Distinction and Pharmacological Activity of Monoterpenes and Sesquiterpenes in Different Chemotypes of Cinnamomum camphora (L.) Presl
Abstract
1. Introduction
2. Detailed Analysis of MT and SQT in Different Chemotypes of Cinnamomum camphora (L.) Presl
2.1. Comparison of the Number of MT and SQT Compounds Among Different Chemotypes
2.2. Differences in the Composition of MT and SQT in Different Chemotypes of Cinnamomum camphora (L.) Presl
2.3. Major MT and SQT Constituents in Different Chemotypes of Cinnamomum camphora (L.) Presl
2.4. Identification of Different Chemotypes of Cinnamomum camphora (L.) Presl
3. Pharmacological Activities of Cinnamomum camphora (L.) Presl
3.1. Pharmacological Activities of Major Components in Different Chemotypes
3.2. Antibacterial, Anti-Inflammatory, and Antitumor Activities
3.3. Mechanistic Insights into Pharmacological Activities
4. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BC | Borneol Chemotype |
CC | Camphor Chemotype |
EC | Eucalyptol Chemotype |
IC | Isoborneol Chemotype |
LC | Linalool Chemotype |
MT | Monoterpenoids |
SQT | Sesquiterpenes |
References
- Yang, Y.; Zhou, S.; Ni, M.; Zhang, Y.; Lin, S.; Zhang, J.; Tong, Z. The Mining of Candidate Genes Involved in the Camphor Biosynthesis Pathway of Cinnamomum camphora. Plants 2025, 14, 991. [Google Scholar] [CrossRef]
- Zhou, S.; Lin, S.; Song, M.; Hu, X.; Tong, Z.; Zhang, J. Identification and Expression Analysis of bHLH Gene Family in Cinnamomum camphora between Two Chemotypes. Mol. Plant Breed. 2025, 23, 2948–2959. [Google Scholar]
- Liu, Q.; Qiang, S.; Tang, J.; Liu, Q.; Qiang, S.; Tang, J. Research Progress on Antimicrobial Properties of Antrodia camphorata and Its Host against Foodborne Pathogens. Food Ferment. Ind. 2025, 51, 359–366. [Google Scholar]
- Wu, Y.; Tu, B.; Zhang, Y.; Liu, X.; Zheng, Y. Analysis of WRKY Transcription Factors in Cinnamomum camphora. S. For. Sci. 2024, 52, 1–7. [Google Scholar]
- Yu, J.; Hu, W.; Luo, H.; Zhou, S.; Dai, C. Research Progress on Terpenoids and Pharmacological Activities of Different Chemotypes of Cinnamomum camphora. Cent. S. Pharm. 2024, 22, 2108–2115. [Google Scholar]
- Yang, K.; Su, K.; Su, M.; Shi, L.; Ning, D.; Li, T. Research Progress on Chemical Constituents and Bioactivities of Cinnamomum camphora. Guangzhou Chem. Ind. 2024, 52, 6–9+13. [Google Scholar]
- Fu, W.; Zhu, C.; Lan, J.; Li, S.; Zhang, Z.; Liu, F.; Dai, X. Study on Fruit Quality Characteristics of Fresh-eating Tender Fruit Pepper ‘Zhangshugang’. Acta Hortic. Sin. 2024, 51, 616–630. [Google Scholar]
- Huang, S.; Yi, C.; Liu, X.; Yang, H.; Zhang, L.; Tang, Y.; Zhang, X.; Liu, W. Research Progress on Chemical Constituents and Pharmacological Effects of Borneol Essential Oil. China J. Chin. Mater. Med. 2024, 49, 2863–2870. [Google Scholar]
- Yu, J.; Zhang, B.; Zhong, Q.; Yang, W.; Jin, Z.; Xiao, Z.; Liu, Y.; Ling, Q. Antioxidant Activity of Linalool-type Cinnamomum camphora Leaf Essential Oil. Mol. Plant Breed. 2025, 20, 45–51. [Google Scholar]
- Cao, R.; Zhou, Z.; Ren, Z.; Wang, X.; Cheng, Q.; Hu, D.; Chen, S.; Liu, J. Cloning and Expression Analysis of Linalool Synthase Gene CcTPS14 from Cinnamomum camphora. J. Agric. Biotechnol. 2023, 31, 767–775. [Google Scholar]
- Ma, Q.; Ma, R.; Su, P.; Shen, Y.; Chen, M.L.; Jin, B.L.; Ouyang, S.L.; Guo, J.; Cui, G.H.; Huang, L.Q. Systematic Identification of Key Terpene Synthases Involved in Chemotype Formation in Cinnamomum camphora. China J. Chin. Mater. Med. 2023, 48, 2307–2315. [Google Scholar]
- Li, S.; Liu, H.; Chen, C.; Hao, D. Tolerance to Dietary Linalool in Pagiophloeus tsushimanus Larvae via Co-expression of P450s and Cuticular Proteins. BMC Genom. 2023, 24, 34. [Google Scholar]
- Hu, S.; Liang, W.; Huang, H.; Hou, C.; Chen, J.; Xu, C.; Luo, H.; Lian, H.; Chen, S.; Pei, W. Chemical Composition and Antimicrobial Activity of Essential Oils from Different Chemotypes of Cinnamomum camphora. J. Anhui Agric. Sci. 2022, 50, 193–197. [Google Scholar]
- Wang, X.; Zhang, Y.; Qin, Z.; Fu, C.; Yang, H.K.; Li, J. Cloning and Expression Pattern Analysis of MVA Pathway Genes in Cinnamomum camphora. J. Cent. South Univ. For. Technol. 2021, 41, 110–121. [Google Scholar]
- Cao, R.; Hu, D.; Zhou, Z.; Liu, S.; Chen, S.; Liu, J. Transcriptome Sequencing and Expression Analysis of Terpenoid Biosynthesis-related Genes in Cinnamomum camphora. J. Southwest For. Univ. Nat. Sci. 2021, 41, 49–57. [Google Scholar]
- Yin, X.; Wang, Y. Research Progress on Pharmacological Effects and Mechanisms of 1,8-Cineole. Chem. Life 2020, 40, 2026–2034. [Google Scholar]
- Chen, C.; Zhong, Y.; Yu, F.; Xu, M. Deep Sequencing Identifies miRNAs and Targets Involved in Terpenoid Biosynthesis in Cinnamomum camphora. Ind. Crops Prod. 2020, 145, 111853. [Google Scholar] [CrossRef]
- Zhang, G.-F.; Huang, Q.-L.; Bi, X.-Q.; Liu, Y.-L.; Yuan, Z.-S. Analysis of Endophytic Bacterial Diversity and Metabolic Correlation in Cinnamomum camphora. Arch. Microbiol. 2020, 202, 181–189. [Google Scholar] [CrossRef]
- Ren, Y.; Guo, H.; Yang, H.; Feng, J. Optimization of Liquid Culture Conditions for Triterpenoid Production by Antrodia camphorata Using Response Surface Methodology. Genom. Appl. Biol. 2019, 38, 2221–2229. [Google Scholar]
- Chen, C.; Wu, Y.; Xiao, R.; Zhang, T.; Xu, M.; Xu, L. Cloning and Expression Analysis of WRKY Transcription Factors in Cinnamomum camphora. Mol. Plant Breed. 2018, 16, 4872–4879. [Google Scholar]
- Chen, C.; Zheng, Y.; Zhong, Y.; Wu, Y.; Li, Z.; Xu, L.A.; Xu, M. Transcriptome Analysis and Identification of Terpenoid Biosynthesis-related Genes in Cinnamomum camphora. BMC Genom. 2018, 19, 1–15. [Google Scholar] [CrossRef]
- Cao, X.; Wang, J.; Zhang, Y.; Wang, Y.; Ma, X.; Song, L.; Tang, F.; Yue, Y.Y. Cloning and Bioinformatics Analysis of GGPPS Gene from Cinnamomum camphora. Genom. Appl. Biol. 2018, 37, 3466–3472. [Google Scholar]
- Han, Z.; Li, J.; Na, Y.; Yang, Q.; Peng, H.; Shen, Y.; Huang, L. Cloning and Expression Analysis of CcDXR1 Gene from Cinnamomum camphora. Acta Pharm. Sin. 2016, 51, 1494–1501. [Google Scholar]
- Jing, L.; Zheng, H.; Yao, N.; Chen, M.-L.; Shen, Y.; Huang, L.-Q. Cloning and Expression Analysis of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase gene in Cinnamomum camphora. China J. Chin. Mater. Med. 2016, 41, 1578–1584. [Google Scholar]
- Ye, K.; Ai, Y.; Ha, O.-A. β-Bisabolene, a sesquiterpene from the essential oil extract of Opoponax, exhibits cytotoxicity in breast cancer cell lines. Phytother. Res. 2016, 30, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, G.; Zhong, L.; Huang, J.; Chen, X.; Huang, Z.; Chen, R.; Zhao, K.; Lin, C. Safety Evaluation of Ethanol Extract from Antrodia camphorata. J. Toxicol. 2015, 29, 388–390. [Google Scholar]
- Wu, Y.; Xiao, F.; Xu, H.; Zhang, T.; Jiang, X. Genome Survey of Cinnamomum camphora. J. Plant Genet. Resour. 2014, 15, 149–152. [Google Scholar]
- Long, G.; Guo, D.; Liu, Y. Study on the Content of Camphor Tree Essential Oil. Jiangxi For. Sci. Technol. 1989, 6, 7–14. [Google Scholar]
- Zhang, Z.; Tong, Y.; Qian, X.; Li, S. Research Progress on Chemical Components and Pharmacological Effects of Cinnamomum camphora. Food Ind. Sci. Technol. 2019, 40, 320–333. [Google Scholar]
- Huang, J.; Yang, L.; Zou, Y.; Luo, S.; Wang, X.; Liang, Y.; Du, Y.; Feng, R.; Wei, Q. Antibacterial Activity and Mechanism of Three Isomeric Terpineols from Cinnamomum longepaniculatum Leaf Oil. Folia Microbiol. 2021, 66, 59–67. [Google Scholar] [CrossRef]
- Tao, C.; Wei, Q.; Yin, Z.-Q.; Zhou, L.-J.; Jia, R.-Y.; Xu, J.; Shi, D.-X.; Zhou, Y.; Du, Y.-H.; Deng, Y.-X. Antifungal Activity of Essential Oil from Cinnamomum longepaniculatum Leaves against Three Dermatophytes in vitro. Afr. J. Pharm. Pharmacol. 2013, 7, 1148–1152. [Google Scholar] [CrossRef]
- Cao, M.; Jia, R.; Jiang, N.; Lin, L. Study on the Analgesic Activity of Volatile Oil from Cinnamomum oleifera Leaves. Guihaia 2013, 33, 552–555. [Google Scholar]
- Zheng, H. Study on the Extraction and Characteristics of Camphor Essential Oil. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2019. [Google Scholar]
- Zhou, X.; Mo, J.; Xie, Y.; Li, A. GC-MS Study on Linalool-type Camphor Essential Oil Components from Guangxi. Food Sci. Technol. 2011, 36, 282–285. [Google Scholar]
- Sun, Y. Study on the Morphological Characteristics of Cinnamomum camphora Leaf Oil Cells. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2018. [Google Scholar]
- Hu, W.; Jiang, X. Comparison of Essential Oil Components from the Roots of Cinnamomum camphora and Cinnamomum sibiricum. J. Northwest A&F Univ. Nat. Sci. Ed. 2017, 45, 189–195. [Google Scholar]
- Hu, W.; Jiang, X. Comparative Analysis of Essential Oil Components from Different Parts of Cinnamomum camphora by GC-MS. J. Northeast For. Univ. 2014, 42, 118–122. [Google Scholar]
- Ding, X.; Su, J.; Shi, L.; Li, L. Study on the Components and Antibacterial Activity of Volatile Oil from Fresh Leaves of Camphora oleifera. Food Ind. Sci. Technol. 2012, 33, 167–171. [Google Scholar]
- Wang, L.; Li, Y.; Liao, M. Study on the Chemical Components of Cinnamomum camphora Essential Oil. Chin. Tradit. Herb. Drugs 1990, 21, 8. [Google Scholar]
- Hu, W.; Dai, C.; Zhou, S.; Wei, H. Study on the Main Components, Antibacterial Activity and Mechanism of Monomer Components of Essential Oil Fractions from Cinnamomum oleifera Leaves. Anhui Agric. Sci. Bull. 2019, 25, 14–19. [Google Scholar]
- Hu, W.; Gao, H.; Jiang, X.; Yang, H. Analysis of Composition and Content of Essential Oils from Leaves of Cinnamomum camphora Chemotypes. J. Cent. South Univ. For. Technol. 2012, 32, 186–194. [Google Scholar]
- Hu, W.; Li, G.; Cao, Y.; Ke, D.; Zhou, S. Antibacterial Activity and Chemical Composition of Cinnamomum camphora Leaf Essential Oil. For. Sci. Technol. Dev. 2014, 28, 69–71. [Google Scholar]
- Yang, P.; Lu, H.; Wang, X.; Chen, Z.; Xi, G.; Wan, S.; Ma, F.; Wang, Z. Study on Chemical Composition, Anti-TMV and Antibacterial Activity of Volatile Oil from Camphora borneol. Chem. Reagents 2021, 43, 1090–1094. [Google Scholar]
- Feng, D. Study on Chemical Components of Cinnamomum camphora. Master’s Thesis, Shandong University of Traditional Chinese Medicine, Jinan, China, 2016. [Google Scholar]
- Feng, Y.; Bi, J.; Luo, M.; Deng, K.; Xiao, Y.; Rao, Y. Study on the Antibacterial and Antioxidant Effects of Cinnamomum camphora Leaf Essential Oil. J. Sichuan Univ. Sci. Eng. Nat. Sci. Ed. 2023, 36, 36–41. [Google Scholar]
- Hu, W.; Jiang, X.; Yang, H. Dynamic Changes of Essential Oil and Its Main Components in Cinnamomum camphora Leaves. J. Hunan Agric. Univ. Nat. Sci. 2015, 41, 407–411. [Google Scholar]
- Cai, Y.; Ye, F.; Li, L. Analysis of Camphor by GC and GC-MS. Fujian Anal. Test. 1998, 7, 872–874. [Google Scholar]
- Hu, W.; Yin, S.; Dai, C.; Qi, S. Synthesis and Biological Activity of SQT Compounds and Their Derivatives from Cinnamomum camphora. Zhejiang Chem. Ind. 2021, 52, 12–16. [Google Scholar]
- Yin, H.; Wang, C.; Yue, J.; Wang, X.; Lorenzo, J.; Zhong, J. Study on Extraction, Chemical Composition, Antioxidant and Antibacterial Activity of Cinnamomum camphora Leaf Essential Oil. Preserv. Process. 2020, 10, 5. [Google Scholar]
- Zhao, R.; Zhang, B.; Du, Y.; Cheng, J.; Ling, Q.; Xiao, Z.; Wang, Y.; Jin, Z. Screening of Endophytic Fungi and Analysis of Secondary Metabolites from Citral-type Cinnamomum camphora. J. Nanchang Inst. Technol. 2025, 44, 61–68. [Google Scholar]
- Allhin, A.A.; Salleh, W.H.N.M.W.; Salihu, S.A.; Ab Ghani, N.; Arzmi, M.H. Insight into Chemical Composition and Bioactivity Profiling of Leaf Essential Oil from Litsea tomentosa. Nat. Prod. Res. 2025, 1–7. [Google Scholar] [CrossRef]
- Ma, R.; Wei, J.; Wang, L. The effective use of traditional Chinese medicine in practice. Chin. Herb. Med. 2025, 56, 3410–3416. [Google Scholar]
- Zhang, P.; Wu, Z.; Liao, Y.; Wang, J.; Deng, K.; Xiao, Y.; Rao, Y.; Wu, Y.; Fu, X. Differences between Flavonoids of Tangerine Peel (C. camphora) and Parental Flavonoids Based on LC-MS Combined with Multivariate Statistics. Food Sci. 2025, 15, 232–245. [Google Scholar]
- Zhu, C.; Li, S. Pharmacodynamic Material Basis and Potential Molecular Mechanism of Wuyao-Citron Volatile Oil Based on GC-MS and Network Pharmacology. J. Qiqihar Med. Univ. 2025, 46, 807–814. [Google Scholar]
- Neisari, N.; Sharifzadeh, A.; Fasaei, N.B.; Asadi, S.; Khosravi, A.; Rafati Zomorodi, A.; Malakootikhah, J. Evaluating the Antimicrobial and Antibiofilm Efficacy of Lavender Essential Oil and Linalool on Dual Candida albicans Biofilms with Staphylococcus spp. from Canine Otitis. Vet. Med. Sci. 2025, 10, e70407. [Google Scholar]
- Xue, J.; Ye, G.; Li, X.; Li, B.; Cui, Y. A Phenyl-substituted New Lignan Compound in C. camphora. Chin. Herb. Med. 2025, 56, 2259–2267. [Google Scholar]
- Szwed, M.; Żukowski, W.; Pasieka, D. Deep Learning for Air Pollution Detection: Analyzing Scots Pine Needles with SEM/EDS. Desalin. Water Treat. 2025, 322, 101149. [Google Scholar] [CrossRef]
- Taylor, M.S.; Ramadwa, E.T. A Comprehensive Review of the Traditional Uses, Pharmacology and Phytochemistry of Warburgia salutaris. S. Afr. J. Bot. 2025, 179, 134–146. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, A.; Chen, Y.; Yu, H.; Wu, X.; Zhu, Y.; Xiao, X.; Gong, Q.; Ye, P. Dynamic Changes of Chemical Composition during Bleaching of Camphor Rice Swill Based on UPLC-Q-TOF-MS. Chin. J. Tradit. Chin. Med. 2024, 42, 151–157. [Google Scholar]
- Yang, W.; Zhang, B.; Qing, Y.; Yuang, W.-R.; Hu, K.-P. Antioxidant Study on Eucalyptus and Citral-type Camphor Essential Oils. J. Nucl. Agric. Sci. 2024, 38, 1751–1760. [Google Scholar]
- Yang, F. Study on Chemical Composition and Biological Activity of Camphora Seed Kernel. Master’s Thesis, Jiangxi Agricultural University, Nanchang, China, 2024. [Google Scholar]
- Yang, H.; Qiu, F.; Wen, S. Composition of Five Chemotypes of Cinnamomum camphora Essential Oil and Their Pancreatic Lipase Inhibitory Activity. Fine Chem. Intermed. 2024, 54, 46–50. [Google Scholar]
- Wang, Z. Study on Efficient Extraction of Cinnamomum camphora Essential Oil and Its Pancreatic Lipase Inhibitory Activity. Master’s Thesis, Northeast Forestry University, Harbin, China, 2024. [Google Scholar]
- Aguilar, A.A.F.; Cervantes, M.Y.V.; Nieto, M.S.F.; Mederos-Nieto, F.S.; Pineda-Flores, G.; Morales-Garcia, S.S.; Hernandez-Altamirano, R. Biochemical Methane Potential of Coyol Fruit for Biogas Production via Mixture Design and Kinetic Modeling. Biomass Bioenergy 2025, 193, 107571. [Google Scholar]
- Han, L.; Li, Y.; Lan, C.; Zang, S.-S.; Heng, T.-Y.; He, N.-M. Analysis of Chemical Components of Cocculus laurifolius DC. Based on LC-MS. Med. Plant 2025, 16, 16–18. [Google Scholar]
- Olga, M.; Feyzullah, F.; Gayane, M.; Krovikova, A.; Lashneva, I. Effect of Pinus sylvestris Wood on Cow’s Milk Chemical Composition. BIO Web Conf. 2025, 173, 02023. [Google Scholar]
- Aflaha, R.; Dzaki, R.M.; Katriani, L.; As' Ari, A.H.; Maharani, C.N.; Kuncaka, A.; Natsir, T.A.; Rianjanu, A.; Gupta, R.; Triyana, K.; et al. A Polyaniline-Enhanced QCM Sensor for Room-Temperature Camphor Detection. Anal. Methods 2024, in press. [Google Scholar]
- Sakuntala, P.; Pradyutha, C.A.; Selvaraju, R. Mineral and Phytochemical Analysis of Ocimum kilimandscharicum Leaves Using Spectroscopic Methods and Antibacterial Screening. Nat. Prod. Res. 2024, 1–7, Online ahead of print. [Google Scholar] [CrossRef]
- Yelle, J.D.; Broda, M. Characterizing Chemistry of Artificially Degraded Scots Pine Wood Using 1H–13C HSQC NMR. Wood Sci. Technol. 2024, 59, 8. [Google Scholar]
- Huang, W.; Huang, P.G.; Zhang, X.L.; da Yu, E.; Yang, W.K.; Ye, M.; Zou, S.Q.; Ni, L.; He, H.Q. Lignan-Rich Extract from Cinnamomum camphora Leaf Alleviates Metabolic Syndrome via Glycolipid Metabolism and Gut Microbiota Modulation in T2DM Mice. Phytomedicine 2024, 135, 156118. [Google Scholar] [CrossRef]
- Broda, M.; Plaza, Z.N.; Jakes, E.J.; Baez, C.; Pingali, S.V.; Bras, W. Effect of Alkali Treatment and Fungal Degradation on Nanostructure of Scots Pine Cell Walls. Carbohydr. Polym. 2025, 347, 122733. [Google Scholar] [CrossRef]
- Mao, B.; Lin, G.; Zhu, B.; Zhao, L.; Zhao, Q.; Gang, Q.; Zeng, D.-H. Effects of Plant Litter Diversity on Soil Enzyme Activity and Microbial Community in a Mongolian Pine Plantation. Plant Soil 2024, 67, 27–29. [Google Scholar] [CrossRef]
- Li, C.; Wang, W.; Wu, B.; Ci, X. Research Progress on Chemical Components and Biological Activities of Cinnamomum camphora var. bilobana. Chem. Ind. For. Prod. 2024, 44, 199–209. [Google Scholar]
- Zheng, R.; He, Y.; Wang, R.; Yang, L.; Zhang, T. Effect of Camphor Essential Oil on Mammary Hyperplasia in Rats. Zhejiang Clin. Med. J. 2024, 26, 1277–1279. [Google Scholar]
- Feng, G.; Liu, J.; Li, J. Medicinal differences between wild and cultivated. China Tea Process. 2024, 3, 31–39. [Google Scholar]
- Jin, Z.; Luo, J.; Fu, Z.; Yu, D.; Yang, M.; Zhang, H. Analysis of Chemical Composition and Antibacterial Activity of Volatile Oil from C. camphora Root. Guangdong Chem. Ind. 2025, 52, 158–160. [Google Scholar]
- Dimitrijević, Ž.M.; Mladenović, Z.M.; Nešić, D.M.; Dekić, M.S.; Raičević, V.N.; Radulović, N.S. New Oxygenated Methoxy-p-Cymene Derivatives from Doronicum columnae Essential Oil. Molecules 2025, 30, 302. [Google Scholar] [CrossRef]
- Benatar, V.G.; Nurhayati, Y.; Ridwan, F.N. Molecular Docking Reveals Limonene and β-Linalool as Natural Fungicides against Mango Anthracnose. ChemistrySelect 2025, 10, e202404250. [Google Scholar] [CrossRef]
- Yang, Y.; Xiang, Q.; Yang, Y.; Shu, D.; Yan, J.; Huang, L.; Yang, X.; Peng, J.; Chen, X.; Yang, G. Chemical Composition and Antimicrobial Activity of Essential Oil of Camphora glanduliferum ‘Honganzhang’. Horticulturae 2025, 11, 67. [Google Scholar] [CrossRef]
- Sousa, O.J.I.; Costa, D.S.D.; Neto, P.R.F.; Gonçalves, R.L.G.; de Melo Nogueira, K.; Pereira, E.M.; Sousa, A.J.C.; de Carvalho, C.E.S.; Carmo, I.S.D.; da Silva Sousa, E.; et al. Phytochemical Characterization of Cinnamomum spp. Essential Oils and Effects on 5-FU-Induced Diarrhea. J. Adv. Biol. Biotechnol. 2025, 28, 481–490. [Google Scholar] [CrossRef]
- Baz, E.S.; Soulaimani, B.; Abbad, I.; Idres, T. Antimicrobial Activity and Synergy Potential of Cinnamomum aromaticum and Syzygium aromaticum Essential Oils with Antimicrobial Drugs. Microbiol. Res. 2025, 16, 63. [Google Scholar]
- Szántó, G.L.; Marc, A.R.; Mureşan, E.A.; Mureșan, C.C.; Puşacş, A.; Ranga, F.; Fetea, F.; Moraru, P.I.; Filip, M.; Muste, S. Biofortification of Honey with Pinus sylvestris Bud Extracts: Antioxidant Variation Across Developmental Stages. Plant Foods Hum. Nutr. 2025, 80, 47. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Fang, L.; Sun, P.; Ying, B.-R.; Che, P.-T. Evaluation of Black Medicine Quality from Different Origins via Fingerprint and Chemical Pattern Recognition. Chin. J. Pharm. Sci. 2025, 60, 956–965. [Google Scholar]
Number | Chemical Composition | BC | CC | EC | IC | LC |
---|---|---|---|---|---|---|
1 | α-Pinene | ● | ● | ● | ● | ● |
2 | β-Pinene | ● | ● | ● | ● | ● |
3 | α-Phellandrene | ● | ● | ● | ● | ● |
4 | Camphor | ● | ● | ● | ● | ● |
5 | Terpinen-4-ol | ● | ● | ● | ● | ● |
6 | α-Terpineol | ● | ● | ● | ● | ● |
7 | Camphene | ● | ● | - | ● | ● |
8 | Ocimene | ● | - | ● | ● | - |
9 | 1,8-Cineole | ● | - | ● | ● | - |
10 | Safrole | ● | - | ● | ● | - |
11 | Terpinolene | ● | - | ● | ● | - |
12 | Linalool | ● | - | ● | ● | ● |
13 | γ-Terpinene | ● | - | ● | - | ● |
14 | Germacrene D | ● | - | ● | - | ● |
15 | 2-Carene | ● | - | ● | - | ● |
16 | o-Cymene | ● | - | ● | - | - |
17 | β-Myrcene | ● | - | ● | - | - |
18 | α-Limonene | ● | - | ● | - | - |
19 | 3-Carene | ● | - | ● | - | - |
20 | α-Terpinene | ● | - | ● | - | - |
21 | Phellandrene | ● | - | - | ● | - |
22 | Sabinene | ● | - | - | ● | - |
23 | Isoborneol | ● | - | - | ● | - |
24 | -Borneol | ● | - | - | - | - |
25 | Eucalyptol | ● | - | - | - | - |
26 | α-Camphene | ● | - | - | - | - |
27 | Borneol | ● | - | - | - | - |
28 | d-Limonene | ● | - | - | - | - |
29 | α-Thujene | ● | - | - | - | - |
30 | Bornyl acetate | ● | - | - | - | - |
31 | Benzyl benzoate | ● | - | - | - | - |
32 | Menthol | ● | - | - | - | - |
33 | α-Cedrene | ● | - | - | - | - |
34 | Terpineol | ● | - | - | - | - |
35 | trans-β-Ocimene | ● | - | - | - | - |
36 | Linalyl formate | ● | - | - | - | - |
37 | Lavandulol | ● | - | - | - | - |
38 | cis-Chrysanthemol | ● | - | - | - | - |
39 | Borneolum | - | ● | ● | ● | - |
40 | Nerol | - | ● | ● | - | - |
41 | Geranial | - | ● | ● | - | ● |
42 | Eugenol | - | ● | ● | - | ● |
43 | 4-Carene | - | ● | - | - | ● |
44 | Limonene oxide | - | ● | - | - | - |
45 | Isocineole | - | ● | - | - | - |
46 | β-Terpineol | - | ● | - | - | - |
47 | β-Ocimene | - | - | ● | ● | ● |
48 | p-Cymene | - | - | ● | ● | - |
49 | γ-Terpinolene | - | - | ● | ● | - |
50 | Nerol oxide | - | - | ● | - | ● |
51 | β-Phellandrene | - | - | ● | - | ● |
52 | Thujaol | - | - | ● | - | ● |
53 | Terpinen-4-yl acetate | - | - | ● | - | - |
54 | Linalyl isobutyrate | - | - | ● | - | - |
55 | Geraniol | - | - | ● | - | - |
56 | β-Terpinene | - | - | ● | - | - |
57 | α-Sabinene | - | - | ● | - | - |
58 | Cedrol | - | - | ● | - | - |
59 | α-Terpineol | - | - | ● | - | - |
60 | Terpinyl acetate | - | - | ● | - | - |
61 | 4-Thujene | - | - | ● | - | - |
62 | Isopiperitenone | - | - | ● | - | - |
63 | Lolactone | - | - | ● | - | - |
64 | Isobornyl acetate | - | - | ● | - | - |
65 | β-Eucalyptol | - | - | ● | - | - |
66 | Cineole | - | - | - | ● | ● |
67 | cis-Linalool oxide | - | - | - | ● | ● |
68 | trans-Linalool oxide | - | - | - | ● | ● |
69 | β-Citronellol | - | - | - | ● | - |
70 | Artemone | - | - | - | ● | - |
71 | Thujene | - | - | - | ● | - |
72 | -Bornyl acetate | - | - | - | ● | - |
73 | cis-Sabinene hydrate | - | - | - | ● | - |
74 | Myristicin | - | - | - | ● | - |
75 | -Camphor | - | - | - | ● | - |
76 | 4-Carene | - | - | - | - | ● |
77 | 2-Pinene | - | - | - | - | ● |
78 | 2-Carene epoxide | - | - | - | - | ● |
79 | Isopulegol | - | - | - | - | ● |
80 | Eucalyptone | - | - | - | - | ● |
81 | Citronellol | - | - | - | - | ● |
82 | Geraniol | - | - | - | - | ● |
83 | Citronellyl acetate | - | - | - | - | ● |
Number | Chemical Composition | BC | CC | EC | IC | LC |
---|---|---|---|---|---|---|
1 | α-Caryophyllene | ● | ● | ● | ● | ● |
2 | Nerolidol | ● | ● | - | - | ● |
3 | α-Selinene | ● | ● | - | - | ● |
4 | Caryophyllene | ● | - | ● | ● | ● |
5 | γ-Elemene | ● | - | ● | - | ● |
6 | β-Elemene | ● | - | ● | - | ● |
7 | Spathulenol B | ● | - | ● | - | ● |
8 | Caryophyllene | ● | - | ● | - | ● |
9 | Isoledene | ● | - | ● | - | - |
10 | β-Caryophyllene | ● | - | ● | - | - |
11 | Caryophyllene oxide | ● | - | - | ● | ● |
12 | Spathulenol D | ● | - | - | ● | ● |
13 | β-Selinene | ● | - | - | ● | - |
14 | Isocaryophyllene | ● | - | - | ● | - |
15 | γ-Selinene | ● | - | - | ● | ● |
16 | α-Bisabolene | ● | - | - | - | ● |
17 | β-Bisabolene | ● | - | - | - | ● |
18 | δ-Selinene | ● | - | - | - | - |
19 | δ-Cadinene | ● | - | - | - | - |
20 | β-Cadinene | ● | - | - | - | - |
21 | Bicyclogermacrene | ● | - | - | - | - |
22 | D-Guaiene | ● | - | - | - | - |
23 | trans-Z-α-Epoxy-guaiazulene | ● | - | - | - | - |
24 | γ-Amorphene | ● | - | - | - | - |
25 | cis-α-Bisabolene | ● | - | - | - | - |
26 | Humulene epoxide II | ● | - | - | - | - |
27 | β-Caryophyllene alcohol | ● | - | - | - | - |
28 | α-Cubebene | ● | - | - | - | - |
29 | β-Cubebene | - | ● | - | - | - |
30 | α-Muurolene | - | ● | - | - | - |
31 | Muurolol | - | ● | - | - | - |
32 | Muurolal | - | ● | - | - | - |
33 | Guaiacol | - | - | ● | ● | ● |
34 | Bisabolene | - | - | ● | ● | - |
35 | Leptospermol | - | - | ● | ● | - |
36 | β-Humulene | - | - | ● | - | - |
37 | β-Clovene | - | - | ● | - | - |
38 | Curcumol F | - | - | ● | - | - |
39 | Ylangene | - | - | - | ● | ● |
40 | β-Bourbonene | - | - | - | ● | ● |
41 | α-Gurjunene | - | - | - | ● | ● |
42 | Elemol | - | - | - | ● | ● |
43 | Aristolochene | - | - | - | ● | ● |
44 | Thujopsene | - | - | - | ● | ● |
45 | Ledol | - | - | - | ● | ● |
46 | epi-Ledol | - | - | - | ● | ● |
47 | Humulene epoxide | - | - | - | ● | ● |
48 | Aromadendrol | - | - | - | ● | ● |
49 | β-Nerolidol | - | - | - | ● | - |
50 | Isonerolidol | - | - | - | ● | - |
51 | β-Eudesmol | - | - | - | ● | - |
52 | Cedrol | - | - | - | ● | - |
53 | Cubebol | - | - | - | ● | - |
54 | Selinenes | - | - | - | ● | - |
55 | Humulene epoxide II | - | - | - | ● | - |
56 | Guaiene | - | - | - | ● | - |
57 | α-Bulnesene | - | - | - | ● | - |
58 | Valencene | - | - | - | ● | - |
59 | Melaleucol | - | - | - | ● | - |
60 | Citronellol acetate | - | - | - | ● | - |
61 | τ-Cadinol | - | - | - | ● | - |
62 | Cadinene | - | - | - | ● | - |
63 | β-Selinene | - | - | - | ● | - |
64 | trans-Z-Epoxy-guaiazulene | - | - | - | ● | - |
65 | β-Gurjunene | - | - | - | ● | - |
66 | δ-Elemene | - | - | - | - | ● |
67 | α-Copaene | - | - | - | - | ● |
68 | β-Ylangene | - | - | - | - | ● |
69 | δ-Bisabolene | - | - | - | - | ● |
70 | γ-Bisabolene | - | - | - | - | ● |
71 | β-Bisabolene | - | - | - | - | ● |
72 | Dehydroaristolene | - | - | - | - | ● |
73 | α-Bisabolene | - | - | - | - | ● |
74 | Santalol | - | - | - | - | ● |
75 | Bisabolol | - | - | - | - | ● |
76 | Sphatulenol | - | - | - | - | ● |
77 | Isoledol | - | - | - | - | ● |
78 | Isothujopsene | - | - | - | - | ● |
79 | Farnesol | - | - | - | - | ● |
80 | Caryophyllene oxide isomer | - | - | - | - | ● |
81 | Epoxy-guaiazulene | - | - | - | - | ● |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, Z.; Zheng, B.; Yan, D. Distinction and Pharmacological Activity of Monoterpenes and Sesquiterpenes in Different Chemotypes of Cinnamomum camphora (L.) Presl. Appl. Sci. 2025, 15, 8922. https://doi.org/10.3390/app15168922
Min Z, Zheng B, Yan D. Distinction and Pharmacological Activity of Monoterpenes and Sesquiterpenes in Different Chemotypes of Cinnamomum camphora (L.) Presl. Applied Sciences. 2025; 15(16):8922. https://doi.org/10.3390/app15168922
Chicago/Turabian StyleMin, Zhangxiang, Bingsong Zheng, and Daoliang Yan. 2025. "Distinction and Pharmacological Activity of Monoterpenes and Sesquiterpenes in Different Chemotypes of Cinnamomum camphora (L.) Presl" Applied Sciences 15, no. 16: 8922. https://doi.org/10.3390/app15168922
APA StyleMin, Z., Zheng, B., & Yan, D. (2025). Distinction and Pharmacological Activity of Monoterpenes and Sesquiterpenes in Different Chemotypes of Cinnamomum camphora (L.) Presl. Applied Sciences, 15(16), 8922. https://doi.org/10.3390/app15168922