Determination of the Most Influential Factors on the Quality of Resin Gears Manufacturing
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
- SILICONE ELASTOSIL M4511: Condensation silicone for making flexible molds for casting polyester and polyurethane resins. High-strength two-component silicone casting material that vulcanizes at room temperature and undergoes condensation cross-linking. Has Excellent fluidity and self-deaeration, Low hardness (Shore A: approx. 12), Extremely high flexibility and elasticity, Excellent tear resistance and Outstanding mold durability thanks to its extraordinary resistance to unsaturated polyester resin and polyurethane resin. Universal high-performance molding material especially suitable for the reproduction of models with very pronounced details, when using polyester or polyurethane resin.
- SILICONE ELASTOSIL M4601: Addition silicone (non-shrinking) for the manufacture of molds in the manufacture of parts that have a lot of detail or that must maintain the dimensions of the copied part. On the molds made with Elastosil 4601, pieces of resin, concrete, wax, etc., can be made. It has a Shore hardness of 28, high elasticity, and very high mechanical resistance.
- RESIN RECAPOLI 2196: Polyester resin for transparent castings recommended for the production of transparent castings and encapsulations.
- RESIN PR 700: Polyurethane resin for making castings. High thermal resistance, good castability and low aggressiveness in molds, as well as good resistance to chemical aggression.
2.2. Experimentation Methodology
- 1.
- Alignment and Fixing: Positioning of the gear on the CMM ensuring dimensional stability.
- 2.
- Scanning and Data Acquisition: Capturing the three-dimensional topography of the gear using optical and tactile sensors.
- 3.
- Processing and Evaluation: Analysis of geometric deviations through comparison with CAD models using Quindos.
- 4.
- Correction and Validation: Determination of tolerances.
- Deviation from Profile Shape (DPS): Discrepancy between the theoretical profile and the actual shape of the tooth. This deviation may be due to inaccuracies in machining or to deformations suffered during the operation. A high ff value can induce uneven wear, loss of efficiency in the transmission of engine torque and variations in contact stiffness. To mitigate these effects, precision grinding and optimization of the tooth design using computer simulations are recommended.
- Propeller Shape Deviation (ff): Impacts the helical geometry of the tooth, compromising the functionality of the gear.
3. Results and Discussion
3.1. DOE Results
Cast | ff | ff | Cast | ff | ff | ||
---|---|---|---|---|---|---|---|
A | 1 | 21.13 | 119.00 | E | 1 | 17.74 | 36.92 |
2 | 21.07 | 113.12 | 2 | 15.82 | 48.14 | ||
3 | 23.68 | 113.38 | 3 | 18.71 | 37.16 | ||
4 | 26.25 | 118.88 | 4 | 19.34 | 51.95 | ||
5 | 24.38 | 133.57 | 5 | 19.42 | 46.25 | ||
6 | 32.00 | 124.32 | 6 | 23.43 | 55.43 | ||
7 | 32.05 | 142.01 | 7 | 29.24 | 50.96 | ||
8 | 38.33 | 129.43 | 8 | 28.10 | 58.57 | ||
9 | 41.74 | 160.88 | 9 | 29.46 | 51.98 | ||
10 | 54.8 | 121.10 | 10 | 30.36 | 59.47 | ||
B | 1 | 14.40 | 56.53 | F | 1 | 7.59 | 43.35 |
2 | 18.09 | 66.16 | 2 | 8.98 | 21.68 | ||
3 | 19.13 | 58.74 | 3 | 8.70 | 25.68 | ||
4 | 19.79 | 70.15 | 4 | 9.03 | 23.71 | ||
5 | 20.73 | 53.54 | 5 | 9.02 | 30.06 | ||
6 | 22.07 | 73.80 | 6 | 9.65 | 25.41 | ||
7 | 25.35 | 68.08 | 7 | 12.12 | 31.58 | ||
8 | 24.93 | 77.13 | 8 | 10.85 | 26.78 | ||
9 | 27.45 | 77.81 | 9 | 12.53 | 32.28 | ||
10 | 29.72 | 78.31 | 10 | 13.70 | 33.53 | ||
C | 1 | 25.92 | 58.20 | G | 1 | 14.90 | 29.63 |
2 | 28.17 | 61.75 | 2 | 17.11 | 31.18 | ||
3 | 27.63 | 61.47 | 3 | 17.15 | 41.11 | ||
4 | 33.95 | 67.57 | 4 | 21.23 | 35.04 | ||
5 | 41.62 | 65.32 | 5 | 17.53 | 44.73 | ||
6 | 40.30 | 73.06 | 6 | 25.92 | 38.56 | ||
7 | 48.50 | 62.29 | 7 | 26.26 | 46.14 | ||
8 | 47.23 | 78.22 | 8 | 31.20 | 41.76 | ||
9 | 49.43 | 67.38 | 9 | 40.80 | 55.52 | ||
10 | 53.03 | 73.89 | 10 | 44.68 | 58.26 | ||
D | 1 | 23.68 | 41.28 | H | 1 | 10.10 | 23.65 |
2 | 23.82 | 37.97 | 2 | 8.90 | 27.90 | ||
3 | 25.40 | 40.27 | 3 | 9.35 | 19.10 | ||
4 | 26.12 | 42.01 | 4 | 9.55 | 29.98 | ||
5 | 28.78 | 51.19 | 5 | 10.10 | 23.65 | ||
6 | 28.00 | 45.72 | 6 | 10.77 | 31.72 | ||
7 | 30.18 | 60.91 | 7 | 11.96 | 24.98 | ||
8 | 32.46 | 49.10 | 8 | 12.57 | 33.14 | ||
9 | 32.43 | 62.10 | 9 | 13.42 | 25.45 | ||
10 | 39.30 | 62.58 | 10 | 14.14 | 23.70 |
3.2. ff Analysis
3.3. ff Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brumercik, F.; Lukac, M.; Caban, J.; Krzysiak, Z.; Glowacz, A. Comparison of Selected Parameters of a Planetary Gearbox with Involute and Convex-Concave Teeth Flank Profiles. Appl. Sci. 2020, 10, 1417. [Google Scholar] [CrossRef]
- He, H.; He, Q.; Gao, H.; Hu, W.; Xue, S. Research on Postcuring Parameters Effect on the Properties of Fiberglass-Reinforced Silicone Resin Coil Bobbin. Materials 2023, 16, 2588. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.C.; Wu, M.H. Development of a Large-Area Hot Embossing Mold with Micro-Sized Structures. Mater. Sci. 2018, 24, 403–409. [Google Scholar] [CrossRef]
- Selvi, Ö.; Yetim, M.; Çırnık, S.; İlter, H.; Akan, M.; Tomaç, T. Design and Production of Multi Material 3D Printer for Soft Robotic Structural Elements. Int. J. Print. Technol. Digit. Ind. 2021, 5, 227–236. [Google Scholar] [CrossRef]
- Vdovin, R. Features of Use of Rapid Prototyping Technology in the Manufacture of Wax Models of GTE Turbine Blades. MATEC Web Conf. 2021, 346, 03106. [Google Scholar] [CrossRef]
- Kuo, C.C.; Li, D.Y.; Lin, Z.C.; Kang, Z.F. Characterizations of Polymer Gears Fabricated by Differential Pressure Vacuum Casting and Fused Deposition Modeling. Polymers 2021, 13, 4126. [Google Scholar] [CrossRef]
- Su, E.; Li, P.C.; Bolger, M.; Pan, H.N. Machine Vision and Deep Learning Based Rubber Gasket Defect Detection. Adv. Technol. Innov. 2020, 5, 76–83. [Google Scholar] [CrossRef]
- Jung, H.; Jeon, J.; Choi, D.; Park, J.Y. Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry. Sustainability 2021, 13, 4120. [Google Scholar] [CrossRef]
- Han, J.; Li, L.; Lee, W. Machining of Lenticular Lens Silicon Molds with a Combination of Laser Ablation and Diamond Cutting. Micromachines 2019, 10, 250. [Google Scholar] [CrossRef]
- Chen, W.S.; Lee, Y.C. Bi-Layer Nanoimprinting Lithography for Metal-Assisted Chemical Etching with Application on Silicon Mold Replication. Nanotechnology 2023, 34, 505301. [Google Scholar] [CrossRef] [PubMed]
- Gavrilov, T.; Todorov, G.; Sofronov, Y. Rapid materialization of a small series of bone structure replications from a digitalized model, created by computer tomography. Proc. CBU Nat. Sci. ICT 2021, 2, 15–19. [Google Scholar] [CrossRef]
- Kim, J.; Krishna-Subbaiah, N.; Wu, Y.; Ko, J.; Shiva, A.; Sitti, M. Enhanced Flexible Mold Lifetime for Roll-to-Roll Scaled-Up Manufacturing of Adhesive Complex Microstructures. Adv. Mater. 2022, 35, 2207257. [Google Scholar] [CrossRef]
- Wortmann, M.; Krieger, P.; Frese, N.; Moritzer, E.; Husgen, B. Effect of Isocyanate Absorption on the Mechanical Properties of Silicone Elastomers in Polyurethane Vacuum Casting. ACS Omega 2021, 6, 4687–4695. [Google Scholar] [CrossRef]
- Tavcar, J.; GRKMAN, G.; Duhovnik, J. Accelerated lifetime testing of reinforced polymer gears. J. Adv. Mech. Des. Syst. Manuf. 2018, 12, JAMDSM0006. [Google Scholar] [CrossRef]
- Wei, T.; Vaithilingam, C. Magnetic Geared Radial Axis Vertical Wind Turbine for Low Velocity Regimes. MATEC Web Conf. 2018, 152, 03007. [Google Scholar] [CrossRef]
- Fan, H.; Yang, Y.; Ma, H.; Zhang, X.; Wan, X.; Cao, X.; Mao, Q.; Zhang, C.; Liu, Q. Root Crack Identification of Sun Gear in Planetary Gear System Combining Fault Dynamics with VMD Algorithm. Shock Vib. 2021, 2021, 5561417. [Google Scholar] [CrossRef]
- Tong, C.; Bhuiyan, M.S. An investigation into a locking mechanism designed for a gear-based knee joint prosthesis. Cogent Eng. 2020, 7, 1738186. [Google Scholar] [CrossRef]
- Tunalioglu, M.; Agca, B. Wear and Service Life of 3-D Printed Polymeric Gears. Polymers 2022, 14, 2064. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zeng, M. Design of pure rolling line gear mechanisms for arbitrary intersecting shafts. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 233, 17. [Google Scholar] [CrossRef]
- Chaubey, S.; Jain, N. On Productivity of WSEM Process for Manufacturing Meso-Sized Helical and Bevel Gears. IOP Conf. Ser. Mater. Sci. Eng. 2018, 389, 012007. [Google Scholar] [CrossRef]
- Xueyi, L.; Li, J.; He, D.; Qu, A. Gear pitting fault diagnosis using raw acoustic emission signal based on deep learning. Ekspolatacja i Niezawodn.-Maint. Reliab. 2019, 21, 403–410. [Google Scholar] [CrossRef]
- Rigaud, E.; Cornuault, P.H.; Bazin, B.; Grandais-Menant, E. Numerical and experimental analysis of the vibroacoustic behavior of an electric window-lift gear motor. Arch. Appl. Mech. 2018, 88, 1395–1410. [Google Scholar] [CrossRef]
- Wortmann, M.; Frese, N.; Keil, W.; Brikmann, J.; Biedinger, J.; Brockhagen, B.; Reiss, G.; Schmidt, C.; Gölzhäuser, A.; Moritzer, E.; et al. The Deterioration Mechanism of Silicone Molds in Polyurethane Vacuum Casting. ACS Appl. Polym. Mater. 2020, 2, 4719–4732. [Google Scholar] [CrossRef]
- Yoshida, T.; Endo, G.; Okubo, A.; Nabae, H. Experimental Evaluation of a Quasi-direct-drive Actuator with a 3D-printed Planetary Gear Reducer. In Proceedings of the 2023 IEEE/SICE International Symposium on System Integration (SII), Atlanta, GA, USA, 17–20 January 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Y.; Tang, J.; Tang, K.; Li, Z. Digital tooth contact analysis of face gear drives with an accurate measurement model of face gear tooth surface inspected by CMMs. Mech. Mach. Theory 2022, 167, 104498. [Google Scholar] [CrossRef]
- Li, Y.; Wei, P.; Xiang, G.; Chenfan, J.; Liu, H. Gear Contact Fatigue Life Prediction Based on Transfer Learning. Int. J. Fatigue 2023, 173, 107686. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 1328-1:2013; Cylindrical Gears—ISO System of Accuracy—Part 1: Definitions and Allowable Values of Deviations Relevant to Corresponding Flanks of Gear Teeth. 1995. Available online: https://plataforma-aenormas-aenor-com.eu1.proxy.openathens.net/standard/ISO/45309 (accessed on 18 May 2025).
- International Organization for Standardization. ISO 21771-1:2024; Cylindrical Involute Gears and Gear Pairs—Part 1: Concepts and Geometry. Available online: https://plataforma-aenormas-aenor-com.eu1.proxy.openathens.net/standard/ISO/84949 (accessed on 18 May 2025).
- Vu, D.K.; Wu, Y.R.; Nguyen, Q.D.; Arifin, A. Closed-loop topology modification of gear tooth flanks considering both dressing and honing processes for internal-meshing gear honing. Mech. Mach. Theory 2023, 187, 105372. [Google Scholar] [CrossRef]
- Moulai-Khatir, D.; Pairel, E.; Favrelière, H. Influence of the probing definition on the flatness measurement. Int. J. Metrol. Qual. Eng. 2018, 9, 15. [Google Scholar] [CrossRef]
Q1-Gear (STANDARD) | Q2-Gear (MAXIMUM) | |
---|---|---|
Dimensions | Z20-M3 (Press-Ang 20°) | Z20-M3 (Press-Ang 20°) |
Finishing | Rack-cutter | Grinding |
Application | Reducer (average speed) | Reducer (high speed) |
Silicone Property | ELASTOSIL-M4511 | ELASTOSIL-M4601 |
---|---|---|
Processing time at 23 °C | 60–90 min | 90 min |
Demoldable at 23 °C after | 8–10 h | 12 h |
Demoldable at 70 °C after | - | 20 min |
Viscosity before vulcanization | 25,000 (mPa·s) | 20,000 (mPa·s) |
Viscosity at 23 °C, in water | 1.22 g/cm3 | 1.1 g/cm3 |
Hardness, Shore A | 12 | 28 |
Tensile strength | 3.5 N/mm2 | 3.0 N/mm2 |
Elongation at break | 600% | >700% |
Progressive tear resistance | >18 N/mm | >20 N/mm |
Linear shrinkage | <0.4% | - |
Linear thermal expansion coefficient | 2.1 × 10−4 m/m·K | - |
Resin Property | RECAPOLI 2196 | PR700 |
---|---|---|
Maximum water content | 1000 ppm | - |
Gel time from 25 to 35 °C | 19–23 min | 6-7 min |
Curing time from 25 °C to exothermic peak | 42–57 min | 45 min |
Maximum temperature 40–50 °C | 40–50 °C | 40–50 °C |
Density at 23 °C | 1100 kg/m3 | 1130 kg/m3 |
Tensile strength | 56 MPa | 80 MPa |
Elastic modulus (tensile) | 4.1 GPa | 1800 MPa |
Elongation at break | 1.60% | 1.30% |
Flexural strength | - | 130°C |
Dimensional stability at heat (HDT) | 55 °C | 130 °C |
Impact resistance | 18 kJ/m2 | 60 kJ/m2 |
Barcol hardness | 40–45 | Shore 87 |
Volumetric shrinkage | - | (lineal: 2 mm/m) |
Code | Silicone | Resin | Gear Quality |
---|---|---|---|
A | 4511 | RECA-2196 | 1 (Standard) |
B | 4511 | RECA-2196 | 2 (Maximum) |
C | 4601 | RECA-2196 | 1 |
D | 4601 | RECA-2196 | 2 |
E | 4511 | PR700 | 1 |
F | 4511 | PR700 | 2 |
G | 4601 | PR700 | 1 |
H | 4601 | PR700 | 2 |
Quality | ff | ff |
---|---|---|
Q1-Standard | 28.3 | 45 |
Q2-High | 5.7 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echeverria, A.M.; Martin-Antunes, M.A.; Villanueva, P.; Fuertes, J.P.; Marcelino, S. Determination of the Most Influential Factors on the Quality of Resin Gears Manufacturing. Appl. Sci. 2025, 15, 8893. https://doi.org/10.3390/app15168893
Echeverria AM, Martin-Antunes MA, Villanueva P, Fuertes JP, Marcelino S. Determination of the Most Influential Factors on the Quality of Resin Gears Manufacturing. Applied Sciences. 2025; 15(16):8893. https://doi.org/10.3390/app15168893
Chicago/Turabian StyleEcheverria, Angel Maria, Miguel Angel Martin-Antunes, Pedro Villanueva, Juan Pablo Fuertes, and Sara Marcelino. 2025. "Determination of the Most Influential Factors on the Quality of Resin Gears Manufacturing" Applied Sciences 15, no. 16: 8893. https://doi.org/10.3390/app15168893
APA StyleEcheverria, A. M., Martin-Antunes, M. A., Villanueva, P., Fuertes, J. P., & Marcelino, S. (2025). Determination of the Most Influential Factors on the Quality of Resin Gears Manufacturing. Applied Sciences, 15(16), 8893. https://doi.org/10.3390/app15168893