Differential Recruitment of Medial and Lateral Gastrocnemius During Heel Raises: Role of Ankle ROM, Unilateral Execution, and Limb Dominance
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.3.1. Unilateral and Bilateral Heel Exercises with Neutral Range of Motion
2.3.2. Unilateral and Bilateral Heel Exercises with Full Range of Motion
2.3.3. sEMG Measurements
2.4. Statistical Analysis
3. Results
3.1. Medial Gastrocnemius Muscular Activity During Unilateral and Bilateral Heel Raise Exercises
3.2. Lateral Gastrocnemius Muscular Activity During Unilateral and Bilateral Heel Raise Exercises
3.3. Activation Ratio of Medial and Lateral Gastrocnemius During Unilateral and Bilateral Heel Raise Exercises
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MG | Medial gastrocnemius |
LG | Lateral gastrocnemius |
ROM | Range of motion |
HRE | Heel raise exercise |
NROM | Neutral range of motion |
FROM | Full range of motion |
EMG | Electromyography |
MG:LG | Medial/lateral gastrocnemius ratio |
SD | Standard deviation |
ICC | Intraclass correlation coefficient |
ES | Effect size |
References
- Fukunaga, T.; Roy, R.R.; Shellock, F.G.; Hodgson, J.A.; Edgerton, V.R. Specific tension of human plantar flexors and dorsiflexors. J. Appl. Physiol. 1996, 80, 158–165. [Google Scholar] [CrossRef]
- Kinugasa, R.; Kawakami, Y.; Fukunaga, T. Muscle activation and its distribution within human triceps surae muscles. J. Appl. Physiol. 2005, 99, 1149–1156. [Google Scholar] [CrossRef]
- Moritani, T.; Oddsson, L.; Thorstensson, A. Differences in modulation of the gastrocnemius and soleus H-reflexes during hopping in man. Acta Physiol. Scand. 1990, 138, 575–576. [Google Scholar] [CrossRef]
- Tamaki, H.; Kitada, K.; Akamine, T.; Sakou, T.; Kurata, H. Electromyogram patterns during plantarflexions at various angular velocities and knee angles in human triceps surae muscles. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 75, 1–6. [Google Scholar] [CrossRef]
- Vieira, T.M.; Windhorst, U.; Merletti, R. Is the stabilization of quiet upright stance in humans driven by synchronized modulations of the activity of medial and lateral gastrocnemius muscles? J. Appl. Physiol. 2010, 108, 85–97. [Google Scholar] [CrossRef]
- Héroux, M.E.; Dakin, C.J.; Luu, B.L.; Inglis, J.T.; Blouin, J.S. Absence of lateral gastrocnemius activity and differential motor unit behavior in soleus and medial gastrocnemius during standing balance. J. Appl. Physiol. 2014, 116, 140–148. [Google Scholar] [CrossRef]
- Cohen, J.W.; Gallina, A.; Ivanova, T.D.; Vieira, T.; McAndrew, D.J.; Garland, S.J. Regional modulation of the ankle plantar flexor muscles associated with standing external perturbations across different directions. Exp. Brain Res. 2020, 238, 39–50. [Google Scholar] [CrossRef]
- Ferri-Caruana, A.; Cardera-Porta, E.; Gené-Morales, J.; Saez-Berlanga, A.; Jiménez-Martínez, P.; Juesas, A.; Colado, J.C. Barefoot vs shod walking and jogging on the electromyographic activity of the medial and lateral gastrocnemius. J. Biomech. 2024, 176, 112371. [Google Scholar] [CrossRef]
- Yong, J.R.; Dembia, C.L.; Silder, A.; Jackson, R.W.; Fredericson, M.; Delp, S.L. Foot strike pattern during running alters muscle–tendon dynamics of the gastrocnemius and the soleus. Sci. Rep. 2020, 10, 5872. [Google Scholar] [CrossRef]
- Ferri-Caruana, A.; Sendra-Pérez, C.; Priego-Quesada, J.I. Gastrocnemius neuromuscular activation during standing explosive acceleration. Life 2024, 14, 1378. [Google Scholar] [CrossRef]
- Figueiredo, V.C.; de Salles, B.F.; Trajano, G.S. Volume for muscle hypertrophy and health outcomes: The most effective variable in resistance training. Sports Med. 2018, 48, 499–505. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Grgic, J.; Ogborn, D.; Krieger, J.W. Strength and hypertrophy adaptations between low- vs. high-load resistance training: A systematic review and meta-analysis. J. Strength Cond. Res. 2017, 31, 3508–3523. [Google Scholar] [CrossRef]
- Green, B.; McClelland, J.A.; Semciw, A.I.; Schache, A.G.; McCall, A.; Pizzari, T. The assessment, management and prevention of calf muscle strain injuries: A qualitative study of the practices and perspectives of 20 expert sports clinicians. Sports Med. Open. 2022, 8, 10. [Google Scholar] [CrossRef]
- Shih, K.S.; Chen, P.Y.; Yeh, W.L.; Ma, H.L.; Farn, C.J.; Hou, C.H.; Peng, W.C.; Wang, H.K. Modified ankle joint neuromechanics during one-legged heel raise test after an Achilles rupture and its associations with jumping. Appl. Sci. 2021, 11, 2227. [Google Scholar] [CrossRef]
- Daszkiewicz, M.; Prill, R.; Reichert, P.; Becker, R.; Oleksy, Ł.; Kuźniecow, M.; Lech, M.; Kułakowski, M.; Kentel, M.; Kentel, M. The development and reliability of a surface electromyography-based index for quantifying knee muscle coactivation during the lower quarter Y-balance test. Appl. Sci. 2024, 14, 9788. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Quan, W.; Ma, X.; Chon, T.-E.; Fernandez, J.; Gusztav, F.; Kovács, A.; Baker, J.S.; Gu, Y. New Insights Optimize Landing Strategies to Reduce Lower Limb Injury Risk. Cyborg Bionic Syst. 2024, 5, 0126. [Google Scholar] [CrossRef]
- Cibulka, M.; Wenthe, A.; Boyle, Z.; Callier, D.; Schwerdt, A.; Jarman, D.; Strube, M.J. Variation in medial and lateral gastrocnemius muscle activity with foot position. Int. J. Sports Phys. Ther. 2017, 12, 233–241. [Google Scholar] [PubMed]
- Marçori, A.J.; Moura, T.B.; Okazaki, V.H. Gastrocnemius muscle activation during plantar flexion with different foot positioning in physically active young men. Isokinet. Exerc. Sci. 2017, 25, 121–125. [Google Scholar] [CrossRef]
- Riemann, B.L.; Limbaugh, G.K.; Eitner, J.D.; Lefavi, R.G. Medial and lateral gastrocnemius activation differences during heel-raise exercise with three different foot positions. J. Strength Cond. Res. 2011, 25, 634–639. [Google Scholar] [CrossRef]
- Akuzawa, H.; Imai, A.; Iizuka, S.; Matsunaga, N.; Kaneoka, K. The influence of foot position on lower leg muscle activity during a heel-raise exercise measured with fine-wire and surface EMG. Phys. Ther. Sport. 2017, 28, 23–28. [Google Scholar] [CrossRef]
- De Azevedo, J.B.; Barros, B.M.; Dos Santos, L.E.P.R.; Biasotto-Gonzalez, D.A.; Gomes, C.A.F.D.P.; Baker, J.S.; Rica, R.L.; Bocalini, D.S.; Politti, F. Activation of triceps surae during exercises on leg press, Smith and seated calf raise machines. J. Phys. Educ. Sport. 2023, 23, 2266–2272. [Google Scholar] [CrossRef]
- Pereira, R.S.; Azevedo, J.B.; Politti, F.; Paunksnis, M.R.; Evangelista, A.L.; Teixeira, C.V.L.S.; Serra, A.J.; Alonso, A.C.; Pitta, R.M.; Júnior, A.F.; et al. Does foot position alter triceps surae EMG record during heel-raise exercises in leg press machine? Man. Ther. Posturol Rehabil. J. 2017, 15, 529. [Google Scholar] [CrossRef]
- Hali, K.; Zero, A.M.; Rice, C.L. Effect of ankle joint position on triceps surae contractile properties and motor unit discharge rates. Physiol. Rep. 2021, 8, e14680. [Google Scholar] [CrossRef]
- Signorile, J.E.; Applegate, B.; Duque, M.; Cole, N.; Zink, A. Selective recruitment of the triceps surae muscles with changes in knee angle. J. Strength Cond. Res. 2002, 16, 433–439. [Google Scholar] [CrossRef]
- Shinohara, M.; Yoshitake, Y.; Kouzaki, M.; Fukunaga, T. The medial gastrocnemius muscle attenuates force fluctuations during plantar flexion. Exp. Brain Res. 2006, 169, 15–23. [Google Scholar] [CrossRef]
- Hébert-Losier, K.; Schneiders, A.G.; García, J.A.; Sullivan, S.J.; Simoneau, G.G. Influence of knee flexion angle and age on triceps surae muscle activity during heel raises. J. Strength Cond. Res. 2012, 26, 3124–3133. [Google Scholar] [CrossRef]
- Ugbolue, U.C.; Yates, E.L.; Ferguson, K.; Wearing, S.C.; Gu, Y.; Lam, W.K.; Baker, J.S.; Dutheil, F.; Sculthorpe, N.F.; Dias, T. Electromyographic assessment of the lower leg muscles during concentric and eccentric phases of standing heel raise. Proc. Healthc. 2021, 9, 465. [Google Scholar] [CrossRef]
- Gentil, P.; Bottaro, M.; Noll, M.; Werner, S.; Vasconcelos, J.C.; Seffrin, A.; Campos, M.H. Muscle activation during resistance training with no external load—Effects of training status, movement velocity, dominance, and visual feedback. Physiol. Behav. 2017, 179, 148–152. [Google Scholar] [CrossRef]
- Maeo, S.; Huang, M.; Wu, Y.; Sakurai, H.; Kusagawa, Y.; Sugiyama, T.; Kanehisa, H.; Isaka, T. Greater hamstrings muscle hypertrophy but similar damage protection after training at long versus short muscle lengths. Med. Sci. Sports Exerc. 2021, 53, 825–831. [Google Scholar] [CrossRef]
- Boccomino, H.L.; Daoud, B.T.; Hudas, A.; North, W.A.; Malek, M.H. Log-transformed electromyography amplitude–power output relationship: Nondominant vs. dominant limb. J. Strength Cond. Res. 2022, 36, 851–856. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Mettler, C.; Roth, R.; Granacher, U. One-leg standing performance and muscle activity: Are there limb differences? J. Appl. Biomech. 2014, 30, 407–414. [Google Scholar] [CrossRef]
- Ball, N.; Scurr, J. Electromyography normalization methods for high-velocity muscle actions: Review and recommendations. J. Appl. Biomech. 2013, 29, 600–608. [Google Scholar] [CrossRef]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; Nijhuis-van der Sanden, M.W.; van Cingel, R.E. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef]
- Coratella, G.; Tornatore, G.; Longo, S.; Esposito, F.; Cè, E. An Electromyographic Analysis of Lateral Raise Variations and Frontal Raise in Competitive Bodybuilders. Int. J. Environ. Res. Public Health 2020, 17, 6015. [Google Scholar] [CrossRef]
- Osborne, J.W.A.; Menz, H.B.; Whittaker, G.A.; Cotchett, M.; Landorf, K.B. Muscle strengthening exercises for the foot and ankle: A scoping review exploring adherence to best practice for optimizing musculoskeletal health. J. Foot Ankle Res. 2025, 18, e70040. [Google Scholar] [CrossRef]
- Deroost, F.; Petrella, D.; Mylle, I.; Vanwanseele, B. Patients with Achilles tendinopathy use compensation strategies to reduce tendon load during rehabilitation exercises. Clin. Biomech. 2025, 122, 106403. [Google Scholar] [CrossRef]
- Ren, L.J.; Cheng, C.L.K.; Ma, C.Z.H.; Zheng, Y.P. Changes in muscle hardness from resting to mid-range lengthened positions detected by shear wave elastography with a novel protocol of ultrasound probe placement. Appl. Sci. 2021, 11, 452. [Google Scholar] [CrossRef]
- Chuang, T.D.; Acker, S.M. Comparing Functional Dynamic Normalization Methods to Maximal Voluntary Isometric Contractions for Lower Limb EMG from Walking, Cycling and Running. J. Electromyogr. Kinesiol. 2019, 44, 86–93. [Google Scholar] [CrossRef]
- Fuentes del Toro, S.; Aranda-Ruiz, J. The Impact of Normalization Procedures on Surface Electromyography (sEMG) Data Integrity: A Study of Bicep and Tricep Muscle Signal Analysis. Sensors 2025, 25, 2668. [Google Scholar] [CrossRef]
- Pietraszewski, P.; Maszczyk, A.; Zając, A.; Gołaś, A. Muscle Activity and Biomechanics of Sprinting: A Meta-Analysis Review. Appl. Sci. 2025, 15, 4959. [Google Scholar] [CrossRef]
- Wang, X.; Beltran Martinez, K.; Golabchi, A.; Tavakoli, M.; Rouhani, H. A Dynamic Procedure to Detect Maximum Voluntary Contractions in Low Back. Sensors 2023, 23, 4999. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Jie, T.; Zhou, Z.; Yuan, Y.; Jemni, M.; Quan, W.; Gao, Z.; Xiang, L.; Gusztav, F.; et al. Data-Driven Deep Learning for Predicting Ligament Fatigue Failure Risk Mechanisms. Int. J. Mech. Sci. 2025, 301, 110519. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. European recommendations for surface electromyography. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Beck, T.W. The importance of a priori sample size estimation in strength and conditioning research. J. Strength Cond. Res. 2013, 27, 2323–2337. [Google Scholar] [CrossRef]
- Molina-Molina, A.; Ruiz-Malagón, E.J.; Carrillo-Pérez, F.; Roche-Seruendo, L.E.; Damas, M.; Banos, O.; García-Pinillos, F. Validation of mDurance, a wareable surface electromyography system for muscle activity assessment. Front. Physiol. 2020, 11, 606287. [Google Scholar] [CrossRef]
- Ferri-Caruana, A.; Mollà-Casanova, S.; Baquedano-Moreno, M.; Serra-Añó, P. Electromyographic activity of posterior kinetic chain muscles during hamstring strengthening exercises. Phys. Ther. Sport. 2022, 55, 205–210. [Google Scholar] [CrossRef]
- Ross, M.D.; Fontenot, E.G. Test–retest reliability of the standing heel-rise test. J. Sport. Rehabil. 2000, 9, 117–123. [Google Scholar] [CrossRef]
- Schrefl, A.; Kolokythas, N.; Stamm, M.; Erlacher, D.; Schärli, A. Reliability of a standardized protocol of the single-leg heel-rise test. Curr. Issues Sport. Sci. 2024, 9, 9. [Google Scholar] [CrossRef]
- Müller, M.; Lind, K.; Styf, J.; Karlsson, J. The reliability of isokinetic testing of the ankle joint and a heel-raise test for endurance. Knee Surg. Sports Traumatol. Arthrosc. 2005, 13, 60–71. [Google Scholar] [CrossRef]
- Wallmann, H.W.; Mercer, J.A.; Landers, M.R. Surface electromyographic assessment of the effect of dynamic activity and dynamic activity with static stretching of the gastrocnemius on vertical jump performance. J. Strength Cond. Res. 2008, 22, 787–793. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Silfverskiöld, N. Reduction of the ucrossed two-joints muscles of the lef to one-joint muscles in spastic conditions. Acta Chir. Scand. 1924, 57, 315–330. [Google Scholar]
- Kruse, A.; Rivares, C.; Weide, G.; Tilp, M.; Jaspers, R.T. Stimuli for adaptations in muscle length and the length range of active force exertion—A narrative review. Front. Physiol. 2021, 12, 742034. [Google Scholar] [CrossRef]
- Hamard, R.; Aeles, J.; Kelp, N.Y.; Feigean, R.; Hug, F.; Dick, T.J. Does different activation between the medial and the lateral gastrocnemius during walking translate into different fascicle behavior? J. Exp. Biol. 2021, 224, jeb242626. [Google Scholar] [CrossRef]
- Fukunaga, T.; Roy, R.R.; Shellock, F.G.; Hodgson, J.A.; Day, M.K.; Lee, P.L.; Kwong-Fu, H.; Edgerton, V.R. Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J. Orthop. Res. 1992, 10, 926–934. [Google Scholar] [CrossRef]
- Floyd, R.T.; Thompson, C.W. Manual of Structural Kinesiology, 16th ed.; McGraw-Hill: New York, NY, USA, 2009. [Google Scholar]
- Keeley, D.W.; Plummer, H.A.; Oliver, G.D. Predicting asymmetrical lower extremity strength deficits in college-aged men and women using common horizontal and vertical power field tests: A possible screening mechanism. J. Strength Cond. Res. 2011, 25, 1632–1637. [Google Scholar] [CrossRef]
- Murphy, D.F.; Connolly, D.A.J.; Beynnon, B.D. Risk factors for lower extremity injury: A review of the literature. Br. J. Sports Med. 2003, 37, 13–29. [Google Scholar] [CrossRef]
- Promsri, A.; Haid, T.; Werner, I.; Federolf, P. Leg dominance effects on postural control when performing challenging balance exercises. Brain Sci. 2020, 10, 128. [Google Scholar] [CrossRef]
- Hamza, A.; Martinez, L.; Sacco, R.; Amouyel, T.; Held, E.; Beldame, J.; Billuart, F.; Lalevée, M. Stretching and eccentric exercises normalize gait parameters in gastrocnemius tightness subjects. Appl. Sci. 2023, 13, 12494. [Google Scholar] [CrossRef]
Type of Exercise | ROM | Mean ± SD | SE | 95% CI | t | p | g | |
---|---|---|---|---|---|---|---|---|
Low | Upper | |||||||
Unilateral | FROM | 0.19 ± 0.42 | 0.10 | −0.01 | 0.40 | 2.04 | 0.03 * | 0.42 |
NROM | 0.13 ± 0.39 | 0.09 | −0.06 | 0.31 | 1.40 | 0.09 * | 0.32 | |
Bilateral | FROM | 0.06 ± 0.45 | 0.13 | −0.21 | 0.34 | 0.49 | 0.32 | 0.10 |
NROM | 0.01 ± 0.45 | 0.13 | −0.27 | 0.28 | 0.06 | 0.48 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferri-Caruana, A.M.; Juesas, A.; Saez-Berlanga, A.; Colado, J.C. Differential Recruitment of Medial and Lateral Gastrocnemius During Heel Raises: Role of Ankle ROM, Unilateral Execution, and Limb Dominance. Appl. Sci. 2025, 15, 8731. https://doi.org/10.3390/app15158731
Ferri-Caruana AM, Juesas A, Saez-Berlanga A, Colado JC. Differential Recruitment of Medial and Lateral Gastrocnemius During Heel Raises: Role of Ankle ROM, Unilateral Execution, and Limb Dominance. Applied Sciences. 2025; 15(15):8731. https://doi.org/10.3390/app15158731
Chicago/Turabian StyleFerri-Caruana, Ana María, Alvaro Juesas, Angel Saez-Berlanga, and Juan C. Colado. 2025. "Differential Recruitment of Medial and Lateral Gastrocnemius During Heel Raises: Role of Ankle ROM, Unilateral Execution, and Limb Dominance" Applied Sciences 15, no. 15: 8731. https://doi.org/10.3390/app15158731
APA StyleFerri-Caruana, A. M., Juesas, A., Saez-Berlanga, A., & Colado, J. C. (2025). Differential Recruitment of Medial and Lateral Gastrocnemius During Heel Raises: Role of Ankle ROM, Unilateral Execution, and Limb Dominance. Applied Sciences, 15(15), 8731. https://doi.org/10.3390/app15158731