Machine Learning Prediction of CO2 Diffusion in Brine: Model Development and Salinity Influence Under Reservoir Conditions
Abstract
1. Introduction
2. Data Description
2.1. Modeling with RF, GBR, and XGBoost
2.2. Model Evaluation Metrics
3. Results and Discussion
3.1. Model Development and Evaluation
3.2. Visual Validation and Trend Analysis
3.3. Performance Comparison with Previous Studies
3.4. Input Variables Significance
3.5. Future Research Directions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holtz, M.H.; Nance, P.K.; Finley, R.J. Reduction of Greenhouse Gas Emissions through CO2 EOR in Texas. Environ. Geosci. 2001, 8, 187–199. [Google Scholar] [CrossRef]
- Mosavat, N.; Abedini, A.; Torabi, F. Phase Behaviour of CO2–Brine and CO2–Oil Systems for CO2 Storage and Enhanced Oil Recovery: Experimental Studies. Energy Procedia 2014, 63, 5631–5645. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Li, C.; Zhu, H.; Li, Z.; Wang, L.; Medina-Rodriguez, B.X. Unveil the controls on CO2 diffusivity in saline brines for geological carbon storage. Geoenergy Sci. Eng. 2025, 244, 213483. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, W.; Chen, M.; Xu, X.; Jiang, L.; Song, Y. Experimental Measurements of the Diffusion Coefficient and Effective Diffusion Coefficient of CO2-Brine under Offshore CO2 Storage Conditions. Energy Fuels 2023, 37, 19695–19703. [Google Scholar] [CrossRef]
- Rezk, M.G.; Foroozesh, J.; Abdulrahman, A.; Gholinezhad, J. CO2 Diffusion and Dispersion in Porous Media: Review of Advances in Experimental Measurements and Mathematical Models. Energy Fuels 2022, 36, 133–155. [Google Scholar] [CrossRef]
- Renner, T.A. Measurement and Correlation of Diffusion Coefficients for CO2 and Rich-Gas Applications. SPE Reserv. Eng. 1988, 3, 517–523. [Google Scholar] [CrossRef]
- Feng, Q.; Xing, X.; Wang, S.; Liu, G.; Qin, Y.; Zhang, J. CO2 diffusion in shale oil based on molecular simulation and pore network model. Fuel 2024, 359, 130332. [Google Scholar] [CrossRef]
- Secuianu, C.; Maitland, G.C.; Trusler, J.P.M.; Wakeham, W.A. Mutual diffusion coefficients of aqueous KCl at high pressures measured by the Taylor dispersion method. J. Chem. Eng. Data 2011, 56, 4840–4848. [Google Scholar] [CrossRef]
- Jimenez, M.; Dietrich, N.; Cockx, A.; Hébrard, G. Experimental study of CO2 diffusion coefficient measurement at a planar gas–liquid interface by planar laser-induced fluorescence with inhibition. AIChE J. 2013, 59, 325–333. [Google Scholar] [CrossRef]
- Riazi, M.R.; Whitson, C.H. Estimating Diffusion Coefficients of Dense Fluids. Ind. Eng. Chem. Res. 1993, 32, 3081–3088. [Google Scholar] [CrossRef]
- Kumar, N.; Sampaio, M.A.; Ojha, K.; Hoteit, H.; Mandal, A. Fundamental aspects, mechanisms and emerging possibilities of CO2 miscible flooding in enhanced oil recovery: A review. Fuel 2022, 330, 125633. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, S.; Ren, S.; Zhang, L.; Li, J. The modeling and experimental studies on the diffusion coefficient of CO2 in saline water. J. CO2 Util. 2015, 11, 49–53. [Google Scholar] [CrossRef]
- Yang, C.; Gu, Y. Accelerated mass transfer of CO2 in reservoir brine due to density-driven natural convection at high pressures and elevated temperatures. Ind. Eng. Chem. Res. 2006, 45, 2430–2436. [Google Scholar] [CrossRef]
- Lu, W.; Guo, H.; Chou, I.M.; Burruss, R.C.; Li, L. Determination of diffusion coefficients of carbon dioxide in water between 268 and 473 K in a high-pressure capillary optical cell within situ Raman spectroscopic measurements. Geochim. Cosmochim. Acta 2013, 115, 183–204. [Google Scholar] [CrossRef]
- Zarghami, S.; Boukadi, F.; Al-Wahaibi, Y. Diffusion of carbon dioxide in formation water as a result of CO2 enhanced oil recovery and CO2 sequestration. J. Pet. Explor. Prod. Technol. 2017, 7, 161–168. [Google Scholar] [CrossRef]
- Cadogan, S.P.; Maitland, G.C.; Trusler, J.P.M. Diffusion coefficients of CO2 and N2 in water at temperatures between 298.15 K and 423.15 K at pressures up to 45 MPa. J. Chem. Eng. Data 2014, 59, 519–525. [Google Scholar] [CrossRef]
- Ratcliff, G.A.; Holdcroft, J.G. Diffusivities of gases in aqueous electrolyte solutions. Trans. Inst. Chem. Eng. 1963, 41, 315–319. [Google Scholar]
- Sell, A.; Fadaei, H.; Kim, M.; Sinton, D. Micro fluidic Approach for Reservoir-Speci fi c Analysis. Environ. Sci. Technol. 2013, 47, 71–78. [Google Scholar] [CrossRef]
- Tewes, F.; Boury, F. Formation and rheological properties of the supercritical CO2—Water pure interface. J. Phys. Chem. B 2005, 109, 3990–3997. [Google Scholar] [CrossRef] [PubMed]
- Hirai, S.; Okazaki, K.; Yazawa, H.; Ito, H.; Tabe, Y.; Hijikata, K. Measurement of CO2 diffusion coefficient and application of LIF in pressurized water. Energy 1997, 22, 363–367. [Google Scholar] [CrossRef]
- Azin, R.; Mahmoudy, M.; Raad, S.M.J.; Osfouri, S. Measurement and modeling of CO2 diffusion coefficient in saline aquifer at reservoir conditions. Cent. Eur. J. Eng. 2013, 3, 585–594. [Google Scholar] [CrossRef]
- Yang, C.; Gu, Y. A New Method for Measuring Solvent Diffusivity in Heavy Oil by Dynamic Pendant Drop Shape Analysis (DPDSA). 2006. Available online: https://onepetro.org/SPEATCE/proceedings-abstract/03ATCE/03ATCE/SPE-84202-MS/137562 (accessed on 8 February 2025).
- Cadogan, S.P.; Hallett, J.P.; Maitland, G.C.; Trusler, J.P.M. Diffusion coefficients of carbon dioxide in brines measured using 13C pulsed-field gradient nuclear magnetic resonance. J. Chem. Eng. Data 2015, 60, 181–184. [Google Scholar] [CrossRef]
- Wilke, C.R.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
- Garcia-Ratés, M.; De Hemptinne, J.C.; Avalos, J.B.; Nieto-Draghi, C. Molecular modeling of diffusion coefficient and ionic conductivity of CO2 in aqueous ionic solutions. J. Phys. Chem. B 2012, 116, 2787–2800. [Google Scholar] [CrossRef]
- Numbere, D.; Brigham, W.E.; Standing, M.B. Correlations for Physical Properties of Petroleum Reservoir Brines. Master’s Thesis, Stanford University, Stanford, CA, USA, 1977. [Google Scholar] [CrossRef]
- Omrani, S.; Ghasemi, M.; Mahmoodpour, S.; Shafiei, A.; Rostami, B. Insights from molecular dynamics on CO2 diffusion coefficient in saline water over a wide range of temperatures, pressures, and salinity: CO2 geological storage implications. J. Mol. Liq. 2022, 345, 117868. [Google Scholar] [CrossRef]
- Tewes, F.; Boury, F. Dynamic and rheological properties of classic and macromolecular surfactant at the supercritical CO2–H2O interface. J. Supercrit. Fluids 2006, 37, 375–383. [Google Scholar] [CrossRef]
- Moghaddam, R.N.; Rostami, B.; Pourafshary, P. A method for dissolution rate quantification of convection-diffusion mechanism during CO2 storage in saline aquifers. Spec. Top. Rev. Porous Media 2013, 4, 13–21. [Google Scholar] [CrossRef]
- Belgodere, C.; Dubessy, J.; Vautrin, D.; Caumon, M.-C.; Sterpenich, J.; Pironon, J.; Robert, P.; Randi, A.; Birat, J.-P. Experimental determination of CO2 diffusion coefficient in aqueous solutions under pressure at room temperature via Raman spectroscopy: Impact of salinity (NaCl). J. Raman Spectrosc. 2015, 46, 1025–1032. [Google Scholar] [CrossRef]
- Helmy, T.; Al-Azani, S.; Bin-Obaidellah, O. A machine learning-based approach to estimate the CPU-burst time for processes in the computational grids. In Proceedings of the AIMS 2015, 3rd International Conference on Artificial Intelligence, Modelling and Simulation, Kota Kinabalu, Malaysia, 2–4 December 2015; pp. 3–8. [Google Scholar] [CrossRef]
- Feng, Q.; Cui, R.; Wang, S.; Zhang, J.; Jiang, Z. Estimation of CO2 diffusivity in brine by use of the genetic algorithm and mixed kernels-based support vector machine model. J. Energy Resour. Technol. 2019, 141, 041001. [Google Scholar] [CrossRef]
- Bemani, A.; Baghban, A.; Mosavi, A.; S, S. Estimating CO2-Brine diffusivity using hybrid models of ANFIS and evolutionary algorithms. Eng. Appl. Comput. Fluid Mech. 2020, 14, 818–834. [Google Scholar] [CrossRef]
- Amar, M.N.; Ghahfarokhi, A.J. Prediction of CO2 diffusivity in brine using white-box machine learning. J. Pet. Sci. Eng. 2020, 190, 107037. [Google Scholar] [CrossRef]
- Kouhi, M.M.; Kahzadvand, K.; Shahin, M.; Shafiei, A. New connectionist tools for prediction of CO2 diffusion coefficient in brine at high pressure and temperature ─ implications for CO2 sequestration in deep saline aquifers. Fuel 2025, 384, 134000. [Google Scholar] [CrossRef]
- Raad, S.M.J.; Azin, R.; Osfouri, S. Measurement of CO2 diffusivity in synthetic and saline aquifer solutions at reservoir conditions: The role of ion interactions. Heat Mass Transf. 2015, 51, 1587–1595. [Google Scholar] [CrossRef]
- Ahmadi, H.; Jamialahmadi, M.; Soulgani, B.S.; Dinarvand, N.; Sharafi, M.S. Experimental study and modelling on diffusion coefficient of CO2 in water. Fluid Phase Equilib. 2020, 523, 112584. [Google Scholar] [CrossRef]
- Tamimi, A.; Rinker, E.B.; Sandall, O.C. Diffusion Coefficients for Hydrogen Sulfide, Carbon Dioxide, and Nitrous Oxide in Water over the Temperature Range 293–368 K. J. Chem. Eng. Data 1994, 39, 330–332. [Google Scholar] [CrossRef]
- Polat, H.M.; Coelho, F.M.; Vlugt, T.J.H.; Franco, L.F.M.; Tsimpanogiannis, I.N.; Moultos, O.A. Diffusivity of CO2 in H2O: A Review of Experimental Studies and Molecular Simulations in the Bulk and in Confinement. J. Chem. Eng. Data 2023, 69, 3329. [Google Scholar] [CrossRef]
- Basilio, E.; Addassi, M.; Al-Juaied, M.; Hassanizadeh, S.M.; Hoteit, H. Improved pressure decay method for measuring CO2-water diffusion coefficient without convection interference. Adv. Water Resour. 2024, 183, 104608. [Google Scholar] [CrossRef]
- Mutoru, J.W.; Leahy-Dios, A.; Firoozabadi, A. Modeling infinite dilution and Fickian diffusion coefficients of carbon dioxide in water. AIChE J. 2011, 57, 1617–1627. [Google Scholar] [CrossRef]
- Caiola, G.; Reiter, J.P. Random Forests for Generating Partially Synthetic, Categorical Data. Trans. Data Priv. 2010, 3, 27–42. [Google Scholar]
- Probst, P.; Boulesteix, A.-L. To Tune or Not to Tune the Number of Trees in Random Forest. J. Mach. Learn. Res. 2018, 18, 1–18. [Google Scholar]
- Rathakrishnan, V.; Beddu, S.B.; Ahmed, A.N. Predicting compressive strength of high-performance concrete with high volume ground granulated blast-furnace slag replacement using boosting machine learning algorithms. Sci. Rep. 2022, 12, 9539. [Google Scholar] [CrossRef] [PubMed]
- Rather, I.H.; Kumar, S.; Gandomi, A.H. Breaking the data barrier: A review of deep learning techniques for democratizing AI with small datasets. Artif. Intell. Rev. 2024, 57, 226. [Google Scholar] [CrossRef]
- Fang, Y.; Gao, S.; Tai, D.; Middaugh, C.R.; Fang, J. Identification of properties important to protein aggregation using feature selection. BMC Bioinform. 2013, 14, 314. [Google Scholar] [CrossRef] [PubMed]
Source | Model | Data Points (Train/Test) | Parameters (Ranges) | Train Metrics | Test Metrics |
---|---|---|---|---|---|
Feng et al. (2019) [32] | MKSVM-GA | 92 (72/20) | T: 273–473.15 K P: 0.1–49.3 MPa µ: 0.139–1.950 mPa·s | R2: 0.9975 MAE: 0.1112 × 10−9 m2/s RMSE: 0.1527 × 10−9 m2/s MARE: 7.17% | R2: 0.9910 MAE: 0.2028 × 10−9 m2/s RMSE: 0.3028 × 10−9 m2/s MARE: 10.55% |
Bemani et al. (2020) [33] | PSO-ANFIS | 86 (N/A) | T: 273–473.15 K P: 0.1–49.3 MPa µ: 0.139–1.950 Pa·s | R2: 0.9993 MARE: 2.0945% RMSE: 0.0869 | R2: 0.9978 MARE: 2.7188% RMSE: 0.113 |
GA-ANFIS | R2: 0.9957 MARE: 4.2591% RMSE: 0.2156 | R2: 0.9932 MARE: 4.9245% RMSE: 0.1976 | |||
ACO-ANFIS | R2: 0.9924 MARE: 5.9726% RMSE: 0.2877 | R2: 0.9854 MARE: 6.6933% RMSE: 0.3161 | |||
BP-ANFIS | R2: 0.9862 MARE: 12.2787% RMSE: 0.3905 | R2: 0.9738 MARE: 12.787% RMSE: 0.398 | |||
DE-ANFIS | R2: 0.9708 MARE: 14.545% RMSE: 0.633 | R2: 0.9514 MARE: 15.965% RMSE: 0.633 | |||
Amar et al. (2020) [34] | GEP | 92 (72/20) | T: 273,473.15 K P: 0.1–49.3 MPa µ: 0.139–1.950 mPa·s | R2: 0.9980 AARD: 3.8584% RMSE: 0.1427 × 10−9 m2/s | R2: 0.9978 AARD: 6.0035% RMSE: 0.1245 × 10−9 m2/s |
GMDH | R2: 0.9943 AARD: 8.6269% RMSE: 0.2479 × 10−9 m2/s | R2: 0.9874 AARD: 5.6292% RMSE: 0.2271 × 10−9 m2/s | |||
Kouhi et al. (2025) [35] | MLP | 191 (80/20) | P: 0.10–100 MPa T: 210–673 K Brine Density: 98.38–1400 kg/m3 DC: 0.0007–285 × 10−9 m2/s | R2: 0.9979 RMSE: 2.7521 MAE: 1.6421 | R2: 0.9965 RMSE: 3.4812 MAE: 2.3647 |
CFNN | R2: 0.9968 RMSE: 3.6024 MAE: 2.4597 | R2: 0.9949 RMSE: 5.2113 MAE: 3.9210 | |||
RNN | R2: 0.9974 RMSE: 2.9021 MAE: 1.8890 | R2: 0.9958 RMSE: 4.8735 MAE: 3.2241 | |||
GEP | R2: 0.9938 RMSE: 5.1432 MAE: 4.0023 | R2: 0.9918 RMSE: 5.4981 MAE: 4.3184 |
Statistic | P (MPa) | T (K) | Salinity (mol/L) | DC (10−9 m2/s) |
---|---|---|---|---|
Count | 176 | 176 | 176 | 176 |
Mean | 12.15 | 320.06 | 2.35 | 2.07 |
Std Dev | 7.99 | 26.35 | 2.42 | 0.97 |
Min | 0.10 | 286.15 | 0.00 | 0.13 |
25% | 5.66 | 300.15 | 0.51 | 1.47 |
Median | 10.00 | 313.00 | 1.00 | 1.81 |
75% | 19.79 | 341.15 | 4.00 | 2.73 |
Max | 30.00 | 398.00 | 6.76 | 4.50 |
Metric | Expression | Description | Good Range |
---|---|---|---|
Coefficient of Determination (R2) | Measures the proportion of variance in observed data explained by the model. Higher values (closer to 1) indicate a better fit. R2 = 1 represents perfect fit, while R2 = 0 indicates no explanatory power. | R2 > 0.75 (Very Good) | |
Root Mean Square Error (RMSE) | Reflects the average magnitude of prediction errors, penalizing larger deviations more heavily. Lower values indicate better accuracy. | RMSE → 0.15 (Lower is Better) | |
Mean Absolute Error (MAE) | Represents the average absolute difference between predicted and observed values. Less sensitive to outliers than RMSE. Lower values indicate better performance. | MAE → 0.15 (Lower is Better) |
Model | Set | MAE | RMSE | R2 |
---|---|---|---|---|
RF | Train | 0.10 | 0.02 | 0.96 |
Test | 0.11 | 0.03 | 0.95 | |
GBR | Train | 0.18 | 0.16 | 0.973 |
Test | 0.19 | 0.026 | 0.925 | |
XGBoost | Train | 0.12 | 0.184 | 0.964 |
Test | 0.13 | 0.389 | 0.91 |
Hyperparameters | RF | XGBoost | GBR |
---|---|---|---|
Number of Estimators (n estimators) | 500 | 500 | 1000 |
Learning Rate (learning rate) | - | 0.05 | 0.03 |
Maximum Depth (max depth) | 10 | 3 | 4 |
Minimum Samples Split (min samples split) | 2 | - | 8 |
Minimum Samples Leaf (min samples leaf) | 1 | - | 4 |
Maximum Features (max features) | auto | - | - |
Subsample (subsample) | - | - | 0.8 |
Random State (random state) | 42 | 42 | 42 |
Salinity (mol/L) | RF DC (10−9 m2/s) | GBR DC (10−9 m2/s) | XGBoost DC (10−9 m2/s) |
---|---|---|---|
0 | 2.69 | 2.63 | 2.41 |
1 | 2.53 | 2.39 | 2.61 |
2 | 2.19 | 2.1 | 2 |
4 | 1.48 | 1.37 | 1.29 |
6 | 1 | 0.91 | 1.07 |
Author | Model | Data Points | RMSE (Test) |
---|---|---|---|
Kouhi et al. (2025) [35] | MLP | 191 | 3.5452 |
CFNN | 5.2872 | ||
RNN | 4.9287 | ||
GEP | 5.5611 | ||
Bemani et al. (2020) [33] | PSO-ANFIS | 86 | 0.113 |
Amar and Jahanbani Ghahfarokhi (2020) [34] | GMDH | 92 | 0.2271 |
GEP | 0.1245 | ||
Feng et al. (2019) [32] | MKSVM-GA | 0.3028 | |
Current Study | RF | 176 | 0.03 |
GBR | 0.026 | ||
XGBoost | 0.389 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Q.; Pourafshary, P.; Hadavimoghaddam, F.; Khoramian, R. Machine Learning Prediction of CO2 Diffusion in Brine: Model Development and Salinity Influence Under Reservoir Conditions. Appl. Sci. 2025, 15, 8536. https://doi.org/10.3390/app15158536
Khan Q, Pourafshary P, Hadavimoghaddam F, Khoramian R. Machine Learning Prediction of CO2 Diffusion in Brine: Model Development and Salinity Influence Under Reservoir Conditions. Applied Sciences. 2025; 15(15):8536. https://doi.org/10.3390/app15158536
Chicago/Turabian StyleKhan, Qaiser, Peyman Pourafshary, Fahimeh Hadavimoghaddam, and Reza Khoramian. 2025. "Machine Learning Prediction of CO2 Diffusion in Brine: Model Development and Salinity Influence Under Reservoir Conditions" Applied Sciences 15, no. 15: 8536. https://doi.org/10.3390/app15158536
APA StyleKhan, Q., Pourafshary, P., Hadavimoghaddam, F., & Khoramian, R. (2025). Machine Learning Prediction of CO2 Diffusion in Brine: Model Development and Salinity Influence Under Reservoir Conditions. Applied Sciences, 15(15), 8536. https://doi.org/10.3390/app15158536