Long Short-Term Memory-Based Fall Detection by Frequency-Modulated Continuous Wave Millimeter-Wave Radar Sensor for Seniors Living Alone
Abstract
1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Experiment and Sensor Setup
3.2. Subject and Dataset
3.3. Histogram of Oriented Gradient (HOG)
3.4. Long Short-Term Memory (LSTM)
3.5. Attention Mechanism
3.6. Proposed Fall Detection Algorithms
3.7. Hyperparameters of the Proposed Architecture Model
3.8. Evaluation Metrics
4. Result
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Falls. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 10 June 2025).
- National Health Administration, Ministry of Health and Welfare. Available online: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=807&pid=4326 (accessed on 9 March 2020).
- Purwar, A.; Chawla, I. A systematic review on fall detection systems for elderly healthcare. Multimed. Tools Appl. 2024, 83, 43277–43302. [Google Scholar] [CrossRef]
- Wang, X.; Ellul, J.; Azzopardi, G. Elderly fall detection systems: A literature survey. Frontiers 2020, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Peng, Y. Research of fall detection and fall prevention technologies: A systematic review. IEEE Access 2019, 7, 77702–77722. [Google Scholar] [CrossRef]
- Ramachandran, A.; Karuppiah, A. A survey on recent advances in wearable fall detection systems. BioMed Res. Int. 2020, 2020, 2167160. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.S.; Yu, Y.S. Fall detection system based on simple threshold method and long short-term memory: Comparison with hidden Markov model and extraction of optimal parameters. Appl. Sci. 2022, 12, 11031. [Google Scholar] [CrossRef]
- Jeong, S.S.; Kim, N.H.; Yu, Y.S. Comparison of fall detection systems based on YOLOPose and long short-term memory. J. Inf. Commun. Converg. Eng. 2024, 22, 139–144. [Google Scholar] [CrossRef]
- Hu, S.; Cao, S.; Toosizadeh, N.; Barton, J.; Hector, M.G.; Fain, M.J. Radar-based fall detection: A Survey. IEEE Robot. Autom. Mag. 2024, 31, 170–185. [Google Scholar] [CrossRef]
- Ullmann, I.; Guendel, R.G.; Kruse, N.C.; Fioranelli, F.; Yarovoy, A. A survey on radar-based continuous human activity recognition. IEEE J. Microw. 2023, 3, 938–950. [Google Scholar] [CrossRef]
- Katrompas, A.; Ntakouris, T.; Metsis, V. Recurrence and self-attention vs the transformer for time-series classification: A comparative study. In Proceedings of the International Conference on Artificial Intelligence in Medicine, Halifax, NS, Canada, 14–17 June 2022; pp. 99–109. [Google Scholar]
- Al-Qaness, M.A.A.; Jiang, Z.; Shen, J. MKLS-Net: Multikernel convolution LSTM and self-attention for fall detection based on wearable sensors. IEEE Internet Things J. 2025, 12, 10139–10149. [Google Scholar] [CrossRef]
- Castro, F.; Dentamaro, V.; Gattulli, V.; Impedovo, D. Fall detection with LSTM and attention mechanism. In Proceedings of the Workshop on Advances of Mobile and Wearable Biometrics (WAMWB) 2023, Athens, Greece, 26 September 2023; pp. 1–14. [Google Scholar]
- Haque, S.T.; Debnath, M.; Yasmin, A.; Mahmud, T.; Ngu, A.H.H. Experimental study of long short-term memory and transformer models for fall detection on smartwatches. Sensors 2024, 24, 6235. [Google Scholar] [CrossRef]
- Suard, F.; Rakotomamonjy, A.; Bensrhair, A.; Broggi, A. Pedestrian detection using infrared images and histograms of oriented gradients. In Proceedings of the 2006 IEEE Intelligent Vehicles Symposium, Meguro-Ku, Japan, 13–15 June 2006; pp. 206–212. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need. In Proceedings of the 31st International Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 6000–6010. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Ren, Y.; Chen, Y.; Chuah, M.C.; Yang, J. User verification leveraging gait recognition for smartphone enabled mobile healthcare systems. IEEE Trans. Mobile Comput. 2014, 14, 1961–1974. [Google Scholar] [CrossRef]
- Casilari, E.; Lora-Rivera, R.; García-Lagos, F. A study on the application of convolutional neural networks to fall detection evaluated with multiple public datasets. Sensors 2020, 20, 1466. [Google Scholar] [CrossRef]
- Nweke, H.F.; The, Y.W.; Al-Garadi, M.A.; Alo, U.R. Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. Expert Syst. Appl. 2018, 105, 233–261. [Google Scholar] [CrossRef]
- Anaoutoglou, D.G.; Dedemadis, D.; Kyriakou, A.A.; Katsimentes, S.; Grekidis, A.; Menychtas, D.; Aggelousis, N.; Sirakoulis, G.C.; Kyriacou, G.A. Acceleration-based low-cost CW radar system for real-time elderly fall detection. IEEE J. Electromagn. RF Microw. Med. Biol. 2024, 8, 102–112. [Google Scholar] [CrossRef]
- Shen, Z.; Nunez-Yanez, J.; Dahnoun, N. Advanced millimeter-wave radar system for real-time multiple-human tracking and fall detection. Sensors 2024, 24, 3660. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Guo, L.; Zhang, H.; Guo, Y.-X. A millimetre-wave radar-based fall detection method using line kernel convolutional neural network. IEEE Sens. J. 2020, 20, 13364–13370. [Google Scholar] [CrossRef]
- Kittiyanpunya, C.; Chomdee, P.; Boonpoonga, A.; Torrungrueng, D. Millimeter-wave radar-based elderly fall detection fed by one-dimensional point cloud and Doppler. IEEE Access 2023, 11, 76269–76283. [Google Scholar] [CrossRef]
- Jin, F.; Sengupta, A.; Cao, S. mmFall: Fall detection using 4D mmWave radar and a hybrid variational RNN autoencoder. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1245–1257. [Google Scholar] [CrossRef]
- Liang, T.; Liu, R.; Yang, L.; Lin, Y.; Shi, C.-J.R.; Xu, H. Fall detection system based on point cloud enhancement model for 24 GHz FMCW radar. Sensors 2024, 24, 648. [Google Scholar] [CrossRef]
- Song, C.; Ma, K.; He, J.; Jia, Y. Fall detection based on HOG features for millimeter wave radar. In Proceedings of the 2022 2nd International Conference on Frontiers of Electronics, Information and Computation Technologies (ICFEICT), Wuhan, China, 19–21 August 2022; pp. 316–321. [Google Scholar] [CrossRef]
- Seo, Y.; Jang, K.; Kim, Y. Study on fall detection by exploiting Wi-Fi CSI and LSTM-Attention Scheme in indoors. J. Soc. Disaster Inf. 2024, 20, 935–945. [Google Scholar] [CrossRef]
- Feng, Q.; Gao, C.; Wang, L.; Zhao, Y.; Song, T.; Li, Q. Spatio-temporal fall event detection in complex scenes using attention guided LSTM. Pattern Recognit. Lett. 2020, 130, 242–249. [Google Scholar] [CrossRef]
- Lu, N.; Wu, Y.; Feng, L.; Song, J. Deep learning for fall detection: Three-dimensional CNN combined with LSTM on video kinematic data. IEEE J. Biomed. Health Inform. 2019, 23, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Texas Instruments. IWR6843 Intelligent MmWave Overhead Detection Sensor (ODS) Antenna Plug-in Module. Available online: https://www.ti.com/tool/IWR6843ISK-ODS (accessed on 28 June 2022).
- Texas Instruments. User’s Guide 60 GHz mmWave Sensor EVMs. Dallas, TX, USA. 2020. Available online: https://www.ti.com/lit/ug/swru546e/swru546e.pdf?ts=1680862770246&ref_url=https%253A%252F%252Fwww.google.com.hk%252F (accessed on 26 January 2023).
- Texas Instruments. mmWave Demo Visualizer. Available online: https://dev.ti.com/gallery/view/mmwave/mmWave_Demo_Visualizer/ver/3.6.0/ (accessed on 14 July 2022).
- Ma, L.; Liu, M.; Wang, N.; Wang, L.; Yang, Y.; Wang, H. Room-level fall detection based on ultra-wideband (UWB) monostatic radar and convolutional long short-term memory (LSTM). Sensors 2020, 20, 1105. [Google Scholar] [CrossRef]
- Kausar, F.; Mesbah, M.; Iqbal, W.; Ahmad, A.; Sayyed, I. Fall detection in the elderly using different machine learning algorithms with optimal window size. Mobile Netw. Appl. 2024, 29, 413–423. [Google Scholar] [CrossRef]
- Yacchirema, D.; de Puga, J.S.; Palau, C.; Esteve, M. Fall detection system for elderly people using IoT and ensemble machine learning algorithm. Pers. Ubiquit. Comput. 2019, 23, 801–817. [Google Scholar] [CrossRef]
- Wang, S. Automated fault diagnosis detection of air handling units using real operational labelled data and transformer-based methods at 24-hour operation hospital. Build. Environ. 2025, 282, 113257. [Google Scholar] [CrossRef]
- Sak, H.; Andrew, W., Sr.; Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. Interspeech 2014, 2014, 338–342. [Google Scholar] [CrossRef]
- Sun, C.; Han, S.; Shin, S. Malware detection and classification system based on behavior. J. Inf. Commun. Converg. Eng. 2025, 23, 121–128. [Google Scholar] [CrossRef]
- The MathWorks Inc. MATLAB Version: 25.1.0.2943329 (R2025a); The MathWorks Inc.: Natick, MA, USA, 2025; Available online: https://www.mathworks.com (accessed on 19 January 2025).
- Parikh, R.; Mathai, A.; Parikh, S.; Sekhar, G.C.; Thomas, R. Understanding and using sensitivity, specificity and predictive values. Indian J. Ophthalmol. 2008, 56, 45. [Google Scholar] [CrossRef]
Names | Values/Methods |
---|---|
Learning rate | 0.001 |
Epochs | 1000 |
Batch Size | 32 |
Optimizer | Adam |
Loss Function | Crossentropy |
Architecture | Evaluation Metrics [%] | |||
---|---|---|---|---|
Sensitivity | Precision | Accuracy | F1-Score | |
Raw+LSTM | 100 | 50 | 50 | 66.7 |
Raw+LSTM+Attention | 100 | 50 | 50 | 66.7 |
HOG+LSTM | 94.5 | 88.9 | 91.4 | 91.6 |
HOG+LSTM+Attention | 98.2 | 92.9 | 95.3 | 95.5 |
Evaluation Metrics | NumHeads:NumKeyChannels | |||||
---|---|---|---|---|---|---|
1:32 | 2:64 | 4:128 | 8:256 | 16:512 | 32:1024 | |
Sensitivity [%] | 92.7 | 98.2 | 98.2 | 94.5 | 94.5 | 76.4 |
Precision [%] | 88.7 | 92.9 | 90.1 | 90.7 | 88.9 | 92.2 |
Accuracy [%] | 90.4 | 95.3 | 93.7 | 92.4 | 91.4 | 85.0 |
F1-Score [%] | 90.7 | 95.5 | 94.0 | 92.6 | 91.6 | 83.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.S.; Wie, S.; Lee, H.; Lee, J.; Kim, N.H. Long Short-Term Memory-Based Fall Detection by Frequency-Modulated Continuous Wave Millimeter-Wave Radar Sensor for Seniors Living Alone. Appl. Sci. 2025, 15, 8381. https://doi.org/10.3390/app15158381
Yu YS, Wie S, Lee H, Lee J, Kim NH. Long Short-Term Memory-Based Fall Detection by Frequency-Modulated Continuous Wave Millimeter-Wave Radar Sensor for Seniors Living Alone. Applied Sciences. 2025; 15(15):8381. https://doi.org/10.3390/app15158381
Chicago/Turabian StyleYu, Yun Seop, Seongjo Wie, Hojin Lee, Jeongwoo Lee, and Nam Ho Kim. 2025. "Long Short-Term Memory-Based Fall Detection by Frequency-Modulated Continuous Wave Millimeter-Wave Radar Sensor for Seniors Living Alone" Applied Sciences 15, no. 15: 8381. https://doi.org/10.3390/app15158381
APA StyleYu, Y. S., Wie, S., Lee, H., Lee, J., & Kim, N. H. (2025). Long Short-Term Memory-Based Fall Detection by Frequency-Modulated Continuous Wave Millimeter-Wave Radar Sensor for Seniors Living Alone. Applied Sciences, 15(15), 8381. https://doi.org/10.3390/app15158381