Groundwater Recovery and Associated Land Deformation Along Beijing–Tianjin HSR: Insights from PS-InSAR and Explainable AI
Abstract
1. Introduction
2. Study Area and Dataset
2.1. Study Area
2.2. Dataset
2.2.1. SAR Imagery
2.2.2. Other Data
3. Research Methods
3.1. Permanent Scatterer Interferometry Techniques
- ➀
- PS Point Selection: Stable targets were identified based on amplitude dispersion and coherence thresholds.
- ➁
- Phase Modeling: Differential interferometric phases were decomposed into deformation, topographic residuals, and atmospheric components.
- ➂
- Atmospheric Correction: Iterative spatial filtering was applied to reduce atmospheric delays.
3.2. Explainability Machine Learning Models
4. Results
4.1. Accuracy Verification
4.2. Evolution of Land Deformation Derived from InSAR Data
4.2.1. Regional Subsidence
4.2.2. Subsidence Characteristic Along the High-Speed Railway
4.3. Relationship Between Groundwater and Land Deformation
4.4. Relationship Between Thickness of Compressible Layer and Surface Deformation
5. Discussion
6. Conclusions
- After the South-to-North Water Diversion Project supplied water to Beijing, the ground subsidence rate along the high-speed railway gradually decreased. However, subsidence in the DK11–DK23 section remains significant, with a cumulative differential settlement of 0.65 m from 2013 to 2023 and a subsidence gradient of 0.6 per mil. The settlement rate of the high-speed railway track is significantly lower than the ground subsidence rate. In 2013, the maximum ground subsidence rate was 150 mm per year, while the maximum track settlement rate was 99.1 mm per year. By 2023, the maximum ground subsidence rate had dropped to 62 mm per year, and the maximum track settlement rate had further decreased to 49.7 mm per year, indicating that the high-speed railway bridges and subgrade structures have exerted effective control over settlement.
- The results from the explainable machine learning model show that the main controlling factors of settlement exhibit obvious temporal and spatial evolution characteristics: in 2015 and 2018, surface deformation was mainly controlled by water level changes in the 2nd and 3rd confined aquifers, whereas after 2022, the rise in the water level of the phreatic aquifer became the primary factor contributing to settlement mitigation. The spatial differences in the thickness of compressible layers and groundwater extraction intensity are the main causes of differential settlements along the line.
- Land mitigation is primarily attributed to rising groundwater levels driven by increased precipitation and improved water resource management, particularly the South-to-North Water Diversion Project, which reduced groundwater extraction and supported well closure policies. However, observed subsidence deceleration without significant land rebound suggests a competition between viscoplastic compression and elastic/viscoelastic rebound in the aquifer system. The dominance of inelastic storage results in residual deformation, delaying full elastic recovery despite water table rise.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, H.; Zhang, Y.; Wang, R.; Gong, H.; Gu, Z.; Kan, J.; Luo, Y.; Jia, S. Monitoring and Analysis of Land Subsidence Along the Beijing Section of the Beijing-Tianjin Intercity Railway. Chin. J. Geophys. 2016, 59, 2424–2432. [Google Scholar]
- Lu, C.; Chen, B.; Gong, H.; Zhou, C.; Shi, M.; Cao, J. Evolutionary Characteristics of Land Subsidence Along the Beijing Section of the Beijing-Tianjin Intercity Railway Before and After the South-to-North Water Diversion Project. Geomat. Inf. Sci. Wuhan Univ. 2023, 12, 1959–1968. [Google Scholar]
- Duan, G.; Liu, H.; Gong, H.; Chen, B. Evolutionary Characteristics of Uneven Land Subsidence Along the Beijing-Tianjin Intercity Railway. Geomat. Inf. Sci. Wuhan Univ. 2017, 12, 1847–1853. [Google Scholar]
- Zhang, W.; Ke, Y.; Deng, Z.; Chen, B.; Gong, H.; Li, X. Monitoring of Vertical Deformation Along the Beijing Section of the Beijing-Tianjin Intercity Railway Based on Multi-Source SAR Data. Chin. J. Sci. Technol. 2018, 13, 235–240. [Google Scholar]
- Chen, B.; Gong, H.; Chen, Y.; Lei, K.; Zhou, C.; Si, Y.; Li, X.; Pan, Y.; Gao, M. Investigating land subsidence and its causes along Beijing high-speed railway using multi-platform InSAR and a maximum entropy model. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102284. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Chen, Y.; Li, X.; Zhou, C.; Lei, K.; Zhu, L.; Duan, L.; Zhao, X. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Sci. Total Environ. 2020, 735, 139111. [Google Scholar] [CrossRef]
- Li, G.; Xu, Z.; Sun, S.; Jing, Z. Impact of Land Subsidence in the North China Plain on High-Speed Railways and Countermeasures. J. Railw. Eng. Soc. 2007, 8, 7–12. [Google Scholar]
- Luo, Y. Preliminary Analysis of the New Trends in Land Subsidence Development in Beijing. Shanghai Land Resour. 2017, 2, 13–17. [Google Scholar]
- Sha, T.; Luo, Y.; Zhao, L.; Qi, M.; Tian, M.; Wang, X.; Kong, X. Characteristics and Causes of Land Subsidence in the Significant Subsidence Areas of Beijing. Shanghai Land Resour. 2017, 3, 66–69. [Google Scholar]
- Lei, K.; Ma, F.; Luo, Y.; Chen, B.; Cui, W.; Tian, F.; Sha, T. Current Main Subsidence Strata and Deformation Characteristics of Soil Layers in the Beijing Plain. J. Eng. Geol. 2022, 2, 442–458. [Google Scholar]
- Lei, K. Evolutionary Characteristics of Groundwater and Land Subsidence in the Beijing Plain Before and After the South-to-North Water Diversion Project. Acta Geol. Sin. 2024, 2, 591–610. [Google Scholar]
- Beijing Water Authority. Beijing Water Resources Bulletin (2018); Beijing Water Authority: Beijing, China, 2019.
- Zhao, L.; Jiang, X.; Li, Y. Mechanisms of groundwater recovery and land subsidence mitigation in a piedmont plain. J. Hydrol. 2025, 658, 133165. [Google Scholar] [CrossRef]
- Zhao, L.; Jiang, X.; Li, Y.; Luo, Y.; Lei, K.; Kou, W.; Tian, F.; Tian, M.; Sha, T.; Wang, S.; et al. Study on changes in groundwater level and its relationship with land subsidence in the Beijing Plain over the past 10 years. Acta Geol. Sin. 2025, 99, 1792–1806. [Google Scholar] [CrossRef]
- Meng, D.; Chen, B.; Gong, H.; Zhang, S.; Ma, R.; Zhou, C.; Lei, K.; Xu, L.; Wang, X. Land subsidence and rebound response to groundwater recovery in the Beijing Plain: A new hydrological perspective. J. Hydrol. Reg. Stud. 2025, 57, 102127. [Google Scholar] [CrossRef]
- Ge, P.; Liu, H.; Chen, M.; Li, Y.; Ding, R.; Liu, F. Time-series InSAR Monitoring of Land Subsidence in the Hebei Section of Beijing-Xiong’an Intercity Railway. Bull. Surv. Mapp. 2022, 7, 64–70. [Google Scholar] [CrossRef]
- Cai, L.; Yu, D.; Li, X.; Jiang, Y.; Zhang, J. Application of Multi-temporal InSAR Technology in Settlement Monitoring of High-speed Railways. Railw. Investig. Surv. 2023, 49, 28–32. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, K. Settlement Monitoring and Analysis Along a Mountainous High-speed Railway Based on PS-InSAR Technology. Urban Surv. Mapp. 2024, 6, 96–99. [Google Scholar]
- Li, Y.; Xu, L.; Chen, Y.; Deng, Z. Early Identification and Service Condition Monitoring of Railway Subgrade Disaster Hazards Based on Space-Air-Vehicle-Ground Integration. Geomat. Inf. Sci. Wuhan Univ. 2024, 49, 1392–1406+1421. [Google Scholar] [CrossRef]
- You, H.; Mi, H.; Li, Y.; Wang, Z.; Liu, L.; Xiong, P. Subsidence Monitoring and Prediction Along High-speed Railways Using InSAR Technology. Sci. Surv. Mapp. 2021, 46, 67–75. [Google Scholar] [CrossRef]
- Hollenstein, C.; Müller, M.D.; Geiger, A.; Kahle, H.G. Crustal motion and deformation in Greece from a decade of GPS measurements, 1993–2003. Tectonophysics 2008, 449, 17–40. [Google Scholar] [CrossRef]
- Müller, M.D.; Geiger, A.; Kahle, H.G.; Veis, G.; Billiris, H.; Paradissis, D.; Felekis, S. Velocity and deformation fields in the North Aegean domain, Greece, and implications for fault kinematics, derived from GPS data 1993–2009. Tectonophysics 2013, 597–598, 34–49. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Gong, H.; Li, X.; Yu, J.; Zhu, X. Ground Subsidence Monitoring of Beijing Section of Beijing-Tianjin High-Speed Railway Based on Time-Series InSAR. J. Geo-Inf. Sci. 2017, 19, 1393–1403. [Google Scholar]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P.; et al. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Shirzaei, M.; Freymueller, J.; Törnqvist, T.E.; Galloway, D.L.; Dura, T.; Minderhoud, P.S.J. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2021, 2, 40–58. [Google Scholar] [CrossRef]
- Navarro-Hernández, M.I.; Tomás, R.; Valdes-Abellan, J.; Bru, G.; Ezquerro, P.; Guardiola-Albert, C.; Elçi, A.; Batkan, E.A.; Caylak, B.; Ören, A.H.; et al. Monitoring land subsidence induced by tectonic activity and groundwater extraction in the eastern Gediz River Basin (Türkiye) using Sentinel-1 observations. Eng. Geol. 2023, 327, 107343. [Google Scholar] [CrossRef]
- Andreas, H.; Abidin, H.Z.; Sarsito, D.A.; Meilano, I.; Susilo, S. Investigating the tectonic influence to the anthropogenic subsidence along northern coast of Java Island Indonesia using GNSS data sets. E3S Web Conf. EDP Sci. 2019, 94, 04005. [Google Scholar] [CrossRef]
- Dokka, R.K.; Sella, G.F.; Dixon, T.H. Tectonic control of subsidence and southward displacement of southeast Louisiana with respect to stable North America. Geophys. Res. Lett. 2006, 33, 027250. [Google Scholar] [CrossRef]
- Bagheri-Gavkosh, M.; Hosseini, S.M.; Ataie-Ashtiani, B.; Sohani, Y.; Ebrahimian, H.; Morovat, F.; Ashrafi, S. Land subsidence: A global challenge. Sci. Total Environ. 2021, 778, 146193. [Google Scholar] [CrossRef]
- Huning, L.S.; Love, C.A.; Anjileli, H.; Vahedifard, F.; Zhao, Y.; Chaffe, P.L.B.; Cooper, K.; Alborzi, A.; Pleitez, E.; Martinez, A.; et al. Global land subsidence: Impact of climate extremes and human activities. Rev. Geophys. 2024, 62, e2023RG000817. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Ohenhen, L.O.; Zhai, G.; Lucy, J.; Werth, S.; Carlson, G.; Khorrami, M.; Onyike, F.; Sadhasivam, N.; Tiwari, A.; Ghobadi-Far, K.; et al. Land subsidence risk to infrastructure in US metropolises. Nat. Cities 2025, 2, 543–554. [Google Scholar] [CrossRef]
- Pedretti, L.; Giarola, A.; Korff, M.; Lambert, J.; Meisina, C. Comprehensive database of land subsidence in 143 major coastal cities around the world: Overview of issues, causes, and future challenges. Front. Earth Sci. 2024, 12, 1351581. [Google Scholar] [CrossRef]
- Long, Z.; Yumei, L.; Yong, L. Unravelling the influencing hydrogeological factors contributing to land subsidence in the Tian Plain of China using a multi-scale geographically weighted regression model and monitoring data. Q. J. Eng. Geol. Hydrogeol. 2024, 57, qjegh2023-068. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Luo, Y.; Liu, J.; Cui, W.; Zhang, Y.; Lei, K.; Tian, F.; Han, Z.; Liu, H.; et al. An extension-dominant 9-km-long ground failure along a buried geological fault on the eastern Beijing Plain, China. Eng. Geol. 2021, 289, 106168. [Google Scholar]
- Qin, T.; Yu, T.; Wang, Y.; Ning, D.; Wang, H. Application and Prospects of Artificial Intelligence Technology in Land Subsidence Research. Hydrogeol. Eng. Geol. 2024, 6, 232–240. [Google Scholar]
- Pan, Y.; Pan, J.; Gong, H.; Zhao, W. Study on the Relationship Between Groundwater Extraction and Land Subsidence in Tianjin City. Earth Environ. 2004, 2, 36–39. [Google Scholar]
- Luo, Y.; Xu, Q.; Jiang, Y.; Meng, R.; Pu, C. A Large-Scale Land Subsidence Prediction Method Based on Time-Series InSAR and Machine Learning. Earth Sci. 2024, 5, 1736–1745. [Google Scholar]
- Chen, Y.; Zhao, B.; Wang, H.; Zheng, J.; Gao, Y. Surface Deformation Prediction Based on Time-series InSAR Using LSTM Model. Yangtze River 2024, 55, 146–152. [Google Scholar] [CrossRef]
- Zhao, F.; Zhou, L.; Wei, Y. InSAR Monitoring of Land Subsidence in Wuzhou City Based on Fusion of Improved Whale Optimization Algorithm for Unwrapping. Remote Sens. Inf. 2024, 39, 52–58. [Google Scholar] [CrossRef]
- Ding, L.; Song, P.; Ding, C. Susceptibility Assessment of Goaf Collapse Based on Time-series InSAR Technology. J. Heilongjiang Univ. Sci. Technol. 2024, 34, 531–536. [Google Scholar]
- Xu, T.; Qi, Y.; Li, Z. Dynamic Landslide Susceptibility Assessment Based on Time-penalty Decision Tree Algorithm Using Time-series InSAR: A Case Study of Zhengzhou City, Henan Province. Miner. Explor. 2025, 1–18. Available online: http://kns.cnki.net/kcms/detail/11.5875.TD.20250326.1025.004.html (accessed on 6 August 2025).
- Yu, C.; Lü, B.; Hu, X.; Li, J.; Song, C.; Li, Z. Detection of Precursor Deformation for Highway Collapse in Zhashui County, Shaanxi Province, 2024 Based on Time-series InSAR. Met. Mine 2025, 1–14. Available online: http://kns.cnki.net/kcms/detail/34.1055.TD.20250514.0950.003.html (accessed on 6 August 2025).
- Zhao, F.; Chen, C.; Zhou, L.; Liu, J.; Wei, Y. Research on InSAR Settlement Prediction Method Combined with Gated Recurrent Neural Network. Sci. Surv. Mapp. 2025, 50, 133–141. [Google Scholar] [CrossRef]
- Chai, L.; Xie, X.; Wang, C.; Tang, G.; Song, Z. Ground Subsidence Risk Assessment Method Using PS-InSAR and LightGBM: A Case Study of Shanghai Metro Network. Int. J. Digit. Earth 2024, 17, 2297842. [Google Scholar] [CrossRef]
- Liu, X.; Gong, H.; Zhou, C.; Chen, B.; Su, Y.; Zhu, J.; Lu, W. Analysis of Ground Subsidence Evolution Characteristics and Attribution Along the Beijing–Xiong’an Intercity Railway with Time-Series InSAR and Explainable Machine-Learning Technique. Land 2025, 14, 364. [Google Scholar] [CrossRef]
- Yu, H.; Gong, H.; Chen, B.; Zhou, C. Emerging Risk Assessment of Land Subsidence Area in the Southern Plain of Tianjin City. Remote Sens. Nat. Resour. 2023, 35, 182–192. [Google Scholar]
- Yaragunda, V.R.; Vaka, D.S.; Oikonomou, E. Land Subsidence Susceptibility Modelling in Attica, Greece: A Machine Learning Approach Using InSAR and Geospatial Data. Earth 2025, 6, 61. [Google Scholar] [CrossRef]
- Bammou, Y.; Benzougagh, B.; Ouallali, A.; Kader, S.; Raougua, M.; Igmoullan, B. Improving Landslide Susceptibility Mapping in Semi-Arid Regions Using Machine Learning and Geospatial Techniques. DYSONA Appl. Sci. 2025, 6, 269–290. [Google Scholar]
- He, Q.; Liu, W.; Li, Z. Investigation and Monitoring of Land Subsidence in the North China Plain. J. Geosci. Eng. Univ. 2006, 2, 195–209. [Google Scholar]
- Yang, Y. Analysis of the Effectiveness of InSAR Monitoring of Land Subsidence in Beijing. Shanghai Land Resour. 2013, 4, 21–24. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, Q.; Zhang, M.; Li, J. Spatial pattern and driving factors of ecosystem services in Beijing based on XGBoost-SHAP model. Environ. Sci. 2025, 1–16. [Google Scholar] [CrossRef]
- Ren, W.; Si, Z.; Lv, K.; Zhao, Z.; Li, Z. Analysis of trade-offs, synergies and driving forces of ecosystem services in the Hanjiang River Basin based on XGBoost-SHAP model. China Rural Water Hydropower 2025, 1–18. Available online: http://kns.cnki.net/kcms/detail/42.1419.TV.20250515.0943.008.html (accessed on 6 August 2025).
- Cui, T.; An, X.; Sun, D.; Chen, D.; Zhu, Y. A landslide susceptibility evaluation model based on SHAP-interpretable machine learning. J. Chengdu Univ. Technol. (Nat. Sci. Ed.) 2025, 52, 153–172. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Liu, J.K.; Tang, J.; Wei, L.; Sun, H.; Zhang, X. Research on the time-lag response pattern of land subsidence to groundwater level changes based on STL models. J. East China Univ. Technol. (Nat. Sci. Ed.) 2025, 48, 282–290. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions (Version 2). arXiv 2017, arXiv:1705.07874v2. [Google Scholar] [CrossRef]
- Li, X. Study on the Spatiotemporal Evolution Pattern of PM2.5 and Changes in Influencing Factors in Zhejiang Province. Ph.D. Thesis, Zhejiang Normal University, Jinhua, China, 2022. [Google Scholar]
- Hung, W.C.; Hwang, C.; Sneed, M.; Chen, Y.A.; Chu, C.H.; Lin, S.H. Measuring and Interpreting Multilayer Aquifer-System Compactions for a Sustainable Groundwater-System Development. Water Resour. Res. 2021, 57, e2020WR028194. [Google Scholar] [CrossRef]
- Holzer, T.L. Preconsolidation stress of aquifer systems in areas of induced land subsidence. Water Resour. Res. 1981, 17, 693–703. [Google Scholar] [CrossRef]
- Su, G.; Xiong, C.; Zhang, G.; Wang, Y.; Shen, Q.; Chen, X.; An, H.; Qin, L. Coupled processes of groundwater dynamics and land subsidence in the context of active human intervention, a case in Tianjin, China. Sci. Total Environ. 2023, 903, 166803. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.M.; Lian, X.; Zhu, Q.; Horgan, F.G.; Zhang, Q. Analysis of the impact of the South-to-North water diversion project on water balance and land subsidence in Beijing, China between 2007 and 2020. J. Hydrol. 2021, 603, 126990. [Google Scholar] [CrossRef]
- Yang, C.S.; Wei, Y.J.; Xu, Q.; Li, T.; Zhao, C. Monitoring of Land Subsidence and Ground Fissure Activity within the Su-Xi-Chang Area Based on Time-Series InSAR. Remote Sens. 2022, 14, 903. [Google Scholar] [CrossRef]
- Ding, D.; Ma, F.; Zhang, Y.; Wang, J.; Guo, J. Characteristics of land subsidence under the superimposed effect of high-rise building loads and groundwater extraction. J. Eng. Geol. 2011, 19, 433–439. [Google Scholar]
- Zhang, H.; Zheng, X.; Tang, Z.; Hou, Y. Study on fully coupled numerical simulation of land subsidence in Ningbo Plain. Hydrogeol. Eng. Geol. 2013, 40, 77–82+87. [Google Scholar] [CrossRef]
Data Type | Radarsat-2 | Sentinel-1A |
---|---|---|
Orbit Direction | Descending | Ascending |
Spatial Resolution/m | 100 | 5 × 20 |
Band (Wavelength) | C-band (5.63 cm) | C-band (5.5 cm) |
Revisit Period/day | 24 | 12 |
Number of Images | 112 | 68 |
Time Range | January 2013–December 2018 | January 2019–December 2023 |
Standard | Severe | Moderate | Weak |
---|---|---|---|
Deformation rate (mm/yr) | >50 | 30–50 | 0–30 |
Cumulative deformation (mm) | >1500 | 500–1500 | <500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Bai, M. Groundwater Recovery and Associated Land Deformation Along Beijing–Tianjin HSR: Insights from PS-InSAR and Explainable AI. Appl. Sci. 2025, 15, 8978. https://doi.org/10.3390/app15168978
Liu S, Bai M. Groundwater Recovery and Associated Land Deformation Along Beijing–Tianjin HSR: Insights from PS-InSAR and Explainable AI. Applied Sciences. 2025; 15(16):8978. https://doi.org/10.3390/app15168978
Chicago/Turabian StyleLiu, Shaomin, and Mingzhou Bai. 2025. "Groundwater Recovery and Associated Land Deformation Along Beijing–Tianjin HSR: Insights from PS-InSAR and Explainable AI" Applied Sciences 15, no. 16: 8978. https://doi.org/10.3390/app15168978
APA StyleLiu, S., & Bai, M. (2025). Groundwater Recovery and Associated Land Deformation Along Beijing–Tianjin HSR: Insights from PS-InSAR and Explainable AI. Applied Sciences, 15(16), 8978. https://doi.org/10.3390/app15168978