learning. Compos. Sci. Technol. 2023, 231, 109818. [Google Scholar] [CrossRef]
- Zhang, R.; Huo, S.; Wang, Q. Accelerated Design of Flame Retardant Polymeric Nanocomposites via Machine Learning Prediction. ACS Appl. Eng. Mater. 2023, 1, 596–605. [Google Scholar] [CrossRef]
- Dubey, U.; Panneerselvam, K. Low-combustible, high-strength, and thermally stable bio-blended epoxy-based bio-nanocomposite using reduced graphene oxide as a strengthening agent. J. Compos. Mater. 2024, 58, 1279–1295. [Google Scholar] [CrossRef]
- Arumugam, A.B.; Nayak, R.K.; Satapathy, B.K.; Mantry, S. Investigation of the mechanical, absorption, flammability and swelling properties of graphene filled sisal/glass fiber reinforced polymer hybrid nanocomposites. Cogent Eng. 2024, 11, 2342433. [Google Scholar] [CrossRef]
- Joshi, S.V.; Drzal, L.T.; Mohanty, A.K.; Arora, S. Are Natural Fiber Composites Environmentally Superior to Glass Fiber Reinforced Composites? Compos. Part A 2004, 35, 371–376. [Google Scholar] [CrossRef]
- Tran, M.N.; Prabhakar, M.N.; Lee, D.W.; Song, J.I. Effect of hybrid eco–friendly reinforcement and their size on mechanical and flame retardant properties of polypropylene composites for technical applications. Polym. Compos. 2024, 45, 2427–2443. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Zhang, X.; Li, H. Natural fiber reinforced composites: Challenges and opportunities in fire resistance applications. Constr. Build. Mater. 2023, 365, 130145. [Google Scholar]
- Feng, J.; He, C.; Xu, T.; Wang, Y. Experimental Data Scarcity in Fire Testing: Challenges and Opportunities for Machine Learning. Fire Mater. 2023, 47, 584–595. [Google Scholar]
- Mokhtari, S.; Ghasemi, H. Prediction of Thermal Conductivity of Polymer Composites by Machine Learning. Thermochim. Acta 2020, 694, 178475. [Google Scholar]
- Salehi, H.; Bakhshandeh, A.; Moayedi, H.; Ghasemi, H. Machine learning prediction of the thermal degradation parameters of polymer composites. Thermochim. Acta 2023, 718, 179475. [Google Scholar]
- Yan, C.; Lin, X.; Feng, X.; Yang, H.; Mensah, P.; Li, G. Advancing flame retardant prediction: A self-enforcing machine learning approach for small datasets. Appl. Phys. Lett. 2023, 122, 251902. [Google Scholar] [CrossRef]
- Xie, R.; Li, B.; Hu, Y. CFD Modelling of Fire Growth and Smoke Production in Composite Structures. Fire Saf. J. 2022, 128, 103487. [Google Scholar]
- Lee, C.; Yoon, J.; Cho, S. Application of FireFOAM in Simulating Fire Spread in Polymer Composites. Fire Technol. 2021, 57, 1075–1095. [Google Scholar]
- ISO 834-1:1999; Fire-Resistance Tests—Elements of Building Construction—Part 1: General Requirements. International Organization for Standardization: Geneva, Switzerland, 1999.
- NCh935/2; Norma Chilena. Chilean Institute of Standards (INN): Santiago, Chile, 2009.
- Wang, Y.; Camba, J.D.; Escobar, L.A. Stacked Ensemble Learning for Predicting Mechanical Strength of Composite Materials from Limited Data. J. Compos. Mater. 2023, 57, 1369–1383. [Google Scholar]
- Ghimire, S.; Deo, R.C.; Casillas-Perez, D.; Salcedo-sanz, S. Efficient daily electricity demand prediction with hybrid deep-learning multi-algorithm approach. Energy Convers. Manag. 2023, 297, 117707. [Google Scholar] [CrossRef]
- Shah, S.U.; Yebra, M.; Van Dijk, A.I.J.M.; Cary, G.J. A New Fire Danger Index Developed by Random Forest Analysis of Remote Sensing Derived Fire Sizes. Fire 2022, 5, 152. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, B.; Wang, J. Prediction of Flame Spread Parameters in Polymer Nanocomposites with Machine Learning. J. Mater. Sci. 2023, 58, 7764–7780. [Google Scholar]
Variable | Unit | Label |
---|---|---|
Fiber content | % | FIBER_CONTENT (%) |
Flame-retardant content | % | FLAME_RETARDANT (%) |
Accelerator content | % | ACCELERATOR_CONTENT (%) |
Catalyst content | % | CATALYST_CONTENT (%) |
Initial mass | g | INITIAL_MASS (g) |
Final mass | g | FINAL_MASS (g) |
Burn time | s | TIME (s) |
Model | MSE | R2 |
---|---|---|
Random Forest | 0.1014 | −1.217 |
SVR | 0.0662 | −0.447 |
DNN | 0.0610 | 0.334 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ketterer, C.G.; Rivera, J.L.V.; Fernandez, M.E.; Norambuena, N.; Fernández, M.V. A Hybrid Experimental–Machine Learning Framework for Designing Fire-Resistant Natural Fiber Composites. Appl. Sci. 2025, 15, 9148. https://doi.org/10.3390/app15169148
Ketterer CG, Rivera JLV, Fernandez ME, Norambuena N, Fernández MV. A Hybrid Experimental–Machine Learning Framework for Designing Fire-Resistant Natural Fiber Composites. Applied Sciences. 2025; 15(16):9148. https://doi.org/10.3390/app15169148
Chicago/Turabian StyleKetterer, Cristóbal Galleguillos, José Luis Valin Rivera, Maria Elena Fernandez, Nicolás Norambuena, and Meylí Valin Fernández. 2025. "A Hybrid Experimental–Machine Learning Framework for Designing Fire-Resistant Natural Fiber Composites" Applied Sciences 15, no. 16: 9148. https://doi.org/10.3390/app15169148
APA StyleKetterer, C. G., Rivera, J. L. V., Fernandez, M. E., Norambuena, N., & Fernández, M. V. (2025). A Hybrid Experimental–Machine Learning Framework for Designing Fire-Resistant Natural Fiber Composites. Applied Sciences, 15(16), 9148. https://doi.org/10.3390/app15169148