High Cadmium and Mercury Soil Contamination Outweighs the Effect of Soil Amendments When Growing Miscanthus x giganteus
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Plot
2.2. Preparation of Contaminated Soil
2.3. Soil Characteristics
2.4. Soil Amendments
2.5. Biomass Sampling and Growth Parameters
2.6. Biomass Analysis
2.7. Mathematical Formulas
2.8. Statistical Analysis and Quality Control
3. Results and Discussion
3.1. Growth Parameters
3.2. Cadmium and Mercury Concentration in the Aboveground Biomass
3.3. Cadmium and Mercury Biomass Removal
3.4. Belowground Biomass (Rhizomes)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, R.K.; Agrawal, M. Biological Effects of Heavy Metals: An Overview. J. Environ. Biol. 2005, 26, 301–313. [Google Scholar] [PubMed]
- Kisić, I. Remediation of Contaminated Soil; Agronomski fakultet Sveučilišta u Zagrebu: Zagreb, Hrvatska, 2012. (In Croatian) [Google Scholar]
- Alengebawy, A.; Abdelkhalek, S.T.; Qureshi, S.R.; Wang, M.-Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics 2021, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- McLaughlin, M.J.; Zarcinas, B.A.; Stevens, D.P.; Cook, N. Soil Testing for Heavy Metals. Commun. Soil. Sci. Plant Anal. 2000, 31, 1661–1700. [Google Scholar] [CrossRef]
- Peralta-Videa, J.R.; Lopez, M.L.; Narayan, M.; Saupe, G.; Gardea-Torresdey, J. The Biochemistry of Environmental Heavy Metal Uptake by Plants: Implications for the Food Chain. Int. J. Biochem. Cell. Biol. 2009, 41, 1665–1677. [Google Scholar] [CrossRef]
- Clemens, S. Mercury in Plants. In Encyclopedia of Metalloproteins; Springer: New York, NY, USA, 2013; pp. 1352–1356. [Google Scholar]
- Rahman, Z.; Singh, V.P. The Relative Impact of Toxic Heavy Metals (THMs) (Arsenic (As), Cadmium (Cd), Chromium (Cr)(VI), Mercury (Hg), and Lead (Pb)) on the Total Environment: An Overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Hayat, S.; Ahmad, A.; Alyemeni, M.N. Soil Cadmium Enrichment: Allocation and Plant Physiological Manifestations. Saudi. J. Biol. Sci. 2013, 20, 1–10. [Google Scholar] [CrossRef]
- Skyllberg, U.; Qian, J.; Frech, W.; Xia, K.; Bleam, W.F. Distribution of Mercury, Methyl Mercury and Organic Sulphur Species in Soil, Soil Solution and Stream of a Boreal Forest Catchment. Biogeochemistry 2003, 64, 53–76. [Google Scholar] [CrossRef]
- Azevedo, R.; Rodriguez, E. Phytotoxicity of Mercury in Plants: A Review. J. Bot. 2012, 2012, 848614. [Google Scholar] [CrossRef]
- Kaur, H.; Hussain, S.J. Cadmium: Bioavailability in Soils and Phytotoxicity. In Sustainable Solutions for Elemental Deficiency and Excess in Crop Plants; Springer: Singapore, 2020; pp. 351–391. [Google Scholar]
- Beesley, L.; Moreno-Jiménez, E.; Gomez-Eyles, J.L. Effects of Biochar and Greenwaste Compost Amendments on Mobility, Bioavailability and Toxicity of Inorganic and Organic Contaminants in a Multi-Element Polluted Soil. Environ. Pollut. 2010, 158, 2282–2287. [Google Scholar] [CrossRef]
- Asati, A.; Pichhode, M.; Nikhil, K. Effect of Heavy Metals on Plants: An Overview. Int. J. Appl. Innov. Eng. Manag. (IJAIEM) 2016, 5, 56–65. [Google Scholar]
- Nagajyoti, P.C.; Lee, K.D.; Sreekanth, T.V.M. Heavy Metals, Occurrence and Toxicity for Plants: A Review. Environ. Chem. Lett. 2010, 8, 199–216. [Google Scholar] [CrossRef]
- Boening, D.W. Ecological Effects, Transport, and Fate of Mercury: A General Review. Chemosphere 2000, 40, 1335–1351. [Google Scholar] [CrossRef]
- Clemens, S. Toxic Metal Accumulation, Responses to Exposure and Mechanisms of Tolerance in Plants. Biochimie 2006, 88, 1707–1719. [Google Scholar] [CrossRef]
- Pidlisnyuk, V.; Hettiarachchi, G.M.; Zgorelec, Z.; Prelac, M.; Bilandzija, N.; Davis, L.C.; Erickson, L.E. Phytotechnologies for Site Remediation. In Phytotechnology with Biomass Production; Erickson, L.E., Pidlisnyuk, V., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2021; ISBN 9781003082613. [Google Scholar]
- Yadav, P.; Priyanka, P.; Kumar, D.; Yadav, A.; Yadav, K. Bioenergy Crops: Recent Advances and Future Outlook. In Prospects of Renewable Bioprocessing in Future Energy Systems; Springer: Berlin/Heidelberg, Germany, 2019; pp. 315–335. [Google Scholar]
- Morel, J.-L.; Echevarria, G.; Goncharova, N. Phytoremediation of Metal-Contaminated Soils; Springer: Dordrecht, The Netherlands, 2006; Volume 68, ISBN 1-4020-4686-3. [Google Scholar]
- Bilandžija, N. The Potential of Miscanthus x Giganteus Species as an Energy Crop in Different Technological and Environmental Conditions. Ph.D. Thesis, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia, 2015. [Google Scholar]
- Zgorelec, Z.; Bilandzija, N.; Knez, K.; Galic, M.; Zuzul, S. Cadmium and Mercury Phytostabilization from Soil Using Miscanthus × Giganteus. Sci. Rep. 2020, 10, 6685. [Google Scholar] [CrossRef]
- Bilandžija, N.; Zgorelec, Ž.; Pezo, L.; Grubor, M.; Velaga, A.G.; Krička, T. Solid Biofuels Properties of Miscanthus X Giganteus Cultivated on Contaminated Soil after Phytoremediation Process. J. Energy Inst. 2022, 101, 131–139. [Google Scholar] [CrossRef]
- Hudcová, H.; Vymazal, J.; Rozkošný, M. Present Restrictions of Sewage Sludge Application in Agriculture within the European Union. Soil. Water Res. 2019, 14, 104–120. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Potential Benefits and Risks of Land Application of Sewage Sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Grobelak, A.; Placek, A.; Grosser, A.; Singh, B.R.; Almås, Å.R.; Napora, A.; Kacprzak, M. Effects of Single Sewage Sludge Application on Soil Phytoremediation. J. Clean Prod. 2017, 155, 189–197. [Google Scholar] [CrossRef]
- Oksanen, J.; Pöykiö, R.; Dahl, O. Fertiliser Properties of Wastewater Sludge and Sludge Ash-A Case Study from the Finnish Forest Industry. Ecol. Chem. Eng. S 2023, 30, 63–78. [Google Scholar] [CrossRef]
- Đurašin, I.; Zmeškal, V.; Zgorelec, Ž.; Špehar, A.; Maurović, N.; Perčin, A. Macroelements Bioavailability from Waste Water Sludge of Animal Origin. J. Cent. Eur. Agric. 2018, 19, 368–384. [Google Scholar] [CrossRef]
- Voća, N.; Leto, J.; Karažija, T.; Bilandžija, N.; Peter, A.; Kutnjak, H.; Šurić, J.; Poljak, M. Energy Properties and Biomass Yield of Miscanthus x Giganteus Fertilized by Municipal Sewage Sludge. Molecules 2021, 26, 4371. [Google Scholar] [CrossRef]
- Širić, I.; Držaić, V.; Friganović, T. Possibilities of Application of Mycorrhizal Fungi in Organic Agriculture. Glas. Zaštite Bilja 2022, 45, 12–20. (In Croatian) [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008; ISBN 9780123705266. [Google Scholar]
- Chot, E.; Reddy, M.S. Role of Ectomycorrhizal Symbiosis Behind the Host Plants Ameliorated Tolerance Against Heavy Metal Stress. Front. Microbiol. 2022, 13, 855473. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.-B.; Wu, C.; Zhang, C.; Li, H.; Lipka, U.; Polle, A. The Role of Ectomycorrhizas in Heavy Metal Stress Tolerance of Host Plants. Environ. Exp. Bot. 2014, 108, 47–62. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Martin, F.M.; Selosse, M.; Sanders, I.R. Mycorrhizal Ecology and Evolution: The Past, the Present, and the Future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef]
- Bellion, M.; Courbot, M.; Jacob, C.; Blaudez, D.; Chalot, M. Extracellular and Cellular Mechanisms Sustaining Metal Tolerance in Ectomycorrhizal Fungi. FEMS Microbiol. Lett. 2006, 254, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Coninx, L.; Martinova, V.; Rineau, F. Chapter Four-Mycorrhiza-Assisted Phytoremediation. In Advances in Botanical Research; Cuypers, A., Vangronsveld, J., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 83, pp. 127–188. [Google Scholar]
- Sell, J.; Kayser, A.; Schulin, R.; Brunner, I. Contribution of Ectomycorrhizal Fungi to Cadmium Uptake of Poplars and Willows from a Heavily Polluted Soil. Plant Soil. 2005, 277, 245–253. [Google Scholar] [CrossRef]
- Ma, Y.; He, J.; Ma, C.; Luo, J.; Li, H.; Liu, T.; Polle, A.; Peng, C.; Luo, Z. Ectomycorrhizas with Paxillus Involutus Enhance Cadmium Uptake and Tolerance in Populus × Canescens. Plant Cell Environ. 2014, 37, 627–642. [Google Scholar] [CrossRef]
- Knapp, B.A.; Insam, H. Recycling of Biomass Ashes: Current Technologies and Future Research Needs. In Recycling of Biomass Ashes; Insam, H., Knapp, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–16. [Google Scholar]
- Demeyer, A.; Voundi Nkana, J.C.; Verloo, M.G. Characteristics of Wood Ash and Influence on Soil Properties and Nutrient Uptake: An Overview. Bioresour. Technol. 2001, 77, 287–295. [Google Scholar] [CrossRef]
- Bošnjak, K.; Vranić, M.; Mašek, T.; Brčić, M. Application of Biomass Ash on Grasslands. Poljoprivreda 2022, 28, 85–94. [Google Scholar] [CrossRef]
- Odzijewicz, J.I.; Wołejko, E.; Wydro, U.; Wasil, M.; Jabłońska-Trypuć, A. Utilization of Ashes from Biomass Combustion. Energie 2022, 15, 9653. [Google Scholar] [CrossRef]
- Saletnik, B.; Zagula, G.; Bajcar, M.; Czernicka, M.; Puchalski, C. Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x Giganteus). Energies 2018, 11, 2535. [Google Scholar] [CrossRef]
- Gosar, M.; Šajn, R.; Teršič, T. Distribution Pattern of Mercury in the Slovenian Soil: Geochemical Mapping Based on Multiple Geochemical Datasets. J. Geochem. Explor. 2016, 167, 38–48. [Google Scholar] [CrossRef]
- Teršić, T.; Gosar, M. Preliminary Results of Detailed Geochemical Study of Mercury at the Ancient Ore Roasting Site Pšenk (Idrija Area, Slovenia). Geologija 2009, 52, 79–86. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-32713-4. [Google Scholar]
- Šestak, I.; Bilandžija, N.; Perčin, A.; Fadljević, I.; Hrelja, I.; Zgorelec, Ž. Assessment of the Impact of Soil Contamination with Cadmium and Mercury on Leaf Nitrogen Content and Miscanthus Yield Applying Proximal Spectroscopy. Agronomy 2022, 12, 255. [Google Scholar] [CrossRef]
- Zgorelec, Ž.; Zubčić, L.; Žužul, S.; Kljaković Gašpić, Z.; Trkmić, M.; Galić, M.; Hrelja, I.; Slezak, R.; Špehar Ćosić, A.; Perčin, A.; et al. Soil Amendments Influence on Cadmium and Mercury Phytoremediation Using Energy Crop Miscanthus x Giganteus. In Proceedings of the 59th Croatian & 19th International Symposium on Agriculture, Dubrovnik, Croatia, 11–16 February 2024; Carović-Stanko, K., Kljak, K., Eds.; University of Zagreb Faculty of Agriculture: Dubrovnik, Croatia, 2024; pp. 9–15. [Google Scholar]
- HRN ISO 11277:2004; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. International Organization for Standardization: Geneva, Switzerland, 2004.
- HRN ISO 10390:2004; Soil Quality—Determination of PH. International Organization for Standardization: Geneva, Switzerland, 2004.
- HRN ISO 14235:2004; Soil Quality—Determination of Organic Carbon by Sulfochromic Oxidation. International Organization for Standardization: Geneva, Switzerland, 2004.
- HRN ISO 10694:2004; Soil Quality—Determination of Organic and Total Carbon after Dry Combustion (Elementary Analysis). International Organization for Standardization: Geneva, Switzerland, 2004.
- HRN ISO 13878:2004; Soil Quality—Determination of Total Nitrogen Content by Dry Combustion (Elemental Analysis). International Organization for Standardization: Geneva, Switzerland, 2004.
- HRN ISO 15178:2005; Soil Quality—Determination of Total Sulfur by Dry Combustion. International Organization for Standardization: Geneva, Switzerland, 2005.
- Čoga, L.; Slunjski, S. Soil Diagnostics in Plant Nutrition: A Manual for Soil Sampling and Analysis; Sveučilište u Zagrebu, Agronomski fakultet: Zagreb, Hrvatska, 2018. (In Croatian) [Google Scholar]
- Škorić, A. Handbook for Soil Research; Faculty of Agricultural Sciences: Zagreb, Croatia, 1982. (In Croatian) [Google Scholar]
- Vukadinović, V.; Lončarić, Z. Plant Nutrition; Sveučilište Jurja Strossmayera u Osijeku, Poljoprivredni Fakultet Osijek: Osijek, Hrvatska, 1998. (In Croatian) [Google Scholar]
- HRN ISO 11260:2004; Soil Quality-Determination of Effective Cation Exchange Capacity and Base Saturation Level Using Barium Chloride Solution. International Organization for Standardization: Geneva, Switzerland, 2004.
- Zubčić, L. Effect of Soil Improvers on Phytoremediation of Cadmium and Mercury from Soil Using Grass Miscanthus x Giganteus. Master’s Thesis, University of Zagreb Faculty of Agriculture, Zagreb, Croatia, 2023. (In Croatian). [Google Scholar]
- Official Gazette NN 71/19; Regulation on the Protection of Agricultural Land against Pollution. Official Gazette (Narodne Novine in Croatian): Zagreb, Croatia, 2019. (In Croatian)
- Official Gazette NN 38/08; Regulation on the Management of Sludge from Wastewater Treatment Plants When the Sludge Is Used in Agriculture. Official Gazette (Narodne Novine in Croatian): Zagreb, Croatia, 2008. (In Croatian)
- HRN ISO 11261:2004; Soil Quality-Determination of Total Nitrogen-Modified Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2004.
- HRN ISO 11466:2004; Soil Quality-Extraction of Trace Elements Soluble in Aqua Regia. International Organization for Standardization: Geneva, Switzerland, 2004.
- DIN EN 16171:2016; Sludge, Treated Biowaste and Soil-Determination of Elements Using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Deutsches Institut für Normung: Berlin, Germany, 2016.
- ISO 21663:2020; Solid Recovered Fuels—Methods for the Determination of Carbon (C), Hydrogen (H), Nitrogen (N) and Sulphur (S) by the Instrumental Method. International Organization for Standardization: Geneva, Switzerland, 2020.
- HRN ISO 11047:2004; Soil Quality-Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc-Flame and Electrothermal Atomic Absorption Spectrometric Methods. International Organization for Standardization: Geneva, Switzerland, 2004.
- HRN EN ISO 16968:2015; Solid Biofuels-Determination of Minor Elements. International Organization for Standardization: Geneva, Switzerland, 2015.
- Zgorelec, Z. Phytoaccumulation of Metals and Metalloids from Soil Polluted by Coal Ash. Ph.D. Thesis, University of Zagreb Faculty of Agriculture, Zagreb, Croatia, 2009. [Google Scholar]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals-Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- El Fadili, H.; Ben Ali, M.; Rahman, M.N.; El Mahi, M.; Lotfi, E.M.; Louki, S. Bioavailability and Health Risk of Pollutants around a Controlled Landfill in Morocco: Synergistic Effects of Landfilling and Intensive Agriculture. Heliyon 2024, 10, e23729. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Gao, L.; Chen, B.; Feng, L. Phytoremediation Potential of Miscanthus Sinensis for Mercury-Polluted Sites and Its Impacts on Soil Microbial Community. Environ. Sci. Pollut. Res. 2019, 26, 34818–34829. [Google Scholar] [CrossRef]
- Szada-Borzyszkowska, A.; Krzyżak, J.; Rusinowski, S.; Sitko, K.; Pogrzeba, M. Field Evaluation of Arbuscular Mycorrhizal Fungal Colonization in Miscanthus × Giganteus and Seed-Based Miscanthus Hybrids Grown in Heavy-Metal-Polluted Areas. Plants 2022, 11, 1216. [Google Scholar] [CrossRef]
- Kocoń, A.; Jurga, B. The Evaluation of Growth and Phytoextraction Potential of Miscanthus x Giganteus and Sida Hermaphrodita on Soil Contaminated Simultaneously with Cd, Cu, Ni, Pb, and Zn. Environ. Sci. Pollut. Res. 2017, 24, 4990–5000. [Google Scholar] [CrossRef]
- Dražić, G.; Milovanović, J.; Stefanović, S.; Petrić, I. Potential of Miscanthus × Giganteus for Heavy Metals Removing from Industrial Deposol. Acta Reg. Environ. 2017, 14, 56–58. [Google Scholar] [CrossRef]
- Ociepa-Kubicka, A.; Pachura, P.; Kacprzak, M. Effect of Unconventional Fertilization on Heavy Metal Content in the Biomass of Giant Miscanthus. Desalination Water Treat 2016, 57, 1230–1236. [Google Scholar] [CrossRef]
- HRN EN ISO 17225-1:2021; Solid Biofuels—Fuel Specifications and Classes-Part 1: General Requirements. International Organization for Standardization: Geneva, Switzerland, 2021.
- HRN EN ISO 17225-6:2021; Solid Biofuels—Fuel Specifications and Classes-Part 6: Graded Non-Woody Pellets. International Organization for Standardization: Geneva, Switzerland, 2021.
- Barbu, C.H.; Pavel, B.P.; Sand, C.; Pop, M.R. Miscanthus Sinensis Giganteus’ Behaviour on Soil Polluted with Heavy Metals. In Proceedings of the 9th International Symposium on Metal Elements in Environment, Medicine and Biology of Romanian Academy-Branch Cluj-Napoca, Cluj-Napoca, Romania, 16–17 October 2009; pp. 21–24. [Google Scholar]
- Arduini, I.; Masoni, A.; Mariotti, M.; Ercoli, L. Low Cadmium Application Increase Miscanthus Growth and Cadmium Translocation. Environ. Exp. Bot. 2004, 52, 89–100. [Google Scholar] [CrossRef]
- Arduini, I.; Ercoli, L.; Mariotti, M.; Masoni, A. Response of Miscanthus to Toxic Cadmium Applications during the Period of Maximum Growth. Environ. Exp. Bot. 2006, 55, 29–40. [Google Scholar] [CrossRef]
Parameter | Factor | p-Value | LSD | |
---|---|---|---|---|
Yield | Year | 2019 | 0.013 | 1.26 |
2020 | 0.752 | 1.29 | ||
2021 | 0.601 | 1.08 | ||
Treatment | I | 0.008 | 0.71 | |
II | 0.088 | 1.27 | ||
III | 0.020 | 1.46 | ||
IV | 0.503 | 1.55 | ||
Length | Year | 2019 | 0.016 | 8 |
2020 | 0.011 | 25 | ||
2021 | 0.700 | 27 | ||
Treatment | I | 0.003 | 16 | |
II | 0.003 | 12 | ||
III | 0.002 | 20 | ||
IV | 0.462 | 37 | ||
No. of shoots | Year | 2019 | 0.002 | 3 |
2020 | 0.015 | 12 | ||
2021 | 0.461 | 6 | ||
Treatment | I | 0.012 | 10 | |
II | 0.005 | 7 | ||
III | 0.036 | 8 | ||
IV | 0.0001 | 7 | ||
Cd | Year | 2019 | 0.037 | 2.83 |
2020 | 0.551 | 4.12 | ||
2021 | 0.813 | 2.77 | ||
Treatment | I | 0.003 | 3.01 | |
II | 0.001 | 2.47 | ||
III | 0.029 | 3.56 | ||
IV | 0.006 | 4.61 | ||
Hg | Year | 2019 | 0.005 | 125.9 |
2020 | 0.332 | 229.0 | ||
2021 | 0.404 | 87.5 | ||
Treatment | I | 0.003 | 121.4 | |
II | 0.009 | 257.0 | ||
III | 0.005 | 163.8 | ||
IV | 0.875 | 80.4 |
Removal, g ha−1 | EC | ||||||
---|---|---|---|---|---|---|---|
Treatment | 2019 | 2020 | 2021 | Treatment | 2019 | 2020 | 2021 |
Cd | |||||||
I | 55.9 | 55.6 | 35.9 | I | 0.146 | 0.110 | 0.071 |
II | 45.0 | 70.5 | 32.3 | II | 0.106 | 0.128 | 0.060 |
III | 39.4 | 56.7 | 34.7 | III | 0.114 | 0.102 | 0.063 |
IV | 52.3 | 65.6 | 31.1 | IV | 0.107 | 0.117 | 0.064 |
Hg | |||||||
I | 1.5 | 1.1 | 0.5 | I | 0.019 | 0.011 | 0.005 |
II | 1.1 | 1.7 | 0.2 | II | 0.013 | 0.015 | 0.002 |
III | 1.0 | 1.4 | 0.5 | III | 0.015 | 0.013 | 0.005 |
IV | 0.5 | 0.6 | 0.5 | IV | 0.005 | 0.006 | 0.005 |
TF | I | II | III | IV |
---|---|---|---|---|
Cd | 0.125 | 0.104 | 0.127 | 0.145 |
Hg | 0.016 | 0.008 | 0.017 | 0.024 |
Treatment | ||||
---|---|---|---|---|
Belowground Biomass | I | II | III | IV |
Mass (g per pot) | 49.70 | 44.39 | 41.31 | 44.01 |
Mass (tDM ha−1) | 8.30 | 7.40 | 6.90 | 7.30 |
Cd concentration (mg kg−1) | 57.1 | 57.2 | 49.6 | 44.3 |
Hg concentration (mg kg−1) | 6.05 | 5.54 | 5.63 | 4.24 |
EC (Cd) | 0.57 | 0.57 | 0.50 | 0.44 |
EC (Hg) | 0.30 | 0.28 | 0.28 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zgorelec, Ž.; Zubčić, L.; Žužul, S.; Kljaković-Gašpić, Z.; Trkmić, M.; Galić, M.; Hrelja, I.; Špehar Ćosić, A.; Perčin, A.; Bilandžija, N. High Cadmium and Mercury Soil Contamination Outweighs the Effect of Soil Amendments When Growing Miscanthus x giganteus. Appl. Sci. 2025, 15, 9075. https://doi.org/10.3390/app15169075
Zgorelec Ž, Zubčić L, Žužul S, Kljaković-Gašpić Z, Trkmić M, Galić M, Hrelja I, Špehar Ćosić A, Perčin A, Bilandžija N. High Cadmium and Mercury Soil Contamination Outweighs the Effect of Soil Amendments When Growing Miscanthus x giganteus. Applied Sciences. 2025; 15(16):9075. https://doi.org/10.3390/app15169075
Chicago/Turabian StyleZgorelec, Željka, Lana Zubčić, Silva Žužul, Zorana Kljaković-Gašpić, Marija Trkmić, Marija Galić, Iva Hrelja, Ana Špehar Ćosić, Aleksandra Perčin, and Nikola Bilandžija. 2025. "High Cadmium and Mercury Soil Contamination Outweighs the Effect of Soil Amendments When Growing Miscanthus x giganteus" Applied Sciences 15, no. 16: 9075. https://doi.org/10.3390/app15169075
APA StyleZgorelec, Ž., Zubčić, L., Žužul, S., Kljaković-Gašpić, Z., Trkmić, M., Galić, M., Hrelja, I., Špehar Ćosić, A., Perčin, A., & Bilandžija, N. (2025). High Cadmium and Mercury Soil Contamination Outweighs the Effect of Soil Amendments When Growing Miscanthus x giganteus. Applied Sciences, 15(16), 9075. https://doi.org/10.3390/app15169075