Advances in Numerical Computation and Mathematical Modeling for Geotechnical Engineering
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Im, K.; Saffer, D.; Marone, C.; Avouac, J.P. Slip-rate-dependent friction as a universal mechanism for slow slip events. Nat. Geosci. 2020, 13, 705–710. [Google Scholar] [CrossRef]
- Juang, C.H.; Gong, W.; Martin, J.R.; Chen, Q. Model selection in geological and geotechnical engineering in the face of uncertainty—Does a complex model always outperform a simple model? Eng. Geol. 2018, 242, 184–196. [Google Scholar] [CrossRef]
- Meng, W.; Wu, W. Machine Learning-Aided Prediction of the Mechanical Properties of Frozen Fractured Rocks. Rock Mech. Rock Eng. 2023, 56, 261–273. [Google Scholar] [CrossRef]
- Zhou, C.; Rui, Y.; Qiu, J.; Wang, Z.; Zhou, T.; Long, X.; Shan, K. The role of fracture in dynamic tensile responses of fractured rock mass: Insight from a particle-based model. Int. J. Coal Sci. Technol. 2025, 12, 39. [Google Scholar] [CrossRef]
- Li, Y.; Dai, X.; Yang, R.; Zhu, Y.; Li, R.; Zhou, C.; Xie, L.; Li, W. Failure Mechanism and Support Technology of Weakly Cemented Soft Rock Roadway in Water-Rich Environment. Geotech. Geol. Eng. 2025, 43, 213. [Google Scholar] [CrossRef]
- Hu, J.; Xie, H.; Li, C.; Liu, G. Evolution mechanism of permeability of hot dry rock under coupled effect of thermal fatigue and seawater interaction during coastal geothermal development. Renew. Sustain. Energy Rev. 2024, 189, 114061. [Google Scholar] [CrossRef]
- Hu, J.; Xie, H.; Gao, M.; Li, C.; Sun, Q. Damage mechanism and heat transfer characteristics of limestone after thermal shock cycle treatments based on geothermal development. Int. J. Rock Mech. Min. Sci. 2022, 160, 105269. [Google Scholar] [CrossRef]
- Rutqvist, J. The geomechanics of CO2 storage in deep sedimentary formations. Geotech. Geol. Eng. 2012, 30, 525–551. [Google Scholar] [CrossRef]
- Griffiths, L.; Lengliné, O.; Heap, M.J.; Baud, P.; Schmittbuhl, J. Thermal Cracking in Westerly Granite Monitored Using Direct Wave Velocity, Coda Wave Interferometry, and Acoustic Emissions. J. Geophys. Res. Solid Earth 2018, 123, 2246–2261. [Google Scholar] [CrossRef]
- Jing, L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 2003, 40, 283–353. [Google Scholar] [CrossRef]
- Lisjak, A.; Grasselli, G. A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J. Rock Mech. Geotech. Eng. 2014, 6, 301–314. [Google Scholar] [CrossRef]
- Ranjith, P.G.; Zhao, J.; Ju, M.; De Silva, R.V.S.; Rathnaweera, T.D.; Bandara, A.K.M.S. Opportunities and Challenges in Deep Mining: A Brief Review. Engineering 2017, 3, 546–551. [Google Scholar] [CrossRef]
- Mas Ivars, D.; Pierce, M.; Darcel, C.; Reyes-Montes, J.; Potyondy, D.; Young, R.; Cundall, P. The synthetic rock mass approach for jointed rock mass modelling. Int. J. Rock Mech. Min. Sci. 2011, 48, 219–244. [Google Scholar] [CrossRef]
- Liu, J.; Feng, Y.; Jiao, Y. The Phlogiston Theory of Rock Mass Classification: Philosophical and Mathematical Critique of Ordinal Data Usage. Rock Mech. Bull. 2025, 4, 100205. [Google Scholar] [CrossRef]
- Qiu, J.; Huang, R.; Wang, H.; Wang, F.; Zhou, C. Rate-dependent tensile behaviors of jointed rock masses considering geological conditions using a combined BPM-DFN model: Strength, fragmentation and failure modes. Soil Dyn. Earthq. Eng. 2025, 195, 109393. [Google Scholar] [CrossRef]
- Saadat, M.; Taheri, A. A numerical approach to investigate the effects of rock texture on the damage and crack propagation of a pre-cracked granite. Comput. Geotech. 2019, 111, 89–111. [Google Scholar] [CrossRef]
- Shen, Z.; Jiang, M.; Fang, N.; Zhou, F. A damage evolution law enriched by microscopic mechanisms for structured sand in mechanical loading. Acta Geotech. 2019, 14, 1905–1924. [Google Scholar] [CrossRef]
- Yin, Y.; Song, M.; Feng, Y.; Liu, Z.; Chen, X.; Sun, Q. Theoretical and numerical investigation of the effects of in-situ stresses and dual-borehole combinations in eccentric decoupled charge blasting. Rock Mech. Bull. 2025, 4, 100191. [Google Scholar] [CrossRef]
- Zhang, X.; Ouyang, S.; Fan, C.; Yi, L.; Liu, D. Shear Properties and Failure Mechanism of Matched Discontinuities Between Two Different Rock Types Under Direct Shear. Appl. Sci. 2025, 15, 5289. [Google Scholar] [CrossRef]
- Langenfeld, K.; Mosler, J. A micromorphic approach for gradient-enhanced anisotropic ductile damage. Comput. Methods Appl. Mech. Eng. 2019, 357, 112717. [Google Scholar] [CrossRef]
- Liao, J.; Sun, H.; An, J. Research on Screening Method of Loess Slope Stability Evaluation Indexes Based on Validity and Reliability Coefficient. Appl. Sci. 2025, 15, 6216. [Google Scholar] [CrossRef]
- Wessels, H.; Weißenfels, C.; Wriggers, P. The neural particle method—An updated Lagrangian physics informed neural network for computational fluid dynamics. Comput. Methods Appl. Mech. Eng. 2020, 368, 113127. [Google Scholar] [CrossRef]
- Singh, J.; Pradhan, S.P.; Vishal, V.; Singh, M. Characterization of a fractured rock mass using geological strength index: A discrete fracture network approach. Transp. Geotech. 2023, 40, 100984. [Google Scholar] [CrossRef]
- Liu, L.; Song, Z.; Li, X. Artificial intelligence in tunnel construction: A comprehensive review of hotspots and frontier topics. Geohazard Mech. 2024, 2, 1–12. [Google Scholar] [CrossRef]
- Konurin, A.; Sergey, N.; Alexandr, N.; Dmitry, O.; Ivan, Z.; Maria, K. Application of artificial neural networks for stress state analysis based on the photoelastic method. Geohazard Mech. 2023, 1, 128–139. [Google Scholar] [CrossRef]
- Sui, Y.; Zhou, Z.; Zhao, R.; Yang, Z.; Zou, Y. Open-Pit Bench Blasting Fragmentation Prediction Based on Stacking Integrated Strategy. Appl. Sci. 2025, 15, 1254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Zhou, C.; Rui, Y.; Feng, F. Advances in Numerical Computation and Mathematical Modeling for Geotechnical Engineering. Appl. Sci. 2025, 15, 8960. https://doi.org/10.3390/app15168960
Qiu J, Zhou C, Rui Y, Feng F. Advances in Numerical Computation and Mathematical Modeling for Geotechnical Engineering. Applied Sciences. 2025; 15(16):8960. https://doi.org/10.3390/app15168960
Chicago/Turabian StyleQiu, Jiadong, Changtai Zhou, Yichao Rui, and Fan Feng. 2025. "Advances in Numerical Computation and Mathematical Modeling for Geotechnical Engineering" Applied Sciences 15, no. 16: 8960. https://doi.org/10.3390/app15168960
APA StyleQiu, J., Zhou, C., Rui, Y., & Feng, F. (2025). Advances in Numerical Computation and Mathematical Modeling for Geotechnical Engineering. Applied Sciences, 15(16), 8960. https://doi.org/10.3390/app15168960