Study on a Repair Clamp Device for Leakage Prevention in Defective Pipes
Abstract
1. Introduction
2. Materials and Methods
2.1. Structural Design of Repair Clamp
2.2. Finite Element Model
2.3. Experimental Design
3. Results and Discussions
3.1. Sealing Performance of Repair Clamps
3.2. Analysis of Factors Affecting Pipe Safe Pressure
3.2.1. Effect of Defect on the Safe Pressure
3.2.2. Effects of Repair Clamp Device on Safe Pressure
3.3. Verification by the Results of Hydrostatic Pressure Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
References
- Sheets, C.; Shie, T.; Crawford, A. Thin-Wall pipe Repair: Evaluation of Reinforcement Systems and Internal Temperature Monitoring During Maintenance Procedures. In Proceedings of the 12th International Pipe Conference, Calgary, AB, Canada, 24–28 September 2018. [Google Scholar]
- Armando, R.; Ray, A. Deep water pipe emergencies, managing risk and cost, the coownership solution. In Proceedings of the 6th International Offshore Pipe Forum, Houston, TX, USA, 2 July 2011. [Google Scholar]
- Ossai, C.I.; Boswell, B.; Davies, I.J. Pipe failures in corrosive environments—A conceptual analysis of trends and effects. Eng. Fail. Anal. 2015, 53, 36–58. [Google Scholar] [CrossRef]
- Zhao, B.J.; Zhang, S.L.; Li, T.; Hao, J.L.; Wang, T.Y. The sealing technology in pipeline repair clamp. J. Coast. Res. 2020, 104 (Suppl. S1), 872–881. [Google Scholar] [CrossRef]
- Chuan, J.; Ma, Y.C. The design of high pressure clamp for plugging pipe under water. J. Ship. 2015, 32, 11–14. [Google Scholar]
- Zhao, B.J.; Zhu, H.; Zhang, S. Research of sealing property to subsea oil and gas pipe repair clamp. In Proceedings of the Pressure Vessels and Piping Conference, Boston, MA, USA, 19–23 July 2015. [Google Scholar]
- Djukic, L.P.; Sum, W.S.; Leong, K.H.; Hillier, W.D.; Eccleshall, T.W.; Leong, A.Y.L. Development of a fibre reinforced polymer composite clamp for metallic pipe repairs. Mater. Des. 2015, 70, 68–80. [Google Scholar] [CrossRef]
- Hao, X.; Yun, F.; Jiao, K.; Chen, X.; Jia, P.; Wang, X.Y.; Wang, L.Q. Mechanical Behavior and Sealing Performance Study of Subsea Connector Core-Sealing Components under the Combined Action of Internal Pressure, Bending Moment, and Axial Load. J. Mar. Sci. Eng. 2023, 11, 1691. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, L.; Guan, Y.; Yao, S.; Li, S. Static metal sealing mechanism of a subsea pipe mechanical connector. Adv. Mech. Eng. 2016, 8, 1687814016654821. [Google Scholar] [CrossRef]
- Sum, W.S.; Leong, K.H.; Djukic, L.P.; Nguyen, T.K.T.; Leong, A.Y.L.; Falzon, P.J. Design, testing and field deployment of a composite clamp for pipe repairs. Plast. Rubber Compos. 2016, 45, 81–94. [Google Scholar] [CrossRef]
- Cao, X.W.; Zheng, Z. Design of the graphite sealing based repair clamp for subsea pipes. Oil Gas Storage Transp. 2019, 38, 467–471. [Google Scholar]
- Khotsianovsky, A. Material Strength and Applied Mechanics; IOS Press: Amsterdam, The Netherlands, 2023; pp. 143–149. [Google Scholar]
- Zhao, B.; Zhang, S.; Gao, Q.; Miao, C.; Wang, T. Optimization of sealing parameters of double-sealing pipe repair clamp. J. Theor. Appl. Mech. 2022, 60, 333–346. [Google Scholar] [CrossRef]
- Alnaser, I.A.; Yunus, M.; Alfattani, R.; Alamro, T. Multiple-output fracture characteristics optimization of bi-material interfaces for composite pipe repair using swarm intelligence technique. J. Fail. Anal. Prev. 2021, 21, 507–517. [Google Scholar] [CrossRef]
- Zhang, P.; Gong, C.; Wu, Q.; Zeng, C. Experimental Study on the Bearing Capacity of Reinforced Concrete Pipes with Corrosion-Thinning Defects Repaired by UHP-ECC Mortar Spraying. Appl. Sci. 2023, 13, 7800. [Google Scholar] [CrossRef]
- Zhao, B.J.; Zhang, S.L.; Gao, Q.J.; Miao, C.L.; Wang, T.Y. Numerical Study on Tooth Angle Optimization of Enhanced Structure for Subsea pipe Repair Clamp. Str. Mater. 2022, 54, 309–317. [Google Scholar]
- Ma, Y.; Fan, T.; Zhang, Q. Experimental and numerical simulation of a novel on-line leak sealing technology based on magnetorheological adhesive. Process Saf. Environ. Prot. 2025, 195, 106731. [Google Scholar] [CrossRef]
- Zhao, Z.; Shi, X. Analysis on Contact Pressure for the Seal Structure of Repair Clamp with Wedge Contact Seals. J. Phys. Conf. Ser. 2024, 2920, 012024. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, H.; Shi, M.; Du, M.; Yang, K.; Li, B.; Zhang, Z. Structural performance of corroded concrete pipes after mortar spraying rehabilitation under traffic load. Tunn. Undergr. Space Technol. 2022, 128, 104620. [Google Scholar] [CrossRef]
- Fekete, G.; Varga, L. The effect of the width to length ratios of corrosion defects on the burst pressures of transmission pipes. Eng. Fail. Anal. 2012, 21, 21–30. [Google Scholar] [CrossRef]
- He, T.; Duan, M.; An, C. Prediction of the collapse pressure for thick-walled pipes under external pressure. Appl. Ocean Res. 2014, 47, 199–203. [Google Scholar] [CrossRef]
- Mazurkiewicz, L.; Tomaszewski, M.; Malachowski, J.; Sybilski, K.; Chebakov, M.; Witek, M.; Yukhymets, P.; Dmitrienko, R. Experimental and numerical study of steel pipe with part-wall defect reinforced with fibre glass sleeve. Int. J. Press. Vessel. Pip. 2017, 149, 108–119. [Google Scholar] [CrossRef]
- Liu, H.F.; Duan, M.L.; Wang, Y.Y.; Yu, Z.D.; Yu, Y.; Sun, C.G. Influence of length-diameter ratio on collapse of subsea pipe using the subsea repair clamp. China Pet. Mach. 2017, 45, 117–120. [Google Scholar]
- Zhang, K.; Geng, T.; Yang, J.; Ma, R. Simulating the sealing performance of the double rubber cylinder assembly in an intelligent pipeline isolation tool. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2024, 238, 7812–7829. [Google Scholar] [CrossRef]
- VijayaKumar, S.D.; Lo, M.; Karuppanan, S.; Ovinis, M. Failure Pressure Prediction of Medium to High Toughness Pipe with Circumferential Interacting Corrosion Defects Subjected to Combined Loadings Using Artificial Neural Network. Appl. Sci. 2022, 12, 4120. [Google Scholar] [CrossRef]
- Zhang, S.L.; Zhao, B.J.; Liao, C.L.; Wang, T.Y.; Li, T. Affecting Parameters of Sealing Capacity of Subsea Oil and Gas pipe Repair Clamp. China Offshore Plat. 2021, 36, 85–90. [Google Scholar]
- Xu, P.; Qu, C.; Yao, S.; Yang, C.; Wang, A. Numerical Optimization for the Impact Performance of a Rubber Ring Buffer of a Train Coupler. Machines 2021, 9, 225. [Google Scholar] [CrossRef]
- Ramezani, M.A.; Yousefi, S.; Fouladi, N. An experimental and numerical investigation of the effect of geometric parameters on the flexible joint nonlinear behavior for thrust vector control. Proc. Inst. Mech. Eng. Part G J. Aerosp. 2019, 233, 2772–2782. [Google Scholar] [CrossRef]
- Ma, Y.; Lei, G.; Hu, Q.S.; Liu, B.Q. Thermal stress and sealing performance analysis of variable-section rubber seals based on Abaqus. Lubr. Eng. 2019, 44, 112–116. [Google Scholar]
- Dong, S.X.; Wang, S.H.; Chen, W.J.; Zhai, H.D.; Zhou, X.J. Optimization of compression ratio for O-rings used in packers. Lubr. Eng. 2019, 44, 151–155. [Google Scholar]
- GB/T 17395-2024; Dimensions, Shapes, Masses and Tolerances of Steel Tubes. Standards Press of China: Beijing, China, 2024.
- ASME B31.3-2022; Process Piping. American Society of Mechanical Engineers: New York, NY, USA, 2022.
- Mehditabar, A.; Razmkhah, S.; Sadrabadi, S.A.; Peng, X.; Yuan, S.; Abot, J.L. Three-dimensional thermoelastic analysis of a functionally graded truncated conical shell with piezoelectric layers. Int. J. Comput. Mater. Sci. Eng. 2023, 12, 2350003. [Google Scholar] [CrossRef]
- Sadrabadi, S.A.; Rahimi, G.H. Yield onset of thermo-mechanical loading of FGM thick walled cylindrical pressure vessels. Int. J. Mech. Aerosp. Ind. Mechatron. Eng. 2014, 8, 1317–1321. [Google Scholar]
- Abtahi, S.M.R.; Sadrabadi, S.A.; Rahimi, G.H.; Singh, G.; Abyar, H.; Amato, D.; Federico, L. Experimental and Finite Element Analysis of Corroded High-Pressure Pipeline Repaired by Laminated Composite. Comp. Model. Eng. Sci. 2024, 140, 1783–1806. [Google Scholar] [CrossRef]
- GB/T 20801.1-2020; Pressure Piping Code—Industrial Piping—Part 1: General. Standards Press of China: Beijing, China, 2020.
- ASME B31G-2012; Manual for Determining the Remaining Strength of Corroded Pipelines. American Society of Mechanical Engineers: New York, NY, USA, 2012.
Diameter of Pipe D/mm | Length of Clamp b/mm | Angle of Cavity Ɵ/° | Axial Length of Cavity C/mm | Distance of Bolt g/mm | Thickness of Clamp S/mm | Thickness of Lug Plate t/mm |
---|---|---|---|---|---|---|
219 | 219 | 80 | 100 | 25 | 6 | 22 |
Material | Yield Strength σy/MPa | Tensile Strength σu/MPa | Elastic Modulus E/MPa | Poisson’s Ratio ν |
---|---|---|---|---|
AISI 1020 | 245 | 410 | 206,000 | 0.3 |
Nitrile Rubber | 15 | 27 | 5.52 | 0.5 |
Thickness of Clamp d1/mm | Angle of Defect φ/° | Depth Ratios of Defect d2/d1 | Length of Defect l/mm |
---|---|---|---|
6 | 20 | 0.8 | 18.3 |
Operating Pressure Range L2/mm | Distance Between Clamp and Defect L1/mm | Maximum Safe Pressure/MPa | |||||
---|---|---|---|---|---|---|---|
10 MPa | 12 MPa | 14 MPa | 16 MPa | 18 MPa | 20 MPa | ||
10 | 10 | 6.9 | 6.9 | 7.0 | 7.0 | 7.0 | - |
20 | 6.9 | 6.9 | 6.9 | 6.9 | 6.9 | 6.8 | |
30 | 6.9 | 7.0 | 7.0 | 7.0 | 7.1 | 7.1 | |
40 | 7.0 | 7.0 | 7.1 | 7.1 | 7.1 | 7.2 | |
50 | 7.1 | 7.1 | 7.1 | 7.1 | 7.1 | 7.2 | |
60 | 7.1 | 7.1 | 7.1 | 7.1 | 7.2 | 7.2 | |
20 | 10 | 7.0 | 6.9 | 6.7 | 6.7 | - | - |
20 | 7.2 | 7.1 | 7.0 | 7.0 | 6.9 | - | |
30 | 7.3 | 7.2 | 7.2 | 7.2 | 7.3 | - | |
40 | 7.3 | 7.3 | 7.3 | 7.3 | 7.4 | 7.4 | |
50 | 7.2 | 7.2 | 7.3 | 7.3 | 7.3 | 7.4 | |
60 | 7.1 | 7.1 | 7.1 | 7.2 | 7.2 | 7.4 | |
30 | 10 | 6.8 | 6.7 | 6.9 | 7.2 | 7.2 | 6.9 |
20 | 7.1 | 7.1 | - | - | - | - | |
30 | 6.9 | 7.0 | 7.3 | 7.3 | - | - | |
40 | 7.2 | 7.2 | 7.3 | 7.4 | 7.3 | 7.2 | |
50 | 7.2 | 7.2 | 7.2 | 7.2 | 7.1 | 7.1 | |
60 | 6.9 | 6.9 | 7.0 | 7.1 | 7.1 | 7.1 |
Loading Steps | Maximum Test Pressure/MPa | Leakage Behavior |
---|---|---|
1 | 2.5 | No leakage |
2 | 5.0 | No leakage |
3 | 7.5 | No leakage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Suo, X.; Liao, X.; Wang, H.; Xia, L.; Song, Y.; Li, Y. Study on a Repair Clamp Device for Leakage Prevention in Defective Pipes. Appl. Sci. 2025, 15, 9019. https://doi.org/10.3390/app15169019
Feng J, Suo X, Liao X, Wang H, Xia L, Song Y, Li Y. Study on a Repair Clamp Device for Leakage Prevention in Defective Pipes. Applied Sciences. 2025; 15(16):9019. https://doi.org/10.3390/app15169019
Chicago/Turabian StyleFeng, Jiajun, Xinjie Suo, Xiaoling Liao, Hong Wang, Linming Xia, Yuxuan Song, and Yuebing Li. 2025. "Study on a Repair Clamp Device for Leakage Prevention in Defective Pipes" Applied Sciences 15, no. 16: 9019. https://doi.org/10.3390/app15169019
APA StyleFeng, J., Suo, X., Liao, X., Wang, H., Xia, L., Song, Y., & Li, Y. (2025). Study on a Repair Clamp Device for Leakage Prevention in Defective Pipes. Applied Sciences, 15(16), 9019. https://doi.org/10.3390/app15169019