Design and Implementation of a 3D Korean Sign Language Learning System Using Pseudo-Hologram
Abstract
1. Introduction
2. Related Work
2.1. Sign Language Recognition
2.2. Sign Language Applications
2.3. Comparison with Prior Works
3. System Design and Implementation
3.1. System Overview
3.2. Data Set and Preprocessing
- V is the set of nodes representing the hand joints.
- E is the set of edges representing the connections between the joints
3.3. Model Design
3.4. System Hardware Setup and User Interaction Flowchart
4. Experiments
4.1. System Demonstration
4.2. Evaluation of Sign Recognition Performance
4.3. Effectiveness and Usability Study
- Q1. Did you feel that using this system was effective for learning sign language?
- Q2. Did the 3D visualization help you understand the correct position and angle of the sign language gestures?
- Q3. Do you think this system is more efficient compared to learning methods using 2D videos or images?
- Q4. Do you feel that you can reproduce the sign language gestures you learned through this system in real life?
- Q5. Has your ability to remember and reproduce sign language gestures improved after using this system?
- Q6. How intuitive did you find the 3D visualization for observing and understanding sign language?
- Q7. How convenient was it to learn or test gestures using the LMC?
- Q8. Did the animations provide sufficient information for understanding the continuity of the sign language gestures?
- Q9. Did you find the system’s interface design user-friendly?
- Q10. To what extent did the 3D visualization technology contribute to enhancing your motivation during learning?
5. Discussion
6. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shukla, A.; Harper, M.; Pedersen, E.; Goman, A.; Suen, J.J.; Price, C.; Applebaum, J.; Hoyer, M.; Lin, F.R.; Reed, N.S. Hearing loss, loneliness, and social isolation: A systematic review. Otolaryngol. Head Neck Surg. 2020, 162, 622–633. [Google Scholar] [CrossRef]
- Cheok, M.J.; Omar, Z.; Jaward, M.H. A review of hand gesture and sign language recognition techniques. Int. J. Mach. Learn. Cybern. 2019, 10, 131–153. [Google Scholar] [CrossRef]
- Senghas, R.J.; Monaghan, L. Signs of their times: Deaf communities and the culture of language. Annu. Rev. Anthropol. 2002, 31, 69–97. [Google Scholar] [CrossRef]
- Washabaugh, W. Sign language in its social context. Annu. Rev. Anthropol. 1981, 10, 237–252. [Google Scholar] [CrossRef]
- Deuchar, M. British Sign Language; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Chuan, C.H.; Regina, E.; Guardino, C. American sign language recognition using leap motion sensor. In Proceedings of the 2014 13th International Conference on Machine Learning and Applications, Detroit, MI, USA, 3–5 December 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 541–544. [Google Scholar]
- Mohandes, M.; Aliyu, S.; Deriche, M. Arabic sign language recognition using the leap motion controller. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 960–965. [Google Scholar]
- Xue, Y.; Gao, S.; Sun, H.; Qin, W. A Chinese sign language recognition system using leap motion. In Proceedings of the 2017 International Conference on Virtual Reality and Visualization (ICVRV), Zhengzhou, China, 21–22 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 180–185. [Google Scholar]
- Demircioğlu, B.; Bülbül, G.; Köse, H. Turkish sign language recognition with leap motion. In Proceedings of the 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 16–19 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 589–592. [Google Scholar]
- Bird, J.J.; Ekárt, A.; Faria, D.R. British sign language recognition via late fusion of computer vision and leap motion with transfer learning to american sign language. Sensors 2020, 20, 5151. [Google Scholar] [CrossRef] [PubMed]
- Avola, D.; Bernardi, M.; Cinque, L.; Foresti, G.L.; Massaroni, C. Exploiting recurrent neural networks and leap motion controller for the recognition of sign language and semaphoric hand gestures. IEEE Trans. Multimed. 2018, 21, 234–245. [Google Scholar] [CrossRef]
- Samaan, G.H.; Wadie, A.R.; Attia, A.K.; Asaad, A.M.; Kamel, A.E.; Slim, S.O.; Abdallah, M.S.; Cho, Y.I. Mediapipe’s landmarks with rnn for dynamic sign language recognition. Electronics 2022, 11, 3228. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Rezk, N.M.; Purnaprajna, M.; Nordström, T.; Ul-Abdin, Z. Recurrent neural networks: An embedded computing perspective. IEEE Access 2020, 8, 57967–57996. [Google Scholar] [CrossRef]
- Lee, C.K.; Ng, K.K.; Chen, C.H.; Lau, H.C.; Chung, S.Y.; Tsoi, T. American sign language recognition and training method with recurrent neural network. Expert Syst. Appl. 2021, 167, 114403. [Google Scholar] [CrossRef]
- Uddin, M.Z.; Boletsis, C.; Rudshavn, P. Real-time Norwegian sign language recognition using MediaPipe and LSTM. Multimodal Technol. Interact. 2025, 9, 23. [Google Scholar] [CrossRef]
- Wang, J.; Ivrissimtzis, I.; Li, Z.; Shi, L. The Impact of 2D and 3D Gamified VR on Learning American Sign Language. arXiv 2024, arXiv:2405.08908. [Google Scholar] [CrossRef]
- Novaliendry, D.; Budayawan, K.; Auvi, R.; Fajri, B.R.; Huda, Y. Design of Sign Language Learning Media Based on Virtual Reality. Int. J. Online Biomed. Eng. 2023, 19, 111–126. [Google Scholar] [CrossRef]
- Li, Y.; Yu, R.; Shahabi, C.; Liu, Y. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv 2017, arXiv:1707.01926. [Google Scholar]
- Wang, X.; Sun, S.; Xie, L.; Ma, L. Efficient conformer with prob-sparse attention mechanism for end-to-endspeech recognition. arXiv 2021, arXiv:2106.09236. [Google Scholar]
- Rheiner, J.; Kerger, D.; Drüppel, M. From pixels to letters: A high-accuracy CPU-real-time American Sign Language detection pipeline. Mach. Learn. Appl. 2025, 20, 100650. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, X. Recent Advances on Deep Learning for Sign Language Recognition. Comput. Model. Eng. Sci. (CMES) 2024, 139, 2399. [Google Scholar] [CrossRef]
- Karabüklü, S.; Wood, S.; Bradley, C.; Wilbur, R.B.; Malaia, E.A. Effect of sign language learning on temporal resolution of visual attention. J. Vis. 2025, 25, 3. [Google Scholar] [CrossRef]
- Najib, F.M. Sign language interpretation using machine learning and artificial intelligence. Neural Comput. Appl. 2025, 37, 841–857. [Google Scholar] [CrossRef]
- Walizad, M.E.; Hurroo, M. Sign language recognition system using convolutional neural network and computer vision. Int. J. Eng. Res. Technol. 2020, 9, 59–64. [Google Scholar]
- Mistry, J.; Inden, B. An approach to sign language translation using the intel realsense camera. In Proceedings of the 2018 10th Computer Science and Electronic Engineering (CEEC), Colchester, UK, 19–21 September 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 219–224. [Google Scholar]
- Chong, T.W.; Lee, B.G. American sign language recognition using leap motion controller with machine learning approach. Sensors 2018, 18, 3554. [Google Scholar] [CrossRef]
- Jiang, S.; Sun, B.; Wang, L.; Bai, Y.; Li, K.; Fu, Y. Skeleton aware multi-modal sign language recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 3413–3423. [Google Scholar]
- Rastgoo, R.; Kiani, K.; Escalera, S. Sign language recognition: A deep survey. Expert Syst. Appl. 2021, 164, 113794. [Google Scholar] [CrossRef]
- Papastratis, I.; Chatzikonstantinou, C.; Konstantinidis, D.; Dimitropoulos, K.; Daras, P. Artificial intelligence technologies for sign language. Sensors 2021, 21, 5843. [Google Scholar] [CrossRef]
- Dao, T. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv 2023, arXiv:2307.08691. [Google Scholar] [CrossRef]
- Shah, J.; Bikshandi, G.; Zhang, Y.; Thakkar, V.; Ramani, P.; Dao, T. Flashattention-3: Fast and accurate attention with asynchrony and low-precision. Adv. Neural Inf. Process. Syst. 2024, 37, 68658–68685. [Google Scholar]
- Poli, M.; Massaroli, S.; Nguyen, E.; Fu, D.Y.; Dao, T.; Baccus, S.; Bengio, Y.; Ermon, S.; Ré, C. Hyena hierarchy: Towards larger convolutional language models. In Proceedings of the International Conference on Machine Learning, PMLR, Honolulu, HI, USA, 23–29 July 2023; pp. 28043–28078. [Google Scholar]
- Setiawan, V.; Thendyliputra, R.; Santami, S.A.; Hansen, D.; Warnars, H.L.H.S.; Ramdhan, A.; Doucet, A. An Interactive Sign Language Based Mobile Application for Deaf People. In Proceedings of the 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 11–13 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1635–1641. [Google Scholar]
- Voultsiou, E.; Moussiades, L. A systematic review of AI, VR, and LLM applications in special education: Opportunities, challenges, and future directions. Educ. Inf. Technol. 2025, 1–41. [Google Scholar] [CrossRef]
- Schioppo, J.; Meyer, Z.; Fabiano, D.; Canavan, S. Sign language recognition: Learning american sign language in a virtual environment. In Proceedings of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–6. [Google Scholar]
- Jin, G.; Liang, Y.; Fang, Y.; Shao, Z.; Huang, J.; Zhang, J.; Zheng, Y. Spatio-temporal graph neural networks for predictive learning in urban computing: A survey. IEEE Trans. Knowl. Data Eng. 2023, 36, 5388–5408. [Google Scholar] [CrossRef]
- Jin, M.; Koh, H.Y.; Wen, Q.; Zambon, D.; Alippi, C.; Webb, G.I.; King, I.; Pan, S. A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 10466–10485. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 11–15 October 2021; Volume 35, pp. 11106–11115. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Chan, K.H.; Ke, W.; Im, S.K. A general method for generating discrete orthogonal matrices. IEEE Access 2021, 9, 120380–120391. [Google Scholar] [CrossRef]
- Im, S.K.; Pearmain, A. Unequal error protection with the H. 264 flexible macroblock ordering. In Proceedings of the Visual Communications and Image Processing 2005, Beijing, China, 12–15 July 2005; SPIE: Bellingham, WA, USA, 2005; Volume 5960, pp. 1033–1040. [Google Scholar]
Study (Ref.) | Focus | Input Device | Recognition Methods | Advantages |
---|---|---|---|---|
Mistry [26] | Sign Language Recognition | Intel RealSense | Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) | Achieving high accuracy in recognizing 26 gestures (alphabet letters) |
Chong [27] | Sign Language Recognition | Leap Motion Controller (LMC) | Support Vector Machine (SVM), Deep Neural Network (DNN) | Capable of recognizing both static and dynamic sign language |
Avola [11] | Sign Language Recognition | Leap Motion Controller (LMC) | Recurrent Neural Network (RNN) | Collecting finger angles with LMC and achieving high accuracy |
Lee [15] | Sign Language Learning | Leap Motion Controller (LMC) | Recurrent Neural Network (RNN) | Comparing LMC with other devices highlights its advantages for sign language learning |
Schioppo [36] | VR-based Sign Language Learning | Leap Motion Controller (LMC) | Random Forest (RF) | Developing a VR-based sign language learning application using LMC and a VR headset to enhance immersion and learning |
Our Study | Hologram-based Sign Language Learning | Leap Motion Controller (LMC) | Diffusion Convolutional Recurrent Neural Network (DCRNN), ProbSparse Attention | Development of a 3D pseudo-hologram sign language learning system and usability evaluation |
Sign Language Class | Number of Frames |
---|---|
Thank you | 59,523 |
Meet | 59,522 |
Love | 59,441 |
No | 59,466 |
It hurts | 59,436 |
Hello | 59,559 |
Congratulations | 59,560 |
It’s cold | 59,573 |
Module | Model Setting |
---|---|
DCRNN Input size (feature matrix): 43 × 4 Output size: 172 × 1 | Layers: 2 diffusion GRU layers Input size (adjacency matrix): 43 × 43 |
ProbSparse Attention | Dimension of key vectors: 172 × 1 |
Number of attention heads: 4 | |
Number of top keys: 20 | |
Output | Architecture: fully connected layers |
Activation function: softmax | |
Input size: 516 × 1 | |
Output size: 8 × 1 (number of classes) |
Model | Precision | Recall | F1-Score |
---|---|---|---|
LSTM | 0.9438 | 0.9438 | 0.9438 |
DCRNN + Attention | 1.0000 | 1.0000 | 1.0000 |
Question Numbers | Mean | Std | p-Value |
---|---|---|---|
Q1 | 4.25 | 0.62 | 4.30 |
Q2 | 4.05 | 0.74 | 6.07 |
Q3 | 3.80 | 0.68 | 5.80 |
Q4 | 4.10 | 0.62 | 3.07 |
Q5 | 3.85 | 0.57 | 3.33 |
Question Numbers | Mean | Std | p-Value |
---|---|---|---|
Q6 | 4.05 | 0.73 | 6.07 |
Q7 | 2.80 | 0.67 | 2.14 |
Q8 | 4.05 | 0.80 | 1.75 |
Q9 | 3.90 | 0.53 | 6.54 |
Q10 | 4.80 | 0.40 | 4.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.; Choe, H.; Lee, S.; Kang, C. Design and Implementation of a 3D Korean Sign Language Learning System Using Pseudo-Hologram. Appl. Sci. 2025, 15, 8962. https://doi.org/10.3390/app15168962
Kim N, Choe H, Lee S, Kang C. Design and Implementation of a 3D Korean Sign Language Learning System Using Pseudo-Hologram. Applied Sciences. 2025; 15(16):8962. https://doi.org/10.3390/app15168962
Chicago/Turabian StyleKim, Naeun, HaeYeong Choe, Sukwon Lee, and Changgu Kang. 2025. "Design and Implementation of a 3D Korean Sign Language Learning System Using Pseudo-Hologram" Applied Sciences 15, no. 16: 8962. https://doi.org/10.3390/app15168962
APA StyleKim, N., Choe, H., Lee, S., & Kang, C. (2025). Design and Implementation of a 3D Korean Sign Language Learning System Using Pseudo-Hologram. Applied Sciences, 15(16), 8962. https://doi.org/10.3390/app15168962