Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming †
Abstract
1. Introduction
2. Materials and Methods
2.1. Case of Study Description
2.2. Scenarios
2.3. Life Cycle Assessment
2.3.1. Goal and Scope
2.3.2. Life Cycle Inventory
2.3.3. Life Cycle Impact Assessment
3. Results and Discussion
3.1. Environmental Footprint Results
3.2. LANCA Results
3.3. Recommendations for Stakeholders
3.4. Limitations and Future Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UA | Urban agriculture |
CEA | Controlled Environment Agriculture |
BIA | Building-Integrated Agriculture |
LCA | Life Cycle Assessment |
IVF | Indoor Vertical Farm |
EF | Environmental Footprint |
LED | Light-Emitting Diode |
GM | Grid Mix |
PV | PhotoVoltaic mix |
PEF | Product Environmental Footprint |
FE | Freshwater Ecotoxicity |
WU | Water Use |
LU | Land Use |
CC | Climate Change |
RUf | Resource Use fossils |
HTc | Human Toxicity cancer |
HTnc | Human Toxicity non-cancer |
OD | Ozone Depletion |
RUm | Resource Use mineral and metals |
PM | Particular Matter |
AC | Acidification |
POF | Photochemical Ozone Formation |
EuF | Eutrophication Freshwater |
EuM | Eutrophication Marine |
EuT | Eutrophication Terrestrial |
BLP | Biodiversity Loss Potential |
IRP | Infiltration Reduction Potential |
PFRP | Physicochemical Filtration Reduction Potential |
EP | Erosion Potential |
GRRP | Groundwater Regeneration Reduction Potential |
SOCRP | Soil Organic Carbon Reduction Potential |
References
- Olsson, L.; Cotrufo, F.; Crews, T.; Franklin, J.; King, A.; Mirzabaev, A.; Scown, M.; Tengberg, A.; Villarino, S.; Wang, Y. The State of the World’s Arable Land. Annu. Rev. Environ. Resour. 2023, 48, 451–475. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Mejuto, J.C.; Simal-Gandara, J. Mitigation of emerging implications of climate change on food production systems. Food Res. Int. 2020, 134, 109256. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Bartzanas, T.; Xydis, G. Minimising the energy footprint of indoor food production while maintaining a high growth rate: Introducing disruptive cultivation protocols. Food Control 2021, 130, 108290. [Google Scholar] [CrossRef]
- Parkes, M.G.; Azevedo, D.L.; Domingos, T.; Teixeira, R.F.M. Narratives and Benefits of Agricultural Technology in Urban Buildings: A Review. Atmosphere 2022, 13, 1250. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Kirby, C.K.; Specht, K.; Fox-Kämper, R.; Hawes, J.K.; Cohen, N.; Caputo, S.; Ilieva, R.T.; Lelièvre, A.; Poniży, L.; Schoen, V.; et al. Differences in motivations and social impacts across urban agriculture types: Case studies in Europe and the US. Landsc. Urban Plan. 2021, 212, 104110. [Google Scholar] [CrossRef]
- Parkes, M.G.; Cubillos Tovar, J.P.; Dourado, F.; Domingos, T.; Teixeira, R.F.M. Life Cycle Assessment of a Prospective Technology for Building-Integrated Production of Broccoli Microgreens. Atmosphere 2022, 13, 1317. [Google Scholar] [CrossRef]
- Srivani, P.; Devi, C.Y.; Manjula, S.H. A Controlled Environment Agriculture with Hydroponics: Variants, Parameters, Methodologies and Challenges for Smart Farming. In Proceedings of the 2019 Fifteenth International Conference on Information Processing (ICINPRO), Bengaluru, India, 20–22 December 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Blasioli, S.; Cellini, A.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting. Sci. Rep. 2019, 9, 14127. [Google Scholar] [CrossRef]
- Banerjee, A.; Paul, K.; Varshney, A.; Nandru, R.; Badhwar, R.; Sapre, A.; Dasgupta, S. Chapter 8-Soilless indoor smart agriculture as an emerging enabler technology for food and nutrition security amidst climate change. In Plant Nutrition and Food Security in the Era of Climate Change; Kumar, V., Srivastava, A.K., Suprasanna, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 179–225. [Google Scholar] [CrossRef]
- Gruda, N. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Z.; Ager, E.; Kong, L.; Tan, L. Nutritional quality and health benefits of microgreens, a crop of modern agriculture. J. Future Foods 2021, 1, 58–66. [Google Scholar] [CrossRef]
- ISO14040; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006.
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Casamayor, J.L.; Muñoz, E.; Franchino, M.; Gallego-Schmid, A.; Shin, H.D. Human-powered hydroponic systems: An environmental and economic assessment. Sustain. Prod. Consum. 2024, 46, 268–281. [Google Scholar] [CrossRef]
- Vinci, G.; Rapa, M. Hydroponic cultivation: Life cycle assessment of substrate choice. Br. Food J. 2019, 121, 1801–1812. [Google Scholar] [CrossRef]
- Benis, K.; Ferrão, P. Potential mitigation of the environmental impacts of food systems through urban and peri-urban agriculture (UPA)—A life cycle assessment approach. J. Clean. Prod. 2017, 140, 784–795. [Google Scholar] [CrossRef]
- Mendoza Beltran, A.; Padró, R.; La Rota-Aguilera, M.J.; Marull, J.; Eckelman, M.J.; Cirera, J.; Giocoli, A.; Villalba, G. Displaying geographic variability of peri-urban agriculture environmental impacts in the Metropolitan Area of Barcelona: A regionalized life cycle assessment. Sci. Total Environ. 2023, 858, 159519. [Google Scholar] [CrossRef]
- Mietz, L.K.; Civit, B.M.; Arena, A.P. Life cycle assessment to evaluate the sustainability of urban agriculture: Opportunities and challenges. Agroecol. Sustain. Food Syst. 2024, 48, 983–1007. [Google Scholar] [CrossRef]
- Del Borghi, A.; Tacchino, V.; Moreschi, L.; Matarazzo, A.; Gallo, M.; Arellano Vazquez, D. Environmental assessment of vegetable crops towards the water-energy-food nexus: A combination of precision agriculture and life cycle assessment. Ecol. Indic. 2022, 140, 109015. [Google Scholar] [CrossRef]
- Medel-Jiménez, F.; Krexner, T.; Gronauer, A.; Kral, I. Life cycle assessment of four different precision agriculture technologies and comparison with a conventional scheme. J. Clean. Prod. 2024, 434, 140198. [Google Scholar] [CrossRef]
- Sanches, G.M.; Bordonal, R.D.O.; Magalhães, P.S.G.; Otto, R.; Chagas, M.F.; Cardoso, T.D.F.; Luciano, A.C.D.S. Towards greater sustainability of sugarcane production by precision agriculture to meet ethanol demands in south-central Brazil based on a life cycle assessment. Biosyst. Eng. 2023, 229, 57–68. [Google Scholar] [CrossRef]
- Gargaro, M.; Hastings, A.; Murphy, R.J.; Harris, Z.M. A cradle-to-customer life cycle assessment case study of UK vertical farming. J. Clean. Prod. 2024, 470, 143324. [Google Scholar] [CrossRef]
- Joensuu, K.; Kotilainen, T.; Räsänen, K.; Rantanen, M.; Usva, K.; Silvenius, F. Assessment of climate change impact and resource-use efficiency of lettuce production in vertical farming and greenhouse production in Finland: A case study. Int. J. Life Cycle Assess. 2024, 29, 1932–1944. [Google Scholar] [CrossRef]
- Licastro, A.; Salomone, R.; Mondello, G.; Calabrò, G. Assessing the environmental impacts of soilless systems: A comprehensive literature review of Life Cycle Assessment studies. Int. J. Life Cycle Assess. 2024, 29, 1053–1074. [Google Scholar] [CrossRef]
- Haes, H.; Jolliet, O.; Norris, G.; Saur, K. UNEP/SETAC life cycle initiative: Background, aims and scope. Int. J. Life Cycle Assess. 2002, 7, 192–195. [Google Scholar] [CrossRef]
- Koellner, T.; de Baan, L.; Beck, T.; Brandão, M.; Civit, B.; Margni, M.; i Canals, L.M.; Saad, R.; de Souza, D.M.; Müller-Wenk, R. UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int. J. Life Cycle Assess. 2013, 18, 1188–1202. [Google Scholar] [CrossRef]
- Vidal-Legaz, B.; Antón, A.; Maia De Souza, D.; Sala, S.; Nocita, M.; Putman, B.; Teixeira, R.F.M.; European Commission (Eds.) Land-Use Related Environmental Indicators for Life Cycle Assessment: Analysis of Key Aspects in Land Use Modelling; Publications Office: Luxembourg, 2016. [Google Scholar] [CrossRef]
- Bos, U.; Beck, T.; Wittstock, B.; Baitz, M.; Fischer, M.; Sedlbauer, K. LANCA®-Land Use Indicator Value Calculation in Life Cycle Assessment; Fraunhofer Verlag: Stuttgart, Germany, 2016. [Google Scholar] [CrossRef]
- Kozai, T. Smart Plant Factory: The Next Generation Indoor Vertical Farms; Springer: Singapore, 2018; Available online: http://ebookcentral.proquest.com/lib/ubhohenheim/detail.action?docID=5598531 (accessed on 5 March 2025).
- Parkes, M.G.; O’Rourke, R.; Domingos, T.; Teixeira, R.F.M. An Experimental Portuguese Social-Enterprise Project in Urban Agriculture: A Case Study on the Influence of the Interaction of Stakeholder Roles on Sustainable Governance. Sustainability 2023, 15, 3817. [Google Scholar] [CrossRef]
- Casey, L.; Freeman, B.; Francis, K.; Brychkova, G.; McKeown, P.; Spillane, C.; Bezrukov, A.; Zaworotko, M.; Styles, D. Comparative environmental footprints of lettuce supplied by hydroponic controlled-environment agriculture and field-based supply chains. J. Clean. Prod. 2022, 369, 133214. [Google Scholar] [CrossRef]
- Maynard, R.; Burkhardt, J.; Quinn, J.C. Sustainability of lettuce production: A comparison of local and centralized food production. J. Clean. Prod. 2023, 428, 139224. [Google Scholar] [CrossRef]
- Wolf, M.-A.; Chomkhamsri, K.; Brãndao, M.; Pant, R.; Ardente, F.; Penningt, D.; Manfredi, S.; De Camillis, C.; Goralczyk, M. International Reference Life Cycle Data System (ILCD) Handbook-General Guide for Life Cycle Assessment-Detailed Guidance. 2010. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC48157 (accessed on 22 February 2025).
- Zampori, L.; Pant, R. Suggestions for Updating the Product Environmental Footprint (PEF) Method; Publications Office of the European Union: Luxembourg, 2019; Volume 201910, p. 424613. [Google Scholar]
- APREN. Electricity Generation by Energy Sources in Mainland Portugal in 2024. Available online: https://www.apren.pt/en/renewable-energies/production (accessed on 22 February 2025).
- Damiani, M.; Ferrara, N.; Ardente, F. Understanding Product Environmental Footprint and Organisation Environmental Footprint Methods; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- De Laurentiis, V.; Secchi, M.; Bos, U.; Horn, R.; Laurent, A.; Sala, S. Soil quality index: Exploring options for a comprehensive assessment of land use impacts in LCA. J. Clean. Prod. 2019, 215, 63–74. [Google Scholar] [CrossRef]
- European Commission. PEFCR Guidance Document,-Guidance for the 14 Development of Product Environmental Footprint Category Rules (PEFCRs), Version 6.3. 2017. Available online: https://eplca.jrc.ec.europa.eu/permalink/PEFCR_guidance_v6.3-2.pdf (accessed on 25 September 2024).
- Jing, R.; He, Y.; He, J.; Liu, Y.; Yang, S. Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China. Renew. Energy 2022, 194, 1048–1059. [Google Scholar] [CrossRef]
- Sobuj, M.A.; Patwary, M.; Swapnw, S.; Sohan, M. Sustainable Urban Farming: Enhancing Energy Efficiency with Vertical Farming and Renewable Energy Integration. In Proceedings of the 7th IEOM Bangladesh International Conference on Industrial Engineering and Operations Management, Dhaka, Bangladesh, 21 December 2024. [Google Scholar] [CrossRef]
- Morales-Méndez, J.-D.; Silva-Rodríguez, R. Environmental assessment of ozone layer depletion due to the manufacture of plastic bags. Heliyon 2018, 4, e01020. [Google Scholar] [CrossRef] [PubMed]
- Dorr, E.; Goldstein, B.; Horvath, A.; Aubry, C.; Gabrielle, B. Environmental impacts and resource use of urban agriculture: A systematic review and meta-analysis. Environ. Res. Lett. 2021, 16, 093002. [Google Scholar] [CrossRef]
- Martin, M.; Molin, E. Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden. Sustainability 2019, 11, 4124. [Google Scholar] [CrossRef]
- Oliveira, L.S.B.L.; Oliveira, D.S.B.L.; Bezerra, B.S.; Silva Pereira, B.; Battistelle, R.A.G. Environmental analysis of organic waste treatment focusing on composting scenarios. J. Clean. Prod. 2017, 155, 229–237. [Google Scholar] [CrossRef]
- Pergola, M.; Persiani, A.; Pastore, V.; Palese, A.M.; D’Adamo, C.; De Falco, E.; Celano, G. Sustainability Assessment of the Green Compost Production Chain from Agricultural Waste: A Case Study in Southern Italy. Agronomy 2020, 10, 230. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 2012, 16, 179–187. [Google Scholar] [CrossRef]
- Álvarez-Álvarez, E.; Rico-Secades, M.; Fernández-Jiménez, A.; Espina-Valdés, R.; Corominas, E.L.; Calleja-Rodríguez, A.J. Hydrodynamic water tunnel for characterization of hydrokinetic microturbines designs. Clean Technol. Environ. Policy 2020, 22, 1843–1854. [Google Scholar] [CrossRef]
- Weselek, A.; Ehmann, A.; Zikeli, S.; Lewandowski, I.; Schindele, S.; Högy, P. Agrophotovoltaic systems: Applications, challenges, and opportunities. A review. Agron. Sustain. Dev. 2019, 39, 35. [Google Scholar] [CrossRef]
- Bošnjaković, M.; Santa, R.; Crnac, Z.; Bošnjaković, T. Environmental Impact of PV Power Systems. Sustainability 2023, 15, 11888. [Google Scholar] [CrossRef]
- Barbosa, G.L.; Gadelha, F.D.A.; Kublik, N.; Proctor, A.; Reichelm, L.; Weissinger, E.; Wohlleb, G.M.; Halden, R.U. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic vs. Conventional Agricultural Methods. Int. J. Environ. Res. Public Health 2015, 12, 6879–6891. [Google Scholar] [CrossRef]
- Graamans, L.; Baeza, E.; Van Den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant factories versus greenhouses: Comparison of resource use efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Grasselly, D.; Hamm, F.; Quaranta, G.; Vitrou, J. Carbon footprint of coconut fibre (coir) substrates. Infos-Ctifl 2009, 55–59. [Google Scholar]
- Toboso-Chavero, S.; Madrid-López, C.; Villalba, G.; Gabarrell Durany, X.; Hückstädt, A.B.; Finkbeiner, M.; Lehmann, A. Environmental and social life cycle assessment of growing media for urban rooftop farming. Int. J. Life Cycle Assess. 2021, 26, 2085–2102. [Google Scholar] [CrossRef]
- Gaudreault, C.; Loehle, C.; Prisley, S.; Solarik, K.A.; Verschuyl, J.P. Are the factors recommended by UNEP-SETAC for evaluating biodiversity in LCA achieving their promises: A case study of corrugated boxes produced in the US. Int. J. Life Cycle Assess. 2020, 25, 1013–1026. [Google Scholar] [CrossRef]
- Rybar, J.; Bosela, M. Trade-offs or complementarity between biomass production and biodiversity in European forests: A review. Cent. Eur. For. J. 2023, 69, 201–213. [Google Scholar] [CrossRef]
- Kazakis, N.; Karakatsanis, D.; Ntona, M.M.; Polydoropoulos, K.; Zavridou, E.; Voudouri, K.A.; Busico, G.; Kalaitzidou, K.; Patsialis, T.; Perdikaki, M.; et al. Groundwater Depletion. Are Environmentally Friendly Energy Recharge Dams a Solution? Water 2024, 16, 1541. [Google Scholar] [CrossRef]
- Zhang, Q.; Ye, F.; Razzaq, A.; Feng, Z.; Liu, Y. The impact of land consolidation on rapeseed cost efficiency in China: Policy implications for sustainable land use and food security. Front. Sustain. Food Syst. 2024, 8, 1390914. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Pu, Y.; Wu, J.; Coulter, J.A.; Li, X.; Wang, L.; Liu, L.; Fang, Y.; Niu, Z.; et al. Ecological and economic benefits of planting winter rapeseed (Brassica rapa L.) in the wind erosion area of northern China. Sci. Rep. 2019, 9, 20272. [Google Scholar] [CrossRef]
- Markowicz, M. Rapeseed CEE Regenerative Agriculture Guidebook; Fundacja Rozwoju Rolnictwa Terra: Poznań, Poland, 2023. [Google Scholar]
- Rasmussen, C.; Rosenqvist, E.; Liu, F.; Dresbøll, D.B.; Thorup-Kristensen, K.; Javaux, M. Rapeseed reaches 4 meters depth—But does it escape drought stress? In Proceedings of the Copernicus Meetings, EGU22-5105, Vienna, Austria, 23–27 May 2022. [Google Scholar] [CrossRef]
- Chen, G.; Rasmussen, C.R.; Dresbøll, D.B.; Smith, A.G.; Thorup-Kristensen, K. Dynamics of Deep Water and N Uptake of Oilseed Rape (Brassica napus L.) Under Varied N and Water Supply. Front. Plant Sci. 2022, 13, 866288. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, K. Developing a real-time self-organizing algorithm for irrigation planning of rapeseed cultivation. Water Supply 2023, 23, 3856–3867. [Google Scholar] [CrossRef]
- Treasure, L.; Armstrong, D.A.; Sharp, D.S.; Smart, D.S.; Parker, D.G. Is it possible to embed the ecosystem impacts of solar parks into industry practice? In Proceedings of the Copernicus Meetings, EGU21-2927, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Brandão, M.; Milà i Canals, L.; Clift, R. Food, Feed, Fuel, Timber or Carbon Sink? Towards Sustainable Land Use: A Consequential Life Cycle Approach; Springer Nature: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Scrucca, F.; Barberio, G.; Cutaia, L.; Rinaldi, C. Woodchips from Forest Residues as a Sustainable and Circular Biofuel for Electricity Production: Evidence from an Environmental Life Cycle Assessment. Energies 2024, 17, 105. [Google Scholar] [CrossRef]
- Mann, L.; Tolbert, V. Soil Sustainability in Renewable Biomass Plantings. AMBIO J. Hum. Environ. 2000, 29, 492–498. [Google Scholar] [CrossRef]
- Uusitalo, V.; Horn, R.; Maier, S.D. Assessing Land Use Efficiencies and Land Quality Impacts of Renewable Transportation Energy Systems for Passenger Cars Using the LANCA® Method. Sustainability 2022, 14, 6144. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, F.; Liu, S.; Wang, L.; Qiu, L.; Alexandrov, G.; Jothiprakash, V. Bioenergy production and environmental impacts. Geosci. Lett. 2018, 5, 14. [Google Scholar] [CrossRef]
- Cespi, D. Bio-Based Chemicals from Dedicated or Waste Biomasses: Life Cycle Assessment for Evaluating the Impacts on Land. Available online: https://www.mdpi.com/2673-4079/4/2/14 (accessed on 24 May 2025).
- Terranova, D.; Balugani, E.; Righi, S.; Marazza, D. An applicability assessment and sensitivity analysis of land use impact models: Application of the LANCA model in site-specific conditions. Int. J. Life Cycle Assess. 2021, 26, 2215–2231. [Google Scholar] [CrossRef]
- Thoumazeau, A.; Bustany, C.; Rodrigues, J.; Bessou, C. Using the LANCA® Model to Account for Soil Quality Within LCA: First Application and Approach Comparison in Two Contrasted Tropical Case Studies. Indones. J. Life Cycle Assess. Sustain. 2019, 3. [Google Scholar] [CrossRef]
Categories | Unit | GM | PV |
---|---|---|---|
Acidification (AC) | Mole of H+ eq. | 4.85 × 10−2 | 4.07 × 10−2 |
Climate Change—total (CC) | kg CO2 eq. | 7.11 × 100 | 5.20 × 100 |
Ecotoxicity, freshwater—total (EF) | CTUe | 7.50 × 101 | 7.12 × 101 |
Eutrophication, freshwater (EuF) | kg P eq. | 2.05 × 10−3 | 1.79 × 10−3 |
Eutrophication, marine (EuM) | kg N eq. | 1.08 × 10−2 | 9.06 × 10−3 |
Eutrophication, terrestrial (EuT) | Mole of N eq. | 1.21 × 10−1 | 9.95 × 10−2 |
Human toxicity, cancer—total (HTc) | CTUh | 1.03 × 10−8 | 9.14 × 10−9 |
Human toxicity, non-cancer—total (HTnc) | CTUh | 2.42 × 10−7 | 2.24 × 10−7 |
Ionizing radiation, human health (IR) | kBq U235 eq. | 6.44 × 10−1 | 5.44 × 10−1 |
Land Use (LU) | Pt | 1.15 × 102 | 5.70 × 101 |
Ozone depletion (OD) | kg CFC-11 eq. | 3.83 × 10−7 | 3.29 × 10−7 |
Particulate matter (PM) | Disease incidences | 3.68 × 10−7 | 3.08 × 10−7 |
Photochemical ozone formation, human health (POF) | kg NMVOC eq. | 3.36 × 10−2 | 2.71 × 10−2 |
Resource use, fossils (RUf) | MJ | 9.63 × 101 | 7.28 × 101 |
Resource use, mineral and metals (RUm) | kg Sb eq. | 6.65 × 10−5 | 5.98 × 10−5 |
Water use (WU) | m3 world equiv. | 1.58 × 101 | 6.43 × 100 |
LANCA v2023.1 | Indicators | Unit | GM | PV |
---|---|---|---|---|
Occupation | Biodiversity Loss Potential | PBR | 5.90 × 101 | 3.54 × 101 |
Erosion Potential | kg | 2.21 × 10−1 | 5.01 × 10−1 | |
Groundwater Regeneration Reduction Potential | m3 | −7.03 × 10−3 | −3.24 × 10−3 | |
Infiltration Reduction Potential | m3 | 1.10 × 101 | 6.70 × 100 | |
Physicochemical Filtration Reduction Potential | mol·a | 2.48 × 101 | 1.51 × 101 | |
Soil Organic Carbon Reduction Potential | kg | 1.55 × 10−1 | −1.02 × 10−1 | |
Reversible transformation | Biodiversity Loss Potential | PBR | 6.51 × 100 | 5.88 × 100 |
Erosion Potential | kg | 1.22 × 100 | 1.52 × 100 | |
Groundwater Regeneration Reduction Potential | m3 | −4.11 × 10−3 | −1.86 × 10−3 | |
Infiltration Reduction Potential | m3 | 5.20 × 100 | 2.47 × 100 | |
Physicochemical Filtration Reduction Potential | mol·a | 1.42 × 101 | 6.79 × 100 | |
Soil Organic Carbon Reduction Potential | kg | 1.97 × 10−1 | 3.27 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavallo, A.C.; Parkes, M.; Teixeira, R.F.M.; Righi, S. Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming. Appl. Sci. 2025, 15, 8429. https://doi.org/10.3390/app15158429
Cavallo AC, Parkes M, Teixeira RFM, Righi S. Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming. Applied Sciences. 2025; 15(15):8429. https://doi.org/10.3390/app15158429
Chicago/Turabian StyleCavallo, Ana C., Michael Parkes, Ricardo F. M. Teixeira, and Serena Righi. 2025. "Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming" Applied Sciences 15, no. 15: 8429. https://doi.org/10.3390/app15158429
APA StyleCavallo, A. C., Parkes, M., Teixeira, R. F. M., & Righi, S. (2025). Life Cycle Assessment of Land Use Trade-Offs in Indoor Vertical Farming. Applied Sciences, 15(15), 8429. https://doi.org/10.3390/app15158429