Tele-Assessment of Executive Functions in Young Adults with ADHD: A Pilot Study
Abstract
1. Introduction
2. Assessment in Adults with ADHD
3. Executive Functions in Adults with ADHD
4. Tele-Assessment of Executive Functions
5. Materials and Methods
5.1. Participants
5.2. Procedure
5.3. Measures
- Block 1: Go stimuli are yellow; NoGo stimuli are blue.
- Block 2: Go stimuli are blue; NoGo stimuli are yellow.
- Block 3: Go stimuli are circles; NoGo stimuli are triangles.
- Block 4: Go stimuli are triangles; NoGo stimuli are circles.
- Go CR (Correct Responses): the average number of accurate responses to the Go stimuli.
- NoGo CR (Correct Rejections): the average number of correct inhibitions in response to the NoGo stimuli.
- Go RT (Reaction Time): the average response time to the Go stimuli (calculated only if the accuracy on the Go trials exceeds 20%).
- NoGo CR serves as a direct index of the inhibitory control accuracy.
- Go RT reflects the processing speed of the inhibitory control.
- Block 1 and Block 2 each consist of 8 practice trials and 40 test trials.
- Block 3 includes 64 test trials.
- In Block 1 (central target condition), the participant must press the ‘S’ key if the central arrow points left and ‘L’ if it points right.
- In Block 2 (peripheral target condition), the response is based on the direction of the flanking arrows.
- In Block 3 (mixed-rule condition), the response depends on the color of the arrows: blue arrows require a response based on the central target; orange arrows require a response based on the peripheral targets.
- CI accuracy: the accuracy related to interference control, derived from the performance in incongruent trials in the first two (single-rule) blocks of the Flanker task.
- CI RT: the speed related to the interference control, calculated based on reaction times in incongruent trials from the first two blocks of the Flanker task.
- There are also specific measures:
- CR congruent: the number of correct responses in congruent trials (central and peripheral targets).
- CR incongruent: the number of correct responses in incongruent trials.
- RT incongruent: The mean reaction time for correct responses in incongruent trials.
- FC accuracy: the accuracy related to cognitive flexibility, measured from incongruent trials in the mixed-rule (third) block of the Flanker task.
- FC RT: the speed related to cognitive flexibility, based on reaction times in incongruent trials from the mixed-rule block of the Flanker task.
- CR mixed congruent: the number of correct responses in congruent trials.
- RT mixed congruent: the mean reaction time for correct congruent responses.
- CR mixed incongruent: the number of correct responses in incongruent trials.
- RT mixed incongruent: the mean reaction time for correct incongruent responses.
- Blocks 1 and 2 present colored stimuli (yellow, blue, green, and red circles).
- Blocks 3 and 4 use geometric shapes (a triangle, circle, square, rhombus, and pentagon).
- Blocks 5 and 6 feature letters (l, m, g, t, and b) shown in both uppercase and lowercase.
- WM1 accuracy: the accuracy of working memory updating under a low cognitive load, calculated based on the performance in the 1-back blocks.
- WM-1 RT: the speed of working memory updating under a low cognitive load, derived from reaction times in the 1-back blocks.
- WM-2 accuracy: the accuracy of working memory updating under a high cognitive load, based on the performance in the 2-back blocks.
- WM-2 RT: the speed of working memory updating under a high cognitive load, measured through reaction times in the 2-back blocks.
- The list of activities is read aloud.
- The participant is asked to recall as many activities as possible.
- The participant estimates how much time each activity may take.
- The participant organizes the activities into a sequence.
- They must also estimate the travel time between activities, using the provided map.
- Planning accuracy: a score reflecting the correctness of task planning.
- Planning speed: a score based on the time taken to complete the planning phase.
- Recall: accuracy in memorizing and recalling planned activities.
- Time estimation: accuracy in estimating the duration required to complete the planned activities.
- Map planning consistency: consistency between planning with and without the use of a map.
- Map time consistency: consistency in time estimation between mapped and non-mapped planning.
- Map temporal constraints: accuracy in adhering to time constraints when estimating durations for tasks and travel.
- Map minimal path: a score evaluating the efficiency of planning in terms of minimizing travel or movement during map-based planning.
6. Statistical Analysis
7. Results
- The following text describes specific measures emerging from individual tasks.
8. Study Limitations
9. Discussion
10. Conclusions
11. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodge, M.A.; Sutherland, R.; Jeng, K.; Bale, G.; Batta, P.; Cambridge, A.; Detheridge, J.; Drevensek, S.; Edwards, L.; Everett, M.; et al. Literacy assessment via telepractice is comparable to face-to-face assessment in children with reading difficulties living in rural Australia. Telemed. e-Health 2019, 25, 279–287. [Google Scholar] [CrossRef]
- Raman, N.; Nagarajan, R.; Venkatesh, L.; Monica, D.S.; Ramkumar, V.; Krumm, M. School-based language screening among primary school children using telepractice: A feasibility study from India. Int. J. Speech-Lang. Pathol. 2019, 21, 425–434. [Google Scholar] [CrossRef]
- Nagel, D.A.; Penner, J.L. Conceptualizing telehealth in nursing practice: Advancing a conceptual model to fill a virtual gap. J. Holist. Nurs. 2016, 34, 91–104. [Google Scholar] [CrossRef]
- Ciccia, A.H.; Whitford, B.; Krumm, M.; McNeal, K. Improving the access of young urban children to speech, language and hearing screening via telehealth. J. Telemed. Telecare 2011, 17, 240–244. [Google Scholar] [CrossRef]
- Crawford, J.; Haffar, S.; Fernando, S.; Stephens, H.; Harvey, S.B.; Black, M. Client perspectives: Telehealth for mental health services. Australas. Psychiatry 2025, 33, 96–102. [Google Scholar] [CrossRef]
- Barkley, R.A. Behavioral inhibition, sustained attention, and executive functions: Constructing a unifying theory of ADHD. Psychol. Bull. 1997, 121, 65–94. [Google Scholar] [CrossRef]
- Tarle, S.J.; Alderson, R.M.; Olson, R.K. Executive functioning deficits in ADHD: The role of emotional processing. J. Abnorm. Child Psychol. 2019, 47, 293–308. [Google Scholar]
- Caye, A.; Rocha, T.B.-M.; Anselmi, L.; Murray, J.; Menezes, A.M.; Barros, F.C.; Goncalves, H.; Wehrmeister, F.; Jensen, C.M.; Steinhausen, H.-C.; et al. Attention-deficit/hyperactivity disorder trajectories from childhood to adulthood: A 15-year follow-up study. J. Child Psychol. Psychiatry 2016, 57, 1406–1415. [Google Scholar]
- Rincon, S.; Morales, A.; Sandoval, M. Executive function deficits in adults with ADHD: A systematic documentary review. J. Clin. Psychol. 2024, 80, 18–36. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Publisher: Washington, DC, USA, 1994. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5); American Psychiatric Publisher: Washington, DC, USA, 2013. [Google Scholar]
- Kessler, R.C.; Adler, L.; Ames, M.; Demler, O.; Faraone, S.; Hiripi, E.V.; Howes, M.J.; Jin, R.; Secnik, K.; Spencer, T.; et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS): A short screening scale for use in the general population. Psychol. Med. 2005, 35, 245–256. [Google Scholar] [CrossRef]
- Ustun, T.B.; Kostanjsek, N.; Chatterji, S.; Rehm, J. Measuring Health and Disability: Manual for WHO Disability Assessment Schedule WHODAS 2.0; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- DuPaul, G.J.; Power, T.J.; Anastopoulos, A.D.; Reid, R. ADHD Rating Scale-IV: Checklists, Norms, and Clinical Interpretation; Guilford Press: New York, NY, USA, 1998. [Google Scholar]
- Barkley, R.A.; Murphy, K.R. Attention-Deficit Hyperactivity Disorder: A Clinical Workbook, 3rd ed.; Guilford Press: New York, NY, USA, 2006. [Google Scholar]
- Conners, C.K.; Erhardt, D.; Sparrow, E. Conners’ Adult ADHD Rating Scales (CAARS); Multi-Health Systems: Toronto, ON, Canada, 1999. [Google Scholar]
- Spencer, T.J.; Adler, L.A.; Qiao, M.; Saylor, K.; Brown, T.E.; Holdnack, J.A.; Kelsey, D. Validation of the ADHD Rating Scale v5.0 for adults. Psychiatry Res. 2010, 178, 420–425. [Google Scholar]
- Barkley, R.A. Barkley Adult ADHD Rating Scale–IV (BAARS-IV); Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Van Wijk, N. Development and validation of the Adult ADHD Symptom Scale for DSM-5 (AASS-5). Psychiatr. Q. 2020, 91, 1173–1185. [Google Scholar]
- Kooij, J.J.; Bijlenga, D.; Salerno, L.; Jaeschke, R.; Bitter, I.; Balázs, J.; Thome, J.; Dom, G.; Kasper, S.; Filipe, C.N.; et al. Updated European Consensus Statement on diagnosis and treatment of adult ADHD. Eur. Psychiatry 2019, 56, 14–34. [Google Scholar] [CrossRef] [PubMed]
- Kooij, S.J.; Francken, M.H.; Bron, T.I. Diagnostisch Interview Voor ADHD (DIVA) in Adults; DIVA Foundation: CJ ’s-Gravenhage, The Netherlands, 2010. [Google Scholar]
- Kooij, J.J.S.; Bejerot, S.; Asherson, P. Diagnostic Interview for Adult ADHD (DIVA-5): A semi-structured interview based on DSM-5 criteria for diagnosing ADHD in adults. Eur. Psychiatry 2019, 56, 87–93. [Google Scholar] [CrossRef]
- Bacciotti, M.G.; Carvalho, D.R. Inventário de rastreio do transtorno de déficit de atenção/hiperatividade (IR-TDAH): Evidências de validade. Psicol. Em Pesqui. 2019, 13, 56–66. [Google Scholar]
- Wender, P.H. Attention-Deficit Hyperactivity Disorder in Adults; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Marchant, B.K.; Reimherr, F.W.; Robison, R.J.; Wender, P.H.; Wood, D.R. Validity of the Self-Report Wender–Reimherr Adult Attention Deficit Disorder Scale (SR-WRAADDS). J. Atten. Disord. 2013, 17, 333–338. [Google Scholar]
- Barkley, R.A. Barkley Deficits in Executive Functioning Scale (BDEFS); Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Barkley, R.A. Barkley Functional Impairment Scale (BFIS); Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Holst, Y.; Thorell, L.B. Adult executive functioning inventory (ADEXI): Validity, reliability, and relations to ADHD. Int. J. Methods Psychiatr. Res. 2018, 27, e1567. [Google Scholar] [CrossRef]
- Roth, R.M.; Isquith, P.K.; Gioia, G.A. Behavior Rating Inventory of Executive Function–Adult Version (BRIEF-A); Wiley Online Library: Hoboken, NJ, USA, 2005. [Google Scholar]
- Mowlem, F.D.; Skirrow, C.; Reid, P.; Maltezos, S.; Nijjar, S.K.; Merwood, A.; Barker, E.; Cooper, R.; Kuntsi, J.; Asherson, P. Validation of the Mind Excessively Wandering Scale and the Relationship of Mind Wandering to Adult ADHD Symptom Severity. J. Atten. Disord. 2019, 23, 624–634. [Google Scholar] [CrossRef]
- Nicastro, R.; Gauthier, J.; Fava, G.A. The Subjective Distress Associated with Adult ADHD Self-Report Scale (SDAA-SR): A new measure for clinical settings. J. Psychopathol. Behav. Assess. 2018, 40, 448–460. [Google Scholar]
- Micoulaud-Franchi, J.A.; Lopez, R.; Michel, P.; Bartolomei, F.; Fonseca, M. Sensory gating deficits: Clinical applications to ADHD and schizophrenia. Front. Hum. Neurosci. 2017, 11, 471. [Google Scholar]
- Groen, Y.; Tucha, O.; Wijers, A.A.; Althaus, M.; Thome, J. The Everyday Life Attention Scale (ELAS): Development and psychometric properties. Psychiatry Res. 2019, 275, 85–90. [Google Scholar]
- Knouse, L.E.; Zvorsky, I.; Safren, S.A. ADHD Cognition Scale: Validation and linkage to impairment in college students. J. Atten. Disord. 2017, 21, 667–677. [Google Scholar]
- Brod, M.; Johnston, J.; Able, S.L.; Swindle, R.W. Validation of the Adult ADHD Quality of Life (AAQoL) scale. Psychol. Med. 2005, 35, 295–305. [Google Scholar]
- Fabiano, G.A.; Pelham, W.E., Jr.; Waschbusch, D.A.; Gnagy, E.M.; Lahey, B.B. A practical measure of impairment: Psychometric properties of the Impairment Rating Scale. J. Clin. Child Adolesc. Psychol. 2006, 35, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Berger, I.; Cassuto, H. The effect of environmental distractors incorporation into a CPT on sustained attention and ADHD diagnosis among adolescents. J. Neurosci. Methods 2014, 222, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Cassuto, H.; Ben-Simon, A.; Berger, I. Using environmental distractors in the diagnosis of ADHD. Front. Hum. Neurosci. 2013, 7, 805. [Google Scholar] [CrossRef]
- Epstein, J.N.; Erkanli, A.; Conners, C.K.; Klaric, J.; Costello, J.E.; Angold, A. Relations Between Continuous Performance Test Performance Measures and ADHD Behaviors. J. Abnorm. Child Psychol. 2003, 31, 543–554. [Google Scholar] [CrossRef]
- Rivella, C.; Bazzurro, A.; Olla, V.; Potente, C.; Vio, C.; Viterbori, P.; Usai, M.C. Impact of distractors on sustained attention and inhibition in children with ADHD. J. Atten. Disord. 2024, 28, 970–981. [Google Scholar] [CrossRef]
- Rivella, L.; Rossi, L.; Bianchi, F.; Maggioni, M. Auditory and visual distractor effects in ADHD: A CPT study. J. Atten. Disord. 2024, 28, 970–981. [Google Scholar] [CrossRef]
- Gualtieri, C.T.; Johnson, L.G. Reliable digit span and the assessment of cognitive function in brain disorders. Arch. Clin. Neuropsychol. 2006, 21, 689–697. [Google Scholar]
- Hampshire, A.; Highfield, R.R.; Parkin, B.L.; Owen, A.M. Fractionating human intelligence. Neuron 2012, 76, 1225–1237. [Google Scholar] [CrossRef]
- Maruff, P.; Thomas, E.; Cysique, L.; Brew, B.; Collie, A.; Snyder, P.; Pietrzak, R.H. Validity of the CogState brief battery: Relationship to standardized tests and sensitivity to cognitive impairment in mild cognitive impairment, Alzheimer’s disease, and schizophrenia. Arch. Clin. Neuropsychol. 2009, 24, 165–178. [Google Scholar] [CrossRef]
- Zola, S.M.; Woods, C.; Goldstein, F.C. Neurotrack: An eye tracking-based computerized assessment for the detection of cognitive impairment. Alzheimer’s Dement. 2013, 9, P306. [Google Scholar]
- Barkley, R.A.; Murphy, K.R. Current Symptom Scale (CSS): A diagnostic tool for adults with ADHD. J. Atten. Disord. 2006, 10, 5–14. [Google Scholar]
- Kessler, R.C.; Adler, L.; Barkley, R.; Biederman, J.; Conners, C.K.; Demler, O.; Faraone, S.V.; Greenhill, L.L.; Howell, K.; Kuperman, S.; et al. The World Health Organization Adult ADHD Self-Report Scale (ASRS) for use in the U.S.: A preliminary study. Psychiatry Res. 2005, 200, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Marchant, B.; Matthews, A.; Stiebel, M. Self-Reported Wender-Reimherr Adult Attention Deficit Disorder Scale (SR-WRAADDS). J. Clin. Psychol. 2013, 69, 415–422. [Google Scholar]
- Spencer, T.J.; Biederman, J.; Wilens, T.E.; Faraone, S.V.; Adler, L. ADHD Investigator Symptom Rating Scale (AISRS): An updated diagnostic tool for adults with ADHD. J. Atten. Disord. 2010, 14, 428–436. [Google Scholar] [CrossRef]
- Fabiano, G.A.; Pelham, W.E., Jr.; Waschbusch, D.A.; Gnagy, E.M.; Lahey, B.B.; Chronis, A.M.; Onyango, A.N.; Kipp, H.; Lopez-Williams, A.; Burrows-Maclean, L. A practical measure of impairment: Psychometric properties of the impairment rating scale in samples of children with attention deficit hyperactivity disorder and two school-based samples. J. Clin. Child Adolesc. Psychol. 2006, 35, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Micoulaud-Franchi, J.A.; Lopez, R.; Michel, P.; Brandejsky, L.; Bioulac, S.; Philip, P.; Lancon, C.; Boyer, L. The development of the SGI-16: A shortened sensory gating deficit and distractibility questionnaire for adults with ADHD. Atten Defic Hyperact Disord. 2017, 9, 179–187. [Google Scholar] [CrossRef]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef]
- Baddeley, A. Working memory-A Primer. Curr. Biol. 2010, 20, 136–140. [Google Scholar] [CrossRef]
- Morra, S.; Camba, R.; Bracco, F. Executive function tasks: Are they measuring the same construct? Infant Behav. Dev. 2018, 50, 56–65. [Google Scholar]
- Podjarny, R.; Lufi, D.; Shoval, G. The use of a virtual reality platform for assessing attention deficit hyperactivity disorder: A feasibility study. Virtual Real. 2018, 22, 239–246. [Google Scholar]
- Friedman, N.P.; Miyake, A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex 2017, 86, 186–204. [Google Scholar] [CrossRef]
- Sánchez-Cubillo, I.; Periáñez, J.A.; Adrover-Roig, D.; Rodríguez-Sánchez, J.M.; Ríos-Lago, M.; Tirapu, J.; Barceló, F. Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009, 15, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Howard, S.J.; Okely, A.D. Catching fish and avoiding sharks: Investigating factors that influence developmentally appropriate measurement of executive function in early childhood. J. Psychoeduc. Assess. 2015, 33, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Groves, N.B.; Wells, E.L.; Soto, E.F.; Marsh, C.L.; Jaisle, E.M.; Harvey, T.K.; Kofler, M.J. Executive functioning and emotion regulation in children with and without ADHD. Res. Child Adolesc. Psychopathol. 2022, 50, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Zelazo, P.D. Executive function: Reflection, iterative reprocessing, complexity, and the developing brain. Dev. Rev. 2020, 57, 100921. [Google Scholar] [CrossRef]
- Barkley, R.A. The executive functions and self-regulation. An evolutionary neuropsychological perspective. Neuropsychol. Rev. 2001, 11, 1–29. [Google Scholar] [CrossRef]
- Barkley, R.A.; Fischer, M.; Smallish, L.; Fletcher, K. The persistence of attention-deficit/hyperactivity disorder into young adulthood as a function of reporting source and definition of disorder. J. Abnorm. Psychol. 2002, 111, 279. [Google Scholar] [CrossRef] [PubMed]
- Barkley, R.A.; Murphy, K.R. Impairment in occupational functioning and adult ADHD: The predictive utility of executive functioning (EF) rating versus EF tests. Arch. Clin. Neuropsychol. 2010, 25, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Senkowski, D.; Ziegler, T.; Singh, M.; Heinz, A.; He, J.; Silk, T.; Lorenz, R.C. Assessing inhibitory control deficits in adult ADHD: A systematic review and meta-analysis of the stop-signal task. Neuropsychol. Rev. 2024, 34, 548–567. [Google Scholar] [CrossRef]
- Ruffini, C.; Tarchi, C.; Morini, M.; Giuliano, G.; Pecini, C. Tele-assessment of cognitive functions in children: A systematic review. Child Neuropsychol. 2022, 28, 709–745. [Google Scholar] [CrossRef] [PubMed]
- Wild, K.; Howieson, D.; Webbe, F.; Seelye, A.; Kaye, J. Status of computerized cognitive testing in aging: A systematic review. Alzheimer’s Dement. 2008, 4, 428–437. [Google Scholar] [CrossRef]
- Alloway, T.P. Working memory, reading, and mathematical skills in children with developmental coordination disorder. J. Exp. Child Psychol. 2007, 96, 20–36. [Google Scholar] [CrossRef]
- Luciana, M.; Nelson, C.A. Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: Performance in 4- to 12-year-old children. Dev. Neuropsychol. 2002, 22, 595–624. [Google Scholar] [CrossRef]
- Usai, M.C.; Rivella, C.; Viterbori, P.; Cornoldi, C. Adattamento italiano. MOXO d-CPT. In Neurotech Solutions; Hogrefe Editore: Firenze, Italy, 2022; Available online: https://www.hogrefe.it/catalogo/test/bambini-e-adolescenti/attenzione/moxo-d-cpt-continuous-performance-test-online/ (accessed on 20 July 2025).
- Neurotech Solutions Ltd. MOXO Continuous Performance Test (CPT) (Version 201609) [Computer Software]. 2021. Available online: https://www.moxo.ai (accessed on 20 July 2025).
- Arble, E.; Kuentzel Je Barnett, D. Convergent validity of the Integrated Visual and Auditory Continuous Performance Test (IVA+Plus): Associations with working memory, processing speed, and behavioral ratings. Arch. Clin. Neuropsychol. 2014, 29, 300–312. [Google Scholar] [CrossRef]
- Berger, I.; Slobodin, O.; Aboud, M.; Melamed Je Cassuto, H. Maturational delay in ADHD: Evidence from CPT. Front. Hum. Neurosci. 2013, 7, 691. [Google Scholar] [CrossRef]
- Berger, I.; Slobodin, O.; Cassuto, H. Usefulness and validity of Continuous Performance Tests in the diagnosis of ADHD children. Arch. Clin. Neuropsychol. 2017, 32, 81–93. [Google Scholar]
- Huang-Pollock, C.L.; Karalunas, S.L.; Tam, H.; Moore, A.N. Evaluating vigilance deficits in ADHD: A meta-analysis of CPT performance. J. Abnorm. Child Psychol. 2012, 121, 360–371. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.N.; Johnson, D.E.; Conners, C.K. Conners’ CPT II: Continuous Performance Test II.; Multi-Health Systems: Toronto, ON, USA, 2023. [Google Scholar]
- Usai, M.C.; Viterbori, P.; Traverso, L.; De Meo, P. Executive function profiles in children with ADHD: New evidence using teleassessment tools. Cogn. Dev. 2022, 62, 101160. [Google Scholar]
- Seidman, L.J.; Biederman, J.; Monuteaux, M.C.; Doyle, A.E.; Faraone, S.V. Learning disabilities and executive dysfunction in boys with attention-deficit/hyperactivity disorder. Neuropsychology 2001, 15, 544–556. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; text rev.; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- Orsini, A.; Pezzuti, L.; Picone, L. WISC-IV Contributo Alla Taratura Italiana; Giunti OS: Firenze, Italy, 2012. [Google Scholar]
- Raven, J. Standard Progressive Matrices—Manuale; Giunti OS: Firenze, Italy.
- TeleFE Platform. Cooperativa Anastasis, Bologna. 2023. Available online: https://www.anastasis.it/telefe/ (accessed on 1 March 2024).
- Donders, F.C. On the speed of mental processes. Acta Psychol. 1969, 30, 412–431. [Google Scholar] [CrossRef]
- Podjarny, G.; Kamawar, D.; Andrews, K. Measuring on the go: Response to Morra, Panesi, Traverso, and Usai. J. Exp. Child Psychol. 2018, 171, 131–137. [Google Scholar] [CrossRef]
- Eriksen, B.A.; Eriksen, C.W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 1974, 16, 143–149. [Google Scholar] [CrossRef]
- Ridderinkhof, K.R.; Wylie, S.A.; van den Wildenberg, W.P.; Bashore, T.R., Jr.; van der Molen, M.W. The arrow of time: Advancing insights into action control from the arrow version of the Eriksen flanker task. Atten. Percept. Psychophys. 2021, 83, 700–721. [Google Scholar] [CrossRef]
- Simmering, V.R.; Andrews, C.M.; Leuenberger, R.; Kovack-Lesh, K.A. Inconsistent flanker congruency effects across stimulus types and age groups: A cautionary tale. Behav. Res. Methods 2023, 55, 1778–1817. [Google Scholar] [CrossRef]
- Kirchner, W.K. Age differences in short-term retention of rapidly changing information. J. Exp. Psychol. 1958, 55, 352–358. [Google Scholar] [CrossRef]
- Mencarelli, L.; Neri, F.; Momi, D.; Menardi, A.; Rossi, S.; Rossi, A.; Santarnecchi, E. Stimuli, presentation modality, and load-specific effects in verbal and spatial n-back tasks: A meta-analysis of neuroimaging studies. Neuropsychologia 2019, 129, 337–349. [Google Scholar]
- Sgaramella, T.M.; Bisiacchi, P.S.; Falchero, M. Ruolo dell’età nell’abilità di pianificazione di azioni in un contest spaziale. Ric. Di Psicol. 1995, 19, 165–181. [Google Scholar]
- Schweiger, A.; Marzocchi, G.M. Valutazione Neuropsicologica dei Disturbi Dell’apprendimento; Erickson: Trento, Italy, 2008. [Google Scholar]
- Barkley, R.A. A theory of ADHD. In Attention-Deficit Hyperactivity Disorder: A Handbook for Diagnosis and Treatment; The Guilford Press: New York, NY, USA, 2006; pp. 297–334. [Google Scholar]
- Brown, T.E. ADD/ADHD and Impaired Executive Function in Clinical Practice; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1, pp. 37–41. [Google Scholar]
- Castellanos, F.X.; Sonuga-Barke, E.J.S.; Milham, M.P.; Tannock, R.M. Characterizing cognition in ADHD: Beyond executive dysfunction. Trends Cogn. Sci. 2006, 10, 117–123. [Google Scholar] [CrossRef]
Measures | Mean (SD) ADHD Group | Mean (SD) TD Group | χ2 | gdl | p | ε2 |
---|---|---|---|---|---|---|
RI accuracy percentile | 73.7 (21.40) | 82.3 (22.89) | 4.736 | 1 | 0.030 * | 0.06964 |
RI reaction time percentile | 74.5 (21.30) | 74.4 (26.65) | 0.127 | 1 | 0.722 | 0.00189 |
Measures | Mean (SD) ADHD Group | Mean (SD) TD Group | χ2 | gdl | p | ε2 |
---|---|---|---|---|---|---|
IC accuracy percentile | 51.0 (23.99) | 60.0 (21.73) | 2.780 | 1 | 0.095 | 0.04088 |
IC reaction time percentile | 76.8 (30.62) | 81.3 (28.99) | 0.520 | 1 | 0.471 | 0.00765 |
Measures | Mean (SD) ADHD Group | Mean (SD) TD Group | χ2 | gdl | p | ε2 |
---|---|---|---|---|---|---|
CF accuracy percentile | 64.7 (28.76) | 78.1 (23.77) | 3.19 | 1 | 0.074 + | 0.0469 |
CF reaction time percentile | 59.6 (35.85) | 69.1 (29.04) | 1.46 | 1 | 0.227 | 0.0215 |
Measures | Mean (SD) ADHD Group | Mean (SD) TD Group | χ2 | gdl | p | ε2 |
---|---|---|---|---|---|---|
LLWM accuracy percentile | 73.1 (26.52) | 76.4 (22.64) | 0.287 | 1 | 0.592 | 0.00422 |
LLWM reaction time percentile | 71.8 (24.18) | 73.1 (28.70) | 1.368 | 1 | 0.242 | 0.02012 |
HLWM accuracy percentile | 80.3 (19.24) | 80.1 (26.75) | 0.970 | 1 | 0.325 | 0.01447 |
HLWM reaction time percentile | 52.3 (30.52) | 68.3 (25.75) | 4.660 | 1 | 0.031 * | 0.06955 |
Measures | Mean (SD) ADHD Group | Mean (SD) TD Group | χ2 | gdl | p | ε2 |
---|---|---|---|---|---|---|
P accuracy percentile | 50.0 (1.00) | 48.3 (5.68) | 3.003 | 1 | 0.083 + | 0.04416 |
P time percentile | 43.7 (26.95) | 47.3 (33.09) | 0.269 | 1 | 0.604 | 0.00395 |
R accuracy | 76.1 (21.89) | 75.7 (15.42) | 0.288 | 1 | 0.592 | 0.00423 |
R estimation time accuracy | 87.8 (10.83) | 96.1 (5.02) | 13.610 | 1 | <0.001 * | 0.20015 |
M accuracy | 64.9 (16.79) | 73.2 (12.12) | 4.651 | 1 | 0.031 * | 0.06839 |
M time constraints accuracy | 44.1 (18.69) | 40.1 (17.61) | 0.585 | 1 | 0.444 | 0.00861 |
Measures | Mean (SD) ADHD Group | Mean (SD) TD Group | χ2 | gdl | p | ε2 |
---|---|---|---|---|---|---|
Block 1 mean RT correct answer | 342.0606 (29.866) | 347.2353 (41.281) | 0.0797 | 1 | 0.778 | 0.00121 |
Block 1 mean RT wrong answer | 209.1212 (186.121) | 153.5882 (142.344) | 1.8910 | 1 | 0.169 | 0.02865 |
Block 2 mean RT correct answer | 351.8485 (68.258) | 363.2353 (35.863) | 0.00665 | 1 | 0.935 | 1.01 × 10−4 |
Block 2 mean RT wrong answer | 273.5758 (291.567) | 90.8235 (129.341) | 10.24573 | 1 | 0.001 * | 0.155 |
Block 3 mean RT correct answer | 317.9394 (204.911) | 319.2647 (289.348) | 0.321 | 1 | 0.571 | 0.00486 |
Block 3 mean RT wrong answer | 22.4242 (85.457) | 67.7941 (158.605) | 0.945 | 1 | 0.331 | 0.01432 |
Block 4 mean RT correct answer | 259.2121 (218.735) | 283.5588 (145.812) | 1.627 | 1 | 0.202 | 0.02465 |
Block 4 mean RT wrong answer | 18.8788 (79.474) | 48.0882 (148.029) | 0.145 | 1 | 0.703 | 0.00220 |
Measures | Mean (SD) ADHD Group | Mean (SD) TD Group | χ2 | gdl | p | ε2 |
---|---|---|---|---|---|---|
Block 1 commission errors | 0.9091 (1.156) | 0.6176 (0.888) | 1.4457 | 1 | 0.229 | 0.02191 |
Block 2 commission errors | 1.0303 (2.604) | 0.2647 (0.567) | 6.3012 | 1 | 0.012 * | 0.09547 |
Block 3 commission errors | 0.4848 (1.093) | 0.5000 (0.826) | 0.8132 | 1 | 0.367 | 0.01232 |
Block 4 commission errors | 0.5758 (1.370) | 0.4118 (0.821) | 0.0875 | 1 | 0.767 | 0.00133 |
Measures | Mean (SD) ADHD Group | Mean (SD) TD Group | χ2 | gdl | p | ε2 |
---|---|---|---|---|---|---|
Fb1 mean RT CR congruent | 483.3030 (153.436) | 497.1765 (133.552) | 0.03083 | 1 | 0.861 | 4.67 × 10−4 |
Fb1 mean RT CR incongruous | 495.4848 (174.124) | 509.9412 (150.192) | 0.00393 | 1 | 0.950 | 5.96 × 10−5 |
Fb1 accuracy CR congruent | 96.8182 (17.402) | 100.0000 (0.000) | 2.092 | 1 | 0.148 | 0.03169 |
Fb1 accuracy CR incongruous | 92.1212 (24.013) | 95.5882 (17.090) | 0.140 | 1 | 0.709 | 0.00212 |
Fb2 mean RT CR congruent | 98.1818 (3.0150) | 99.7059 (1.715) | 1.57 × 10−4 | 1 | 0.990 | 2.38 × 10−6 |
Fb2 mean RT CR incongruous | 96.8182 (4.812) | 98.6765 (3.328) | 0.187 | 1 | 0.665 | 0.00284 |
Fb2 accuracy CR congruent | 96.8182 (17.402) | 100.0000 (0.000) | 8.48 | 1 | 0.004 * | 0.1285 |
Fb2 accuracy CR incongruous | 92.1212 (24.013) | 95.5882 (17.090) | 3.89 | 1 | 0.049 * | 0.0590 |
Fb3 mean RT CR congruent | 872.8824 (203.359) | 851.2059 (155.161) | 0.0632 | 1 | 0.801 | 9.44 × 10−4 |
Fb3 mean RT CR incongruous | 1006.0000 (1006.0000) | 982.7059 (171.574) | 0.3539 | 1 | 0.552 | 0.00528 |
Fb3 accuracy CR congruent | 94.5000 (5.572) | 96.7647 (8.648) | 8.25 | 1 | 0.004 * | 0.1232 |
Fb3 accuracy CR incongruous | 87.2059 (10.907) | 91.2647 (10.103) | 3.06 | 1 | 0.080 | 0.0456 |
Measures | Mean (SD) ADHD Group | Mean (SD) TD Group | χ2 | gdl | p | ε2 |
---|---|---|---|---|---|---|
Nb1 accuracy percentile | 99.5152 (1.176) | 99.6176 (1.206) | 1.386 | 1 | 0.239 | 0.02100 |
Nb1 mean RT correct answer | 451.7273 (65.628) | 458.0882 (110.665) | 0.425 | 1 | 0.514 | 0.00644 |
Nb1 mean RT commission error | 236.0606 (555.298) | 104.4412 (267.691) | 0.592 | 1 | 0.442 | 0.00896 |
Nb2 accuracy percentile | 89.8485 (8.228) | 90.9412 (8.410) | 0.571 | 1 | 0.450 | 0.00866 |
Nb2 mean RT correct answer | 637.0606 (169.752) | 571.0000 (132.517) | 2.995 | 1 | 0.084 | 0.04538 |
Nb2 mean RT commission error | 433.2727 (475.476) | 299.4412 (381.555) | 1.593 | 1 | 0.207 | 0.02413 |
Nb3 accuracy percentile | 97.6364 (2.434) | 98.1765 (2.052) | 0.773 | 1 | 0.379 | 0.01172 |
Nb3 mean RT correct answer | 527.3333 (79.606) | 513.7059 (96.726) | 1.542 | 1 | 0.214 | 0.02336 |
Nb3 mean RT commission error | 216.0000 (474.310) | 147.2647 (419.910) | 0.257 | 1 | 0.612 | 0.00389 |
Nb4 accuracy percentile | 87.4848 (6.906) | 88.9412 (8.312) | 0.887 | 1 | 0.346 | 0.0134 |
Nb4 mean RT correct answer | 685.0303 (168.650) | 618.5000 (127.204) | 3.172 | 1 | 0.075 | 0.0481 |
Nb4 mean RT commission error | 699.2424 (433.948) | 615.1176 (413.598) | 1.635 | 1 | 0.201 | 0.0248 |
Nb5 accuracy percentile | 96.9091 (4.537) | 98.0882 (2.789) | 1.41 | 1 | 00.236 | 0.0213 |
Nb5 mean RT correct answer | 577.3636 (85.127) | 558.6765 (115.367) | 1.16 | 1 | 0.281 | 0.0176 |
Nb5 mean RT commission error | 279.9697 (471.621) | 141.2059 (346.392) | 2.46 | 1 | 0.117 | 0.0373 |
Nb6 accuracy percentile | 91.8788 (7.236) | 92.2941 (7.375) | 0.0334 | 1 | 0.855 | 5.06 × 10−4 |
Nb6 mean RT correct answer | 692.6364 (193.281) | 579.4412 (134.726) | 6.0122 | 1 | 0.014 * | 0.09109 |
Nb6 mean RT commission error | 529.9394 (496.458) | 618.3824 (626.537) | 0.1833 | 1 | 0.669 | 0.00278 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capodieci, A.; Olla, V.; Tonasso, C.; Campana, M.; Morsiani, A.; Zambelli, A.; Guidetti, G. Tele-Assessment of Executive Functions in Young Adults with ADHD: A Pilot Study. Appl. Sci. 2025, 15, 8741. https://doi.org/10.3390/app15158741
Capodieci A, Olla V, Tonasso C, Campana M, Morsiani A, Zambelli A, Guidetti G. Tele-Assessment of Executive Functions in Young Adults with ADHD: A Pilot Study. Applied Sciences. 2025; 15(15):8741. https://doi.org/10.3390/app15158741
Chicago/Turabian StyleCapodieci, Agnese, Valeria Olla, Chiara Tonasso, Marianna Campana, Annalisa Morsiani, Agnese Zambelli, and Giulia Guidetti. 2025. "Tele-Assessment of Executive Functions in Young Adults with ADHD: A Pilot Study" Applied Sciences 15, no. 15: 8741. https://doi.org/10.3390/app15158741
APA StyleCapodieci, A., Olla, V., Tonasso, C., Campana, M., Morsiani, A., Zambelli, A., & Guidetti, G. (2025). Tele-Assessment of Executive Functions in Young Adults with ADHD: A Pilot Study. Applied Sciences, 15(15), 8741. https://doi.org/10.3390/app15158741