Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions
Abstract
1. Introduction
2. Theoretical Background
2.1. Regularization and Variational Formulation for Brittle Fracture
2.2. Governing Equation for PFM
2.3. Energy Decomposition and Driving Force of Phase-Field Evolution
3. Numerical Implementation
3.1. Finite Element Discretization
3.2. COMSOL Implementation
4. Numerical Examples
4.1. Heat Conduction
4.2. Three-Point Bending Test
4.3. Cryogenic Thermal Shock
4.4. Thermal Fracturing Due to Rock Heterogeneity
5. Conclusions
- The developed coupled thermo-mechanical phase-field model (TM-PFM) demonstrates a pronounced capability for accurately capturing the complete evolution of thermal fractures in reservoir rocks.
- During initial thermal shock, the substantial temperature difference induces a significant temperature gradient at the contact boundary within an extremely short duration. This rapid thermal loading generates immense thermal stresses. To relieve these stresses and minimize the system’s total energy, numerous short cracks initiate along the convective boundary. As the cryogenic region propagates inwards, these cracks undergo competition, evolving into cracks with diverse lengths and morphologies.
- Under thermal shock conditions, crack density progressively increases with higher heat transfer coefficients, while crack spacing decreases correspondingly. This phenomenon stems from the fact that a larger heat transfer coefficient accelerates the boundary cooling rate, exacerbating the temperature gradient and consequently the thermal stress magnitude.
- Elevated temperatures cause reservoir sandstone to exhibit differential thermal expansion due to mineral heterogeneity, inducing significant thermal stresses. Thermal cracks initiate once these stresses exceed the mineral strength. For the reservoir sandstone studied, 400 °C represents the threshold temperature for thermal crack initiation. Below this temperature, cracking is minimal, however, exceeding 400 °C triggers a marked increase in crack density.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horseman, S.T.; McEwen, T.J. Thermal constraints on disposal of heat-emitting waste in argillaceous rocks. Eng. Geol. 1996, 41, 5–16. [Google Scholar] [CrossRef]
- Otto, C.; Kempka, T. Thermo-mechanical Simulations Confirm: Temperature-dependent Mudrock Properties are Nice to have in Far-field Environmental Assessments of Underground Coal Gasification. Energy Procedia 2015, 76, 582–591. [Google Scholar] [CrossRef]
- Liu, X.; Lu, W.; Li, M.; Zeng, N.; Li, T. The Thermal Effect on the Physical Properties and Corresponding Permeability Evolution of the Heat-Treated Sandstones. Geofluids 2020, 2020, 8838325. [Google Scholar] [CrossRef]
- Wang, G.; Sun, F.; Wang, R.; Cao, T. Simulation of cryogenic fracturing of rock-like materials using material point method. J. Nat. Gas Sci. Eng. 2021, 96, 104300. [Google Scholar] [CrossRef]
- Li, M.; Liu, X. Effect of Thermal Treatment on the Physical and Mechanical Properties of Sandstone: Insights from Experiments and Simulations. Rock Mech. Rock Eng. 2022, 55, 3171–3194. [Google Scholar] [CrossRef]
- Yang, S.-Q.; Ranjith, P.G.; Jing, H.-W.; Tian, W.-L.; Ju, Y. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 2017, 65, 180–197. [Google Scholar] [CrossRef]
- Chen, Y.F.; Hu, S.H.; Wei, K.; Hu, R.; Zhou, C.B.; Jing, L.R. Experimental characterization and micromechanical modeling of damage-induced permeability variation in Beishan granite. Int. J. Rock Mech. Min. 2014, 71, 64–76. [Google Scholar] [CrossRef]
- Li, K.; Zhou, S. Numerical investigation of multizone hydraulic fracture propagation in porous media: New insights from a phase field method. J. Nat. Gas Sci. Eng. 2019, 66, 42–59. [Google Scholar] [CrossRef]
- Li, M.; Liu, X. Experimental and numerical investigation of the failure mechanism and permeability evolution of sandstone based on hydro-mechanical coupling. J. Nat. Gas Sci. Eng. 2021, 95, 104240. [Google Scholar] [CrossRef]
- Kumari, W.G.P.; Ranjith, P.G.; Perera, M.S.A.; Chen, B.K.; Abdulagatov, I.M. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Eng. Geol. 2017, 229, 31–44. [Google Scholar] [CrossRef]
- Wang, F.; Konietzky, H.; Herbst, M. Influence of heterogeneity on thermo-mechanical behaviour of rocks. Comput. Geotech. 2019, 116, 103184. [Google Scholar] [CrossRef]
- Li, J.; Song, F.; Jiang, C. Direct numerical simulations on crack formation in ceramic materials under thermal shock by using a non-local fracture model. J. Eur. Ceram. Soc. 2013, 33, 2677–2687. [Google Scholar] [CrossRef]
- Zhao, Z. Thermal Influence on Mechanical Properties of Granite: A Microcracking Perspective. Rock Mech. Rock Eng. 2015, 49, 747–762. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Weng, L. Thermal-Stress-Aperture Coupled Model for Analyzing the Thermal Failure of Fractured Rock Mass. Int. J. Geomech. 2020, 20, 04020176. [Google Scholar] [CrossRef]
- Tang, S.B.; Zhang, H.; Tang, C.A.; Liu, H.Y. Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock. Int. J. Solids Struct. 2016, 80, 520–531. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, H. A coupled thermo-mechanical model based on the combined finite-discrete element method for simulating thermal cracking of rock. Int. J. Rock Mech. Min. 2017, 91, 170–178. [Google Scholar] [CrossRef]
- Yan, C.Z.; Fan, H.W.; Zheng, Y.C.; Zhao, Y.J.; Ning, F.L. Simulation of the thermal shock of brittle materials using the finite-discrete element method. Eng. Anal. Bound. Elem. 2020, 115, 142–155. [Google Scholar] [CrossRef]
- Ngo, D.T.; Pellet, F.L. Numerical modeling of thermally-induced fractures in a large rock salt mass. J. Rock Mech. Geotech. 2018, 10, 844–855. [Google Scholar] [CrossRef]
- Wang, Y.T.; Zhou, X.P.; Shou, Y.D. The modeling of crack propagation and coalescence in rocks under uniaxial compression using the novel conjugated bond-based peridynamics. Int. J. Mech. Sci. 2017, 128, 614–643. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, S.-Q.; Tian, W.-L. Peridynamic simulation of fracture mechanical behaviour of granite specimen under real-time temperature and post-temperature treatments. Int. J. Rock Mech. Min. 2021, 138, 104573. [Google Scholar] [CrossRef]
- Miehe, C.; Hofacker, M.; Welschinger, F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 2010, 199, 2765–2778. [Google Scholar] [CrossRef]
- Zhou, S.; Zhuang, X. Phase field modeling of hydraulic fracture propagation in transversely isotropic poroelastic media. Acta Geotech. 2020, 15, 2599–2618. [Google Scholar] [CrossRef]
- Yi, D.; Yi, L.; Yang, Z.; Meng, Z.; Li, X.; Yang, C.; Zhang, D. Coupled thermo-hydro-mechanical-phase field modelling for hydraulic fracturing in thermo-poroelastic media. Comput. Geotech. 2024, 166, 105949. [Google Scholar] [CrossRef]
- Mollaali, M.; Yoshioka, K.; Lu, R.; Montoya, V.; Vilarrasa, V.; Kolditz, O. Variational Phase-Field Fracture Approach in Reactive Porous Media. Int. J. Numer. Meth. Eng. 2025, 126, e7621. [Google Scholar] [CrossRef]
- Bourdin, B.; Francfort, G.A.; Marigo, J.-J. The Variational Approach to Fracture. J. Elast. 2008, 91, 5–148. [Google Scholar] [CrossRef]
- Borden, M.J.; Verhoosel, C.V.; Scott, M.A.; Hughes, T.J.R.; Landis, C.M. A phase-field description of dynamic brittle fracture. Comput. Methods Appl. Mech. Eng. 2012, 217, 77–95. [Google Scholar] [CrossRef]
- Wu, J.-Y. A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J. Mech. Phys. Solids 2017, 103, 72–99. [Google Scholar] [CrossRef]
- Zhang, X.; Sloan, S.W.; Vignes, C.; Sheng, D. A modification of the phase-field model for mixed mode crack propagation in rock-like materials. Comput. Methods Appl. Mech. Eng. 2017, 322, 123–136. [Google Scholar] [CrossRef]
- Miehe, C.; Hofacker, M.; Schänzel, L.M.; Aldakheel, F. Phase field modeling of fracture in multi-physics problems. Part. II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic–plastic solids. Comput. Methods Appl. Mech. Eng. 2015, 294, 486–522. [Google Scholar] [CrossRef]
- Chu, D.; Li, X.; Liu, Z. Study the dynamic crack path in brittle material under thermal shock loading by phase field modeling. Int. J. Fract. 2017, 208, 115–130. [Google Scholar] [CrossRef]
- Miao, X.-Y.; Kolditz, O.; Nagel, T. Modelling thermal performance degradation of high and low-temperature solid thermal energy storage due to cracking processes using a phase-field approach. Energy Convers. Manag. 2019, 180, 977–989. [Google Scholar] [CrossRef]
- Wang, T.; Ye, X.; Liu, Z.; Liu, X.; Chu, D.; Zhuang, Z. A phase-field model of thermo-elastic coupled brittle fracture with explicit time integration. Comput. Mech. 2020, 65, 1305–1321. [Google Scholar] [CrossRef]
- Li, D.; Li, P.; Li, W.; Li, W.; Zhou, K. Three-dimensional phase-field modeling of temperature-dependent thermal shock-induced fracture in ceramic materials. Eng. Fract. Mech. 2022, 268, 108444. [Google Scholar] [CrossRef]
- Zhou, S.; Rabczuk, T.; Zhuang, X. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Adv. Eng. Softw. 2018, 122, 31–49. [Google Scholar] [CrossRef]
- Liu, J.; Xue, Y.; Zhang, Q.; Yao, K.; Liang, X.; Wang, S. Micro-cracking behavior of shale matrix during thermal recovery: Insights from phase-field modeling. Eng. Fract. Mech. 2020, 239, 107301. [Google Scholar] [CrossRef]
- Gill, S.P.A. A damage model for the frictional shear failure of brittle materials in compression. Comput. Methods Appl. Mech. Eng. 2021, 385, 114048. [Google Scholar] [CrossRef]
- Zhou, Z.; Bi, J.; Zhao, Y.; Wang, C.; Zhang, Y. Thermal-mechanical coupling smooth particle hydrodynamics-phase field method modelling of cracking in rocks. Comput. Geotech. 2024, 173, 106476. [Google Scholar] [CrossRef]
- Griffith, A.A. The Phenomena of Rupture and Flow in Solids. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1920, A221, 163–198. [Google Scholar]
- Francfort, G.A.; Marigo, J.J. Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 1998, 46, 1319–1342. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Waldmann, D.; Bui, T.Q. Computational chemo-thermo-mechanical coupling phase-field model for complex fracture induced by early-age shrinkage and hydration heat in cement-based materials. Comput. Methods Appl. Mech. Eng. 2019, 348, 1–28. [Google Scholar] [CrossRef]
- Amor, H.; Marigo, J.-J.; Maurini, C. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments. J. Mech. Phys. Solids 2009, 57, 1209–1229. [Google Scholar] [CrossRef]
- Spetz, A.; Denzer, R.; Tudisco, E.; Dahlblom, O. A Modified Phase-Field Fracture Model for Simulation of Mixed Mode Brittle Fractures and Compressive Cracks in Porous Rock. Rock Mech. Rock Eng. 2021, 54, 5375–5388. [Google Scholar] [CrossRef]
- Masri, M.; Sibai, M.; Shao, J.F.; Mainguy, M. Experimental investigation of the effect of temperature on the mechanical behavior of Tournemire shale. Int. J. Rock Mech. Min. 2014, 70, 185–191. [Google Scholar] [CrossRef]
- Zhou, S.; Zhuang, X.; Rabczuk, T. Phase field modeling of brittle compressive-shear fractures in rock-like materials: A new driving force and a hybrid formulation. Comput. Methods Appl. Mech. Eng. 2019, 355, 729–752. [Google Scholar] [CrossRef]
- Wang, Y.-T.; Zhou, X.-P. Peridynamic simulation of thermal failure behaviors in rocks subjected to heating from boreholes. Int. J. Rock Mech. Min. 2019, 117, 31–48. [Google Scholar] [CrossRef]
- Liu, G.; Li, Q.; Msekh, M.A.; Zuo, Z. Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field model. Comput. Mater. Sci. 2016, 121, 35–47. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Peng, C.; Wu, W. A thermodynamically consistent phase field model for mixed-mode fracture in rock-like materials. Comput. Methods Appl. Mech. Eng. 2022, 392, 114642. [Google Scholar] [CrossRef]
- Jiang, C.P.; Wu, X.F.; Li, J.; Song, F.; Shao, Y.F.; Xu, X.H.; Yan, P. A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock. Acta Materialia 2012, 60, 4540–4550. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, S.-Q.; Chen, M. Peridynamic simulation on fracture mechanical behavior of granite containing a single fissure after thermal cycling treatment. Comput. Geotech. 2020, 120, 103414. [Google Scholar] [CrossRef]
Mineral | Quartz | Feldspar | Amphibole | Clay Minerals |
---|---|---|---|---|
Content (%) | 40.14 | 30.75 | 15.16 | 13.95 |
(GPa) | 12 | 8 | 10 | 8 |
0.16 | 0.19 | 0.23 | 0.22 | |
(N/m) | 2.56 | 1.19 | 1.15 | 0.76 |
(kg/m3) | 2650 | 2570 | 2650 | 2410 |
(W/(m·K)) | 7.69 | 2.31 | 3.00 | 2.15 |
(J/(kg·K)) | 700 | 630 | 800 | 700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, G.; Guo, D.; Zhong, W.; Du, L.; Mao, X.; Li, M. Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions. Appl. Sci. 2025, 15, 8693. https://doi.org/10.3390/app15158693
Tang G, Guo D, Zhong W, Du L, Mao X, Li M. Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions. Applied Sciences. 2025; 15(15):8693. https://doi.org/10.3390/app15158693
Chicago/Turabian StyleTang, Guo, Dianbin Guo, Wei Zhong, Li Du, Xiang Mao, and Man Li. 2025. "Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions" Applied Sciences 15, no. 15: 8693. https://doi.org/10.3390/app15158693
APA StyleTang, G., Guo, D., Zhong, W., Du, L., Mao, X., & Li, M. (2025). Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions. Applied Sciences, 15(15), 8693. https://doi.org/10.3390/app15158693