Analysis of Relevance and Appeal of Visual Presentation of Meat Products Generated Using Artificial Intelligence
Abstract
1. Introduction
- -
- Systematically comparing AI-generated and photographic images of meat products using both professional and consumer audiences;
- -
- Introducing a structured two-phase evaluation involving Adobe Firefly 3;
- -
- Highlighting the impact of reference images on output quality and public preference;
- -
- Providing a concrete hybrid workflow for applying AI in food marketing contexts;
- -
- Offering novel insight into demographic differences and trust in AI-generated food visuals.
2. Literature Review
2.1. Artificial Intelligence
2.2. Generative Artificial Intelligence
2.2.1. GenAI Tools
2.2.2. GenAI in the Food Industry
2.2.3. Credibility of AI-Generated Images
2.2.4. Ethical Aspects of GenAI Usage
2.3. Meat as a Sales Object
3. Materials and Methods
3.1. Creating Images with Adobe Firefly 3
Example of Creating Images with Adobe Firefly 3
3.2. Survey Evaluating the Accuracy of AI-Generated Images
3.3. Meat Product Photography
3.4. Likability Comparison Between AI-Generated Images and Photographs
4. Results
4.1. Evaluation of the Suitability of AI-Generated Images
4.2. Analysis of AI-Generated Image Attractiveness Compared to Photographs
- Capture or identify a reference photograph that illustrates the desired visual attributes;
- Describe key features and stylistic targets;
- Prompt the AI using both the image and detailed textual input;
- Validate the output against a visual checklist (e.g., color fidelity, shape realism, product recognizability);
- Refine results through human-in-the-loop feedback or light editing.
5. Discussion Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
GenAI | Generative artificial intelligence |
IEEE | Institute of Electrical and Electronics Engineers |
SDXL | Stable Diffusion XL |
UNESCO | The United Nations Educational, Scientific and Cultural Organization |
References
- Misal, T.; Satyam, K.; Ronit, B.; Rohit, A.; Shreya, B. Detection of AI-Generated Images. Int. J. Trend Sci. Res. Dev. 2024, 8, 805–810. [Google Scholar]
- Mugge, R.; Dahl, D.W.; Schoormans, J.P.L. “What You See, Is What You Get?” Guidelines for Influencing Consumers’ Perceptions of Consumer Durables through Product Appearance. J. Prod. Innov. Manag. 2018, 35, 309–329. [Google Scholar] [CrossRef]
- Ertel, W. Introduction to Artificial Intelligence, 2nd ed.; Springer Nature: Cham, Switzerland, 2018; p. 393. [Google Scholar]
- Banh, L.; Strobel, G. Generative Artificial Intelligence. Electron. Mark. 2023, 33, 63. [Google Scholar] [CrossRef]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine Learning and Deep Learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Angelova, N. The Capabilities of the Art-Oriented Artificial Intelligence Adobe Firefly and Its Visual Advantages and Disadvantages. Fundam. Sci. Appl. 2024, 30, 1–10. [Google Scholar]
- Wessel, M.; Adam, M.; Benlian, A.; Majchrzak, A.; Thies, F. Generative AI and Its Transformative Value for Digital Platforms. J. Manag. Inf. Syst. 2024, 42, 2. [Google Scholar] [CrossRef]
- Ng, K.; Drenon, B.; Gerken, T.; Cieslak, M. What Is DeepSeek—And Why Is Everyone Talking About It? BBC News. 2025. Available online: https://www.bbc.com/news/articles/c5yv5976z9po (accessed on 15 April 2025).
- Frolov, S.; Hinz, T.; Raue, F.; Hees, J.; Dengel, A. Adversarial Text-to-Image Synthesis: A Review. Neural Netw. 2021, 144, 187–209. [Google Scholar] [CrossRef]
- Adobe Firefly. Brezplačna Generativna Umetna Inteligenca za Ustvarjalce; Adobe Inc.: San José, CA, USA, 2025; Available online: https://www.adobe.com/si/products/firefly.html (accessed on 16 January 2025).
- Owen, A.E.; Roberts, J.C. Visualisation Design Ideation with AI: A New Framework, Vocabulary, and Tool. Future Internet 2024, 16, 406. [Google Scholar] [CrossRef]
- Ong, S.H.; Ni, S.X.; Vern, H.L. Dimensions Affecting Consumer Acceptance towards Artificial Intelligence (AI) Service in the Food and Beverage Industry in Klang Valley. Semarak Int. J. Mach. Learn. 2024, 1, 20–30. [Google Scholar] [CrossRef]
- Güleç, H.; Durlu Özkaya, F. Food Styling and Food Photography with Generative AI. Toleho 2024, 6, 90–103. [Google Scholar] [CrossRef]
- Diel, A.; Lalgi, T.; Teufel, M.; Bäuerle, A.; MacDorman, K.E. Eerie Edibles: Realism and Food Neophobia Predict an Uncanny Valley in AI-Generated Food Images. Appetite 2025, 208, 107926. [Google Scholar] [CrossRef]
- Is AI a Good Alternative for Photography? Slerp Blog. 2023. Available online: https://www.slerp.com/blog/2023/05/16/is-ai-a-good-alternative-for-photography/ (accessed on 2 June 2025).
- Califano, G.; Spence, C. Assessing the Visual Appeal of Real/AI-Generated Food Images. Food Qual. Prefer. 2024, 116, 105149. [Google Scholar] [CrossRef]
- Zelený, J.; Ulrichová, A.; Fišer, V.; Husák, J.; Svobodová, D. Gastronomic Consumers’ Attitudes Toward AI-Generated Food Images: Exploring Different Perceptions Based on Generational Segmentation. In Marketing and Smart Technologies; Reis, J.L., Zelený, J., Gavurová, B., dos Santos, J.P.M., Eds.; Springer Nature: Singapore, 2024; pp. 105–119. [Google Scholar]
- Kirova, V.D.; Ku, C.S.; Laracy, J.R.; Marlowe, T.J. The Ethics of Artificial Intelligence in the Era of Generative AI. J. Sci. Comput. 2023, 21, 42–50. [Google Scholar] [CrossRef]
- Šubic, T. Senzorične lastnosti klobas za kuhanje kot pomemben dejavnik pri odločitvi za nakup. In Zbornik Prispevkov Konference VIVUS: Med Vizijo in Resničnostjo Novih Obzorij; Košir, T., Pogorelec, A., Eds.; Biotehniški Center Naklo: Strahinj, Slovenia, 2023; pp. 309–322. [Google Scholar]
- Jelinčić, D.A. Znanost i Umjetnost Doživljaja Hrane; Jesenski i Turk: Zagreb, Croatia, 2023; pp. 76–85. [Google Scholar]
- Clydesdale, F.M. Color Perception and Food Quality. J. Food Qual. 1991, 14, 61–74. [Google Scholar] [CrossRef]
- Jahnke, M. The Influence of Color on Taste Perception. Interesting Thing of the Day. 2018. Available online: https://itotd.com/articles/3508/the-influence-of-color-on-taste-perception/ (accessed on 18 January 2025).
- Štampfl, V.; Ahtik, J. Quality of Colour Rendering in Photographic Scenes Illuminated by Light Sources with Light-Shaping Attachments. Appl. Sci. 2024, 14, 1814. [Google Scholar] [CrossRef]
- Šubic, T.; Mavrin, D.; Leskovar Mesarič, P. Meso in Mesni Izdelki; Pipinova Knjiga d.o.o.: Dobrova, Slovenia, 2022; pp. 224–226. [Google Scholar]
- Arvaj, L.B.; Šubic, T.; Ahtik, J. Analysis of relevance and appeal of visual presentation of meat products generated using artificial intelligence. In Proceedings of the 50th International Symposium on Novelties in Textiles & 10th Conference on Information and Graphic Arts Technology (CIGT 2025), Ljubljana, Slovenia, 29–30 May 2025; University of Ljubljana: Ljubljana, Slovenia, 2025; pp. 344–350. Available online: https://plus.cobiss.net/cobiss/si/sl/bib/236746243 (accessed on 9 June 2025).
Meat Product | Professionally Accurate Image | Professionally Inaccurate Image |
---|---|---|
Burger | 82% | 18% |
Prosciutto | 67% | 33% |
Chicken skewers | 59% | 41% |
Wiener schnitzel | 57% | 43% |
Steak | 50% | 50% |
Carniolan sausage | 36% | 64% |
Dry salami | 29% | 71% |
Hot dog | 29% | 71% |
Steak tartare | 19% | 81% |
Mortadella | 9% | 91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arvaj, L.B.; Šubic, T.; Ahtik, J. Analysis of Relevance and Appeal of Visual Presentation of Meat Products Generated Using Artificial Intelligence. Appl. Sci. 2025, 15, 8328. https://doi.org/10.3390/app15158328
Arvaj LB, Šubic T, Ahtik J. Analysis of Relevance and Appeal of Visual Presentation of Meat Products Generated Using Artificial Intelligence. Applied Sciences. 2025; 15(15):8328. https://doi.org/10.3390/app15158328
Chicago/Turabian StyleArvaj, Lucija Brina, Tatjana Šubic, and Jure Ahtik. 2025. "Analysis of Relevance and Appeal of Visual Presentation of Meat Products Generated Using Artificial Intelligence" Applied Sciences 15, no. 15: 8328. https://doi.org/10.3390/app15158328
APA StyleArvaj, L. B., Šubic, T., & Ahtik, J. (2025). Analysis of Relevance and Appeal of Visual Presentation of Meat Products Generated Using Artificial Intelligence. Applied Sciences, 15(15), 8328. https://doi.org/10.3390/app15158328