Simulation of Strata Failure and Settlement in the Mining Process Using Numerical and Physical Methods
Abstract
1. Introduction
2. Methodology
2.1. Theoretical Analysis
2.2. Numerical Simulation
2.2.1. Material Properties in Numerical Simulations
2.2.2. Modeling Process
2.3. Physical Simulation
2.3.1. Experiment Preparation
2.3.2. Similar Materials
2.3.3. Physical Model
2.3.4. Experiment Process
3. Results
3.1. Numerical Simulation
3.1.1. Control Group X
- 1.
- Max principal stress
- 2.
- Settlement
3.1.2. Parametric Studies
- 1.
- Max principal stress
- 2.
- Settlement
- 1.
- Max principal stress
- 2.
- Settlement
- 1.
- Max principal stress
- 2.
- Settlement
3.2. Physical Simulation
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horner, R.; Hasegawa, H. The seismotectonics of southern Saskatchewan. Can. J. Earth Sci. 1978, 15, 1341–1355. [Google Scholar] [CrossRef]
- Emanov, A.A.; Fateev, A.V.; Leskova, E.V.; Shevkunova, E.V.; Podkorytova, V.G. Mining-induced seismicity at open pit mines in Kuzbass (Bachatsky earthquake on June 18, 2013). J. Min. Sci. 2014, 50, 224–228. [Google Scholar] [CrossRef]
- Li, W.; Ni, S.; Zang, C.; Chu, R. Rupture directivity of the 2019 Mw 5.8 Changning, Sichuan, China, earthquake and implication for induced seismicity. Bull. Seismol. Soc. Am. 2020, 110, 2138–2153. [Google Scholar] [CrossRef]
- Zhi-Min, X.; Ya-Jun, S.; Qing-Hong, D.; Zong-Kui, Z. Closing mechanism of mining-induced fracture in coal mine aquifuge and its application. J. Min. Saf. Eng. 2012, 29, 613. [Google Scholar]
- Ju, J.; Xu, J.; Zhu, W. Longwall chock sudden closure incident below coal pillar of adjacent upper mined coal seam under shallow cover in the Shendong coalfield. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 2015, 77, 192–201. [Google Scholar] [CrossRef]
- Kang, H.; Lv, H.; Gao, F.; Meng, X.; Feng, Y. Understanding mechanisms of destressing mining-induced stresses using hydraulic fracturing. Int. J. Coal Geol. 2018, 196, 19–28. [Google Scholar] [CrossRef]
- Li, T.; Cai, M.; Cai, M. A review of mining-induced seismicity in China. Int. J. Rock Mech. Min. Sci. 2007, 44, 1149–1171. [Google Scholar] [CrossRef]
- Ellsworth, W.L. Injection-induced earthquakes. Science 2013, 341, 1225942. [Google Scholar] [CrossRef]
- Zang, A.; Oye, V.; Jousset, P.; Deichmann, N.; Gritto, R.; McGarr, A.; Majer, E.; Bruhn, D. Analysis of induced seismicity in geothermal reservoirs–An overview. Geothermics 2014, 52, 6–21. [Google Scholar] [CrossRef]
- Kneafsey, T.J.; Dobson, P.; Blankenship, D.; Morris, J.; Knox, H.; Schwering, P.; White, M.; Doe, T.; Roggenthen, W.; Mattson, E. An overview of the EGS Collab project: Field validation of coupled process modeling of fracturing and fluid flow at the Sanford Underground Research Facility, Lead, SD. In Proceedings of the 43rd Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 12–14 February 2018. [Google Scholar]
- Fan, X.; Scaringi, G.; Korup, O.; West, A.J.; van Westen, C.J.; Tanyas, H.; Hovius, N.; Hales, T.C.; Jibson, R.W.; Allstadt, K.E. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts. Rev. Geophys. 2019, 57, 421–503. [Google Scholar] [CrossRef]
- Kang, J.-Q.; Zhu, J.-B.; Zhao, J. A review of mechanisms of induced earthquakes: From a view of rock mechanics. Géoméch. Geophys. Geo-Energy Geo-Resour. 2019, 5, 171–196. [Google Scholar] [CrossRef]
- Tang, L.; Lu, Z.; Zhang, M.; Sun, L.; Wen, L. Seismicity induced by simultaneous abrupt changes of injection rate and well pressure in Hutubi gas field. J. Geophys. Res. Solid Earth 2018, 123, 5929–5944. [Google Scholar] [CrossRef]
- Sainoki, A.; Mitri, H.S.; Chinnasane, D.; Schwartzkopff, A.K. Quantitative energy-based evaluation of the intensity of mining-induced seismic activity in a fractured rock mass. Rock Mech. Rock Eng. 2019, 52, 4651–4667. [Google Scholar] [CrossRef]
- Igonin, N.; Verdon, J.P.; Kendall, J.M.; Eaton, D.W. Large-scale fracture systems are permeable pathways for fault activation during hydraulic fracturing. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020311. [Google Scholar] [CrossRef]
- Pan, Y.; Li, Z.; Zhang, M. Distribution, type, mechanism and prevention of rockburst in China. Chin. J. Rock Mech. Eng. 2003, 22, 1844–1851. [Google Scholar]
- Guo, H.; Yuan, L. An integrated approach to study of strata behaviour and gas flow dynamics and its application. Int. J. Coal Sci. Technol. 2015, 2, 12–21. [Google Scholar] [CrossRef]
- Cook, N. Seismicity associated with mining. Eng. Geol. 1976, 10, 99–122. [Google Scholar] [CrossRef]
- McGarr, A.; Simpson, D.; Seeber, L.; Lee, W. Case histories of induced and triggered seismicity. Int. Geophys. Ser. 2002, 81, 647–664. [Google Scholar]
- Chen, X.; Abercrombie, R.E. Improved approach for stress drop estimation and its application to an induced earthquake sequence in Oklahoma. Geophys. J. Int. 2020, 223, 233–253. [Google Scholar] [CrossRef]
- Afrouz, S.G.; Westman, E.; Dehn, K.; Weston, B. Underground Rock Mass Behavior Prior to the Occurrence of Mining Induced Seismic Events. Geotechnics 2022, 2, 765–780. [Google Scholar] [CrossRef]
- Qian, M.; Miao, X.; Xu, J. Theoretical study of key stratum in ground control. Mei Tan Hsueh Pao (J. China Coal Soc.) 1996, 21, 44–47. [Google Scholar]
- Xu, J.-L.; Qian, M.-G.; Ma, W.-D.; Zhao, H. Discussion on loading problem in physical and numerical simulation of strata movement. Zhongguo Kuangye Daxue Xuebao (J. China Univ. Min. Technol.) 2001, 30, 252–255. [Google Scholar]
- Fritschen, R. Mining-induced seismicity in the Saarland, Germany. Pure Appl. Geophys. 2010, 167, 77–89. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Jiang, X.; Zhang, Q.; Wei, Y.; Wu, H. Evolution Characteristics of overburden instability and failure under deep complex mining conditions. Geofluids 2022, 2022, 6418082. [Google Scholar] [CrossRef]
- Sun, J. Mechanics criterion and factors affecting overburden stability in solid dense filling mining. Int. J. Min. Sci. Technol. 2017, 27, 407–413. [Google Scholar] [CrossRef]
- Zhang, Y.; Tu, S.; Bai, Q.; Li, J. Overburden fracture evolution laws and water-controlling technologies in mining very thick coal seam under water-rich roof. Int. J. Min. Sci. Technol. 2013, 23, 693–700. [Google Scholar] [CrossRef]
- Sainoki, A.; Mitri, H.S. Dynamic behaviour of mining-induced fault slip. Int. J. Rock Mech. Min. Sci. 2014, 66, 19–29. [Google Scholar] [CrossRef]
- Zhang, G.; Guo, G.; Wei, W.; Wang, J.; Li, H.; Du, Q. Mechanical Properties and Failure Mechanism of the Weakly Cemented Overburden in Deep Mining. Minerals 2022, 12, 1276. [Google Scholar] [CrossRef]
- Du, W.; Xie, Y. Numerical modeling of rock mass deformation based on key stratum theory. Gansu Sci. Technol. 2012, 28, 27–30. [Google Scholar]
- Boltz, M.S. Mining-Induced Seismicity and FLAC3D Modeling at the Trail Mountain Mine; The University of Utah: Salt Lake City, UT, USA, 2014. [Google Scholar]
- Wang, H.; Zhang, D.; Wang, X.; Zhang, W. Visual exploration of the spatiotemporal evolution law of overburden failure and mining-induced fractures: A case study of the Wangjialing coal mine in China. Minerals 2017, 7, 35. [Google Scholar] [CrossRef]
- Eremin, M.; Esterhuizen, G.; Smolin, I. Numerical simulation of roof cavings in several Kuzbass mines using finite-difference continuum damage mechanics approach. Int. J. Min. Sci. Technol. 2020, 30, 157–166. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, P. Unstable Shear Slip Failure and Seismic Potential Investigation Using DEM in Underground Mining. Mining Met. Explor. 2023, 40, 405–420. [Google Scholar] [CrossRef]
- Pang, L.; Liu, W.; Qin, Y. Analysis of main controlling factors of overburden failure in coal mining under thick coal seam geological conditions. Geotech. Geol. Eng. 2020, 39, 883–896. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, S.; Liao, J.; Li, L.; Jia, J.; Tang, Q.; Li, X.; Gao, C. Reasonable Working-Face Size Based on Full Mining of Overburden Failure. Sustainability 2023, 15, 3351. [Google Scholar] [CrossRef]
- Sui, W.; Hang, Y.; Ma, L.; Wu, Z.; Zhou, Y.; Long, G.; Wei, L. Interactions of overburden failure zones due to multiple-seam mining using longwall caving. Bull. Eng. Geol. Environ. 2014, 74, 1019–1035. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Li, S.C.; Guo, X.H.; Li, Y.; Wang, H.P. Research and development of new typed cementitious geotechnical similar material for iron crystal sand and its application. Yantu Lixue/Rock Soil Mech. 2008, 29, 2126–2130. [Google Scholar]
- RAYLEIGH. The Principle of Similitude. Nature 1915, 95, 66–68. [Google Scholar] [CrossRef]
- Williams, J.H. Dimensional Analysis: The Great Principle of Similitude; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Tao, Z.; Zhang, T.; Zhu, D.; Gong, W.; He, M.; Ferreira, T. Physical Modeling Test on Deformation and Failure of Rock Slope with New Support System. Adv. Civ. Eng. 2020, 2020, 8825220. [Google Scholar] [CrossRef]
- Conejo, A.N. Scaling and Similarity. Fundamentals of Dimensional Analysis: Theory and Applications in Metallurgy; Conejo, A.N., Ed.; Springer: Singapore, 2021; pp. 323–345. [Google Scholar]
- Hai-Feng, L.; Kai, Z.; Jin-Long, Y.; Ai-Chao, W. A study on the optimal selection of similar materials for the physical simulation experiment based on rock mineral components. Eng. Fail. Anal. 2022, 140, 106607. [Google Scholar] [CrossRef]
No | Geological Type | Thickness (m) | Young’s Modulus (×103 MPa) | Poisson’s Ratio | Cohesion (MPa) | The Angle of Internal Friction (°) |
---|---|---|---|---|---|---|
1 | Mudstone | 8 | 0.32 | 0.27 | 1.45 | 31.5 |
2 | Siltstone | 15 | 0.22 | 0.29 | 1.38 | 30.7 |
3 | Interbedded mudstone | 15 | 0.97 | 0.26 | 2.68 | 32.5 |
4 | Fine sandstone (SKS) | 10 | 4.79 | 0.25 | 7.60 | 33.6 |
5 | Mudstone | 8 | 3.16 | 0.24 | 4.42 | 34.8 |
6 | Siltstone | 4 | 2.58 | 0.28 | 2.8 | 32 |
7 | Sandstone | 3 | 2.79 | 0.26 | 2.5 | 31 |
8 | Fine sandstone (PKS) | 6 | 10.05 | 0.23 | 13.87 | 37.5 |
9 | Seam | 6 | 0.99 | 0.25 | 2.00 | 30.0 |
10 | Fine sandstone | 10 | 11.68 | 0.22 | 14.04 | 35.4 |
Group | Sub- Group | Change | Factors | Study Aim | ||
---|---|---|---|---|---|---|
Young’s Modulus | Mining Height | Advancing Rate | ||||
Control group X | - | - | 10,050 | 6 | 6 | Comparison |
Group A | A1 | +10% | 11,055 | 6 | 6 | Sensitivity of elastic modulus |
A2 | +20% | 12,060 | 6 | 6 | ||
A3 | −10% | 9045 | 6 | 6 | ||
A4 | −20% | 8040 | 6 | 6 | ||
Group B | B1 | +50% | 10,050 | 9 | 6 | Sensitivity of mining height |
B2 | +100% | 10,050 | 12 | 6 | ||
B3 | −50% | 10,050 | 3 | 6 | ||
Group C | C1 | +50% | 10,050 | 6 | 9 | Sensitivity of advancing rate |
C2 | +100% | 10,050 | 6 | 12 | ||
C3 | −50% | 10,050 | 6 | 3 |
Layer | Simulated Material | Young’s Modulus (MPa) | Sand/Lime/Gypsum | Cohesion (kPa) | Internal Friction Angle (°) | UCS (MPa) |
---|---|---|---|---|---|---|
1 | Material I | 43 | 26:1:1 | 16 | 30 | 55 |
2 | Material II | 52 | 26:1:2 | 19 | 32 | 68 |
3 | Material III | 65 | 26:2:1 | 24 | 33 | 88 |
4 | Material IV | 72 | 26:2:2 | 28 | 35 | 107 |
5 | Material V | 73 | 26:2:2.5 | 29 | 35 | 111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, W.; Zhang, Z. Simulation of Strata Failure and Settlement in the Mining Process Using Numerical and Physical Methods. Appl. Sci. 2025, 15, 8706. https://doi.org/10.3390/app15158706
Wang X, Li W, Zhang Z. Simulation of Strata Failure and Settlement in the Mining Process Using Numerical and Physical Methods. Applied Sciences. 2025; 15(15):8706. https://doi.org/10.3390/app15158706
Chicago/Turabian StyleWang, Xin, Wenshuai Li, and Zhijie Zhang. 2025. "Simulation of Strata Failure and Settlement in the Mining Process Using Numerical and Physical Methods" Applied Sciences 15, no. 15: 8706. https://doi.org/10.3390/app15158706
APA StyleWang, X., Li, W., & Zhang, Z. (2025). Simulation of Strata Failure and Settlement in the Mining Process Using Numerical and Physical Methods. Applied Sciences, 15(15), 8706. https://doi.org/10.3390/app15158706