Effect of Biostimulant Formulation on Yield, Quality, and Nitrate Accumulation in Diplotaxis tenuifolia Cultivars Under Different Weather Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Growing Conditions and Experimental Protocol
2.2. Yield Determination and Sample Preparation
2.3. Color Parameters
2.4. Antioxidant Activity
2.5. Organic Acids and Mineral Elements
2.5.1. Nitrogen Use Efficiency (NUE) Related to Yield Calculation
2.5.2. Statistical Analysis
3. Results
4. Discussion
4.1. Yield, Quality, Antioxidants, and Mineral Composition
4.2. Economic Feasibility
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez-Sanchez, A.; Allende, A.; Bennett, R.N.; Ferreres, F.; Gil, M.I. Microbial, nutritional and sensory quality of rocket leaves as affected by different sanitizers. Postharvest Biol. Technol. 2007, 42, 86–97. [Google Scholar] [CrossRef]
- Bianco, V.V.; Santamaria, P.; Elia, A. Nutritional value and nitrate content in edible wild species used in southern Italy. Acta Hortic. 2009, 841, 293–300. [Google Scholar] [CrossRef]
- Santamaria, P.; Elia, A.; Serio, F. Effect of nitrogen form on yield and mineral composition of rocket. Acta Hortic. 2001, 548, 377–382. [Google Scholar]
- Martínez-Sánchez, A.; Llorach, R.; Gil, M.I.; Ferreres, F. Identification of new flavonoid glycosides and flavonoid profiles to characterize rocket leafy salads (Eruca vesicaria and Diplotaxis tenuifolia). J. Agric. Food Chem. 2008, 56, 1356–1363. [Google Scholar] [CrossRef]
- Mineată, I.; Murariu, O.C.; Sîrbu, S.; Tallarita, A.V.; Caruso, G.; Jităreanu, C.D. Effects of Ripening Phase and Cultivar under Sustainable Management on Fruit Quality and Antioxidants of Sweet Cherry. Horticulturae 2024, 10, 720. [Google Scholar] [CrossRef]
- Cavaiuolo, M.; Ferrante, A. Nitrates and glucosinolates as strong determinants of the nutritional quality in rocket leafy salads. Nutrients 2014, 6, 1519–1538. [Google Scholar] [CrossRef]
- Burns, I.G.; Zhang, K.; Turner, M.K.; Meacham, M.; Al-Redhiman, K.; Lynn, J.; Broadley, M.R.; Hand, P.; Pink, D. Screening for genotype and environment effects on nitrate accumulation in 24 species of young lettuce. J. Sci. Food Agric. 2011, 91, 553–562. [Google Scholar] [CrossRef]
- Weightman, R.M.; Huckle, A.J.; Roques, S.E.; Ginsburg, D.; Dyer, C.J. Factors influencing tissue nitrate concentration in field-grown wild rocket (Diplotaxis tenuifolia) in southern England. Food Addit. Contam. Part A 2012, 29, 1425–1435. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) No. 1258/2011 of 2 December 2011 amending Regulation (EC) No. 1881/2006 as regards maximum levels for nitrates in foodstuffs. Off. J. Eur. Union 2011, L320, 15–17. [Google Scholar]
- Reinink, K.; Groenwold, R.; Bootsma, A. Genotypical differences in nitrate content in Lactuca sativa L. and related species and correlation with dry matter content. Euphytica 1987, 36, 11–18. [Google Scholar] [CrossRef]
- Escobar-Gutiérrez, A.J.; Burns, I.G.; Lee, A.; Edmondson, R.N. Screening lettuce cultivars for low nitrate content during summer and winter production. J. Hortic. Sci. Biotechnol. 2002, 77, 232–237. [Google Scholar] [CrossRef]
- Blom-Zandstra, M.; Eenink, A.H. Nitrate concentration and reduction in different genotypes of lettuce. J. Am. Soc. Hortic. Sci. 1986, 111, 908–911. [Google Scholar] [CrossRef]
- Curtis, I.S.; Power, J.B.; de Laat, A.M.M.; Caboche, M.; Davey, M.R. Expression of a chimeric nitrate reductase gene in transgenic lettuce reduces nitrate in leaves. Plant Cell Rep. 1999, 18, 889–896. [Google Scholar] [CrossRef]
- Islam, M.S. Nitrate transport in plant through soil-root-shoot systems: A molecular view. J. Plant Nutr. 2022, 45, 1748–1763. [Google Scholar] [CrossRef]
- Engel, D.C.H.; Feltrim, D.; Rodrigues, M.; Baptistella, J.L.C.; Mazzafera, P. Application of Protein Hydrolysate Improved the Productivity of Soybean under Greenhouse Cultivation. Agriculture 2024, 14, 1205. [Google Scholar] [CrossRef]
- Chojnacka, K.; Michalak, I.; Dmytryk, A.; Gramza, M.; Słowiński, A.; Górecki, H. Algal extracts as plant growth biostimulants. In Marine Algae Extracts: Processes, Products, and Applications; Kim, S.-K., Chojnacka, K., Eds.; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2015; pp. 189–212. [Google Scholar] [CrossRef]
- Schiattone, M.I.; Boari, F.; Cantore, V.; Castronuovo, D.; Denora, M.; Di Venere, D.; Perniola, M.; Renna, M.; Sergio, L.; Candido, V. Effects of nitrogen, azoxystrobin and a biostimulant based on brown algae and yeast on wild rocket features at harvest and during storage. Agronomy 2021, 11, 2326. [Google Scholar] [CrossRef]
- Siringi, J.O.; Turoop, L.; Njonge, F. Biostimulant effect of spirulina (Arthrospira platensis) on lettuce (Lactuca sativa) cultivated under aquaponic system. SCIREA J. Biol. 2022, 7, 23–40. [Google Scholar] [CrossRef]
- Signore, A.; Bell, L.; Santamaria, P.; Wagstaff, C.; Van Labeke, M.C. Red light is effective in reducing nitrate concentration in rocket by increasing nitrate reductase activity, and contributes to increased total glucosinolates content. Front. Plant Sci. 2020, 11, 604. [Google Scholar] [CrossRef]
- Carillo, P.; De Micco, V.; Ciriello, M.; Formisano, L.; El-Nakhel, C.; Giordano, M.; Colla, G.; Rouphael, Y. Morpho-Anatomical, Physiological, and Mineral Composition Responses Induced by a Vegetal-Based Biostimulant at Three Rates of Foliar Application in Greenhouse Lettuce. Plants 2022, 11, 2030. [Google Scholar] [CrossRef]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 1999, 47, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Giordano, M.; El-Nakhel, C.; Cuciniello, A.; Cenvinzo, V.; Colla, G.; Rouphael, Y. Protein hydrolysate or plant extract-based biostimulants enhanced yield and quality performances of greenhouse perennial wall rocket grown in different seasons. Plants 2019, 8, 208. [Google Scholar] [CrossRef]
- Ciriello, M.; Campana, E.; Colla, G.; Rouphael, Y. An appraisal of nonmicrobial biostimulants’ impact on the productivity and mineral content of wild rocket (Diplotaxis tenuifolia (L.) DC.) cultivated under organic conditions. Plants 2024, 13, 1326. [Google Scholar] [CrossRef]
- Ebinezer, L.B.; Franchin, C.; Trentin, A.; Carletti, P.; Trevisan, S.; Agrawal, G.; Rakwal, R.; Quaggiotti, S.; Arrigoni, G.; Masi, A. Quantitative proteomics of maize roots treated with a protein hydrolysate: A comparative study with transcriptomics highlights the molecular mechanisms responsive to biostimulants. J. Agric. Food Chem. 2020, 68, 8427–8440. [Google Scholar] [CrossRef]
- Malécange, M.; Sergheraert, R.; Teulat, B.; Mounier, E.M.; Lothier, J.; Sakr, S. Biostimulant properties of protein hydrolysates: Recent advances and future challenges. Int. J. Mol. Sci. 2023, 24, 9714. [Google Scholar] [CrossRef]
- El-Shazoly, R.M.; Aloufi, A.S.; Fawzy, M.A. The potential use of Arthrospira (Spirulina platensis) as a biostimulant for drought tolerance in wheat (Triticum aestivum L.) for sustainable agriculture. J. Plant Growth Regul. 2024, 44, 686–703. [Google Scholar] [CrossRef]
- Mógor, Á.; Ördög, V.; Lima, G.P.P.; Molnár, Z.; Mógor, G. Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J. Appl. Phycol. 2018, 30, 453–460. [Google Scholar] [CrossRef]
- Arahou, F.; Lijassi, I.; Wahby, A.; Rhazi, L.; Arahou, M.; Wahby, I. Spirulina-based biostimulants for sustainable agriculture: Yield improvement and market trends. BioEnergy Res. 2023, 16, 1401–1416. [Google Scholar] [CrossRef]
- Tallarita, A.; Murariu, O.; Kopta, T.; Daniel, L.F.; Gomez, L.D.; Cozzolino, E.; Lombardi, P.; Russo, S.; Caruso, G. Yield, quality, antioxidants, and mineral composition of traditional Italian storage onion cultivars in response to protein hydrolysate and microalgae biostimulation. Horticulturae 2025, 11, 25. [Google Scholar] [CrossRef]
- Monterisi, S.; García-Pérez, P.; Buffagni, V.; Zuluaga, M.Y.A.; Ciriello, M.; Formisano, L.; El-Nakhel, C.; Cardarelli, M.; Colla, G.; Rouphael, Y.; et al. Unravelling the biostimulant activity of a protein hydrolysate in lettuce plants under optimal and low N availability: A multi-omics approach. Physiol. Plant. 2024, 176, e14357. [Google Scholar] [CrossRef]
- Sherinlincy, A.; Rafeekher, M.; Sarada, S. Evaluation of biostimulants in growbag culture of organic Amaranthus tricolor L. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2916–2922. [Google Scholar] [CrossRef]
- Zamljen, T.; Sircelj, H.; Veberič, R.; Hudina, M.; Slatnar, A. Impact of two brown seaweed (Ascophyllum nodosum L.) biostimulants on the quantity and quality of yield in cucumber (Cucumis sativus L.). Foods 2024, 13, 401. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Mou, B. Drench Application of Fish-derived Protein Hydrolysates Affects Lettuce Growth, Chlorophyll Content, and Gas Exchange. HortTechnology 2017, 27, 539–543. [Google Scholar] [CrossRef]
- Cerruti, P.; Campobenedetto, C.; Montrucchio, E.; Agliassa, C.; Contartese, V.; Acquadro, A.; Bertea, C.M. Antioxidant activity and comparative RNA-seq analysis support mitigating effects of an algae-based biostimulant on drought stress in tomato plants. Physiol. Plant. 2024, 176, e70007. [Google Scholar] [CrossRef]
- Al-Karaki, G.N.; Othman, Y. Effect of foliar application of amino acid biostimulants on growth, macronutrient, total phenol contents and antioxidant activity of soilless grown lettuce cultivars. S. Afr. J. Bot. 2023, 154, 225–231. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Karkanis, A.; Ntatsi, G.; Barros, L.; Ferreira, I.C.F.R. Successive harvesting affects yield, chemical composition and antioxidant activity of Cichorium spinosum L. Food Chem. 2017, 237, 83–90. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant action of protein hydrolysates: Unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef]
- Carillo, P.; Colla, G.; Fusco, G.M.; Dell’Aversana, E.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cozzolino, E.; Mori, M.; Reynaud, H.; et al. Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy 2019, 9, 450. [Google Scholar] [CrossRef]
- Sandhu, R.K.; Nandwani, D.; Nwosisi, S. Assessing seaweed extract as a biostimulant on the yield of organic leafy greens in Tennessee. J. Agric. Univ. P. R. 2021, 102, 53–64. [Google Scholar] [CrossRef]
- Paçuta, V.; Rašovský, M.; Michalska-Klimczak, B.; Wyszyński, Z. Grain yield and quality traits of durum wheat (Triticum durum Desf.) treated with seaweed- and humic acid-based biostimulants. Agronomy 2021, 11, 1270. [Google Scholar] [CrossRef]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Carillo, P.; Colla, G.; El-Nakhel, C.; Bonini, P.; D’Amelia, L.; Dell’Aversana, E.; Pannico, A.; Giordano, M.; Sifola, M.I.; Kyriacou, M.C.; et al. Biostimulant application with a tropical plant extract enhances Corchorus olitorius adaptation to sub-optimal nutrient regimens by improving physiological parameters. Agronomy 2019, 9, 249. [Google Scholar] [CrossRef]
- Fan, D.; Hodges, D.M.; Critchley, A.T.; Prithiviraj, B. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of spinach in vitro. Commun. Soil Sci. Plant Anal. 2013, 44, 1873–1884. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef]
- Caruso, G.; El-Nakhel, C.; Rouphael, Y.; Comite, E.; Lombardi, N.; Cuciniello, A.; Woo, S. Diplotaxis tenuifolia (L.) DC. yield and quality as influenced by cropping season, protein hydrolysates, and Trichoderma applications. Plants 2020, 9, 697. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Ferrante, A. Borage extracts affect wild rocket quality and influence nitrate and carbon metabolism. Physiol. Mol. Biol. Plants 2020, 26, 649–660. [Google Scholar] [CrossRef]
- Schiattone, M.I.; Boari, F.; Cantore, V.; Castronuovo, D.; Denora, M.; Di Venere, D.; Perniola, M.; Sergio, L.; Todorović, M.; Candido, V. Effect of water regime, nitrogen level and biostimulants application on yield and quality traits of wild rocket [Diplotaxis tenuifolia (L.) DC.]. Agric. Water Manag. 2023, 289, 108078. [Google Scholar] [CrossRef]
- Vernieri, P.; Borghesi, E.; Ferrante, A.; Magnani, G. Application of biostimulants in floating system for improving rocket quality. J. Food Agric. Environ. 2005, 3, 86–88. [Google Scholar]
- Candido, V.; Boari, F.; Cantore, V.; Castronuovo, D.; Di Venere, D.; Perniola, M.; Sergio, L.; Viggiani, R.; Schiattone, M.I. Interactive effect of nitrogen and azoxystrobin on yield, quality, nitrogen and water use efficiency of wild rocket in Southern Italy. Agronomy 2020, 10, 849. [Google Scholar] [CrossRef]
Experimental Treatment | Leaf Colorimetric Parameters | ||
---|---|---|---|
L* | a* | b* | |
Cultivar (Cv) | |||
Mars | 41.0 a | −14.9 | 22.0 |
Naples | 41.4 a | −14.6 | 21.9 |
Tricia | 41.0 a | −14.9 | 22.1 |
Venice | 38.6 b | −14.7 | 22.8 |
Olivetta | 40.9 a | −14.9 | 22.1 |
n.s. | n.s. | ||
Biostimulant formulation (B) | |||
Control | 38.7 b | −14.7 | 22.6 |
Cystoseira tamariscifolia | 39.7 b | −14.8 | 22.7 |
Protein hydrolysate | 44.0 a | −14.9 | 21.7 |
Spirulina platensis | 40.0 b | −14.8 | 21.8 |
n.s. | n.s. | ||
Crop cycle (Cy) | |||
Autumn | 40.6 | −14.8 | 22.2 |
Autumn–winter | 40.6 | −14.8 | 22.2 |
Winter | 40.6 | −14.8 | 22.2 |
n.s. | n.s. | n.s. | |
Interaction | |||
Cv × B | n.s. | n.s. | n.s. |
Cv × Cy | n.s. | n.s. | n.s. |
B × Cy | n.s. | n.s. | n.s. |
Biostimulant Formulation | Crop Cycle | Malate (g kg−1 d.w.) | Citrate (g kg−1 d.w.) |
---|---|---|---|
Control | Autumn | 9.1 c | 23.2 a |
Autumn–winter | 24.2 b | 10.3 ef | |
Winter | 6.1 def | 15.5 cde | |
Cystoseira tamariscifolia | Autumn | 8.3 cd | 20.7 abc |
Autumn–winter | 25.6 ab | 10.2 ef | |
Winter | 6.5 cdef | 17.8 bcd | |
Protein hydrolysate | Autumn | 7.5 cd | 22.2 ab |
Autumn–winter | 27.3 a | 8.8 f | |
Winter | 4.6 ef | 13.0 def | |
Spirulina platensis | Autumn | 6.8 cde | 16.4 cd |
Autumn–winter | 28.1 a | 10.3 ef | |
Winter | 4.0 f | 11.0 ef |
Experimental Treatment | HAA (mmol Ascorbic Acid eq. 100 g−1 f.w.) | LAA (mmol Trolox eq. 100 g−1 f.w.) |
---|---|---|
Cultivar (Cv) | ||
Mars | 0.09 b | 1.95 |
Naples | 0.24 a | 1.93 |
Tricia | 0.09 b | 1.94 |
Venice | 0.09 b | 1.96 |
Olivetta | 0.09 b | 1.93 |
n.s. | ||
Biostimulant formulation (B) | ||
Control | 0.09 b | 2.12 a |
Cystoseira tamariscifolia | 0.10 b | 1.92 ab |
Protein hydrolysate | 0.10 b | 1.90 b |
Spirulina platensis | 0.19 a | 1.82 c |
Crop cycle (Cy) | ||
Autumn | 0.12 | 1.94 |
Autumn–winter | 0.12 | 1.94 |
Winter | 0.12 | 1.94 |
n.s. | n.s. | |
Interaction | ||
Cv × B | n.s. | * |
Cv × Cy | n.s. | n.s. |
B × Cy | n.s. | n.s. |
Experimental Treatment | Chloride | Potassium | Calcium | Sodium | Ammonium | Magnesium |
---|---|---|---|---|---|---|
(g kg−1 d.w.) | ||||||
Cultivar (Cv) | ||||||
Mars | 17.6 b | 66.1 a | 24.3 ab | 5.0 ab | 3.9 b | 4.8 |
Naples | 21.0 a | 66.6 a | 24.0 ab | 4.4 c | 4.2 a | 4.9 |
Tricia | 18.6 ab | 65.0 ab | 25.8 a | 5.2 a | 2.6 d | 5.0 |
Venice | 19.0 ab | 61.4 b | 25.8 a | 4.4 c | 2.7 d | 4.9 |
Olivetta | 20.6 a | 62.0 b | 22.7 b | 4.5 bc | 3.4 c | 4.7 |
n.s. | ||||||
Biostimulant formulation (B) | ||||||
Control | 18.6 | 64.0 | 25.4 a | 4.6 | 3.1 b | 4.9 |
Cystoseira tamariscifolia | 19.3 | 64.2 | 24.9 ab | 4.8 | 3.3 ab | 4.8 |
Protein hydrolysate | 19.1 | 63.8 | 24.5 ab | 4.7 | 3.4 a | 4.8 |
Spirulina platensis | 20.5 | 65.0 | 23.4 b | 4.8 | 3.6 a | 4.7 |
n.s. | n.s. | n.s. | n.s. | |||
Crop cycle (Cy) | ||||||
Autumn | 20.8 a | 62.2 b | 25.8 a | 4.4 b | 3.9 a | 4.9 b |
Autumn–winter | 16.8 b | 66.6 a | 23.0 b | 5.3 a | 2.6 c | 5.1 a |
Winter | 20.3 a | 64.1 ab | 24.8 a | 4.4 b | 3.4 b | 4.5 b |
Interaction | ||||||
Cu × B | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Cu × Cy | n.s. | n.s. | n.s. | n.s. | * | n.s. |
B × Cy | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tallarita, A.V.; Simister, R.; Vecchietti, L.; Cozzolino, E.; Stoleru, V.; Murariu, O.C.; Maiello, R.; Cozzolino, G.; De Pascale, S.; Caruso, G. Effect of Biostimulant Formulation on Yield, Quality, and Nitrate Accumulation in Diplotaxis tenuifolia Cultivars Under Different Weather Conditions. Appl. Sci. 2025, 15, 8620. https://doi.org/10.3390/app15158620
Tallarita AV, Simister R, Vecchietti L, Cozzolino E, Stoleru V, Murariu OC, Maiello R, Cozzolino G, De Pascale S, Caruso G. Effect of Biostimulant Formulation on Yield, Quality, and Nitrate Accumulation in Diplotaxis tenuifolia Cultivars Under Different Weather Conditions. Applied Sciences. 2025; 15(15):8620. https://doi.org/10.3390/app15158620
Chicago/Turabian StyleTallarita, Alessio Vincenzo, Rachael Simister, Lorenzo Vecchietti, Eugenio Cozzolino, Vasile Stoleru, Otilia Cristina Murariu, Roberto Maiello, Giuseppe Cozzolino, Stefania De Pascale, and Gianluca Caruso. 2025. "Effect of Biostimulant Formulation on Yield, Quality, and Nitrate Accumulation in Diplotaxis tenuifolia Cultivars Under Different Weather Conditions" Applied Sciences 15, no. 15: 8620. https://doi.org/10.3390/app15158620
APA StyleTallarita, A. V., Simister, R., Vecchietti, L., Cozzolino, E., Stoleru, V., Murariu, O. C., Maiello, R., Cozzolino, G., De Pascale, S., & Caruso, G. (2025). Effect of Biostimulant Formulation on Yield, Quality, and Nitrate Accumulation in Diplotaxis tenuifolia Cultivars Under Different Weather Conditions. Applied Sciences, 15(15), 8620. https://doi.org/10.3390/app15158620