The Influence of Heat and Surface Treatment on the Functional Properties of Ti6Al4V Alloy Samples Obtained by Additive Technology for Applications in Personalized Implantology
Abstract
1. Introduction
2. Materials and Methods
- The furnace was heated to 800 ± 10 °C, held the samples for 2 h, and was then tempered to 500 °C, followed by slow cooling to room temperature—as shown in Figure 2a;
- The furnace was heated to 910 ± 10 °C, held the samples for 2 h, and the samples were then cooled with the furnace to room temperature—as shown in Figure 2b.
- The furnace was heated to 1020 ± 10 °C, held the samples for 2 h, and the samples were then cooled with the furnace to room temperature—as shown in Figure 2c.
2.1. Material Structure
2.2. Microscopic Observations
2.3. Surface Roughness
2.4. Wettability Test
2.5. Pitting Corrosion Test
2.6. Hardness Test
2.7. Statistical Analysis
3. Results
3.1. Material Structure
3.2. Microscopic Observations
3.3. Surface Roughness
3.4. Wettability Test
3.5. Pitting Corrosion Test
3.6. Hardness Test
4. Discussion of Results and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marin, E.; Lanzutti, A. Biomedical Applications of Titanium Alloys: A Comprehensive Review. Materials 2024, 17, 114. [Google Scholar] [CrossRef] [PubMed]
- Kajzer, W.; Wielgus, G.; Kajzer, A. Mechanical and Physicochemical Properties of Ti6Al4V Alloy After Plastic Working and 3D Printing Intended for Orthopedics Implants. Appl. Sci. 2024, 14, 11181. [Google Scholar] [CrossRef]
- Orłowska, A.; Kajzer, W.; Goldsztajn, K.; Gawron, A.; Godzierz, M.; Nowińska, K.; Basiaga, M.; Simka, W.; Szewczenko, J. Functionalization of 3D printed Ti6Al4V high-porous spinal implant surface with use of plasma electrolytic oxidation. Appl. Surf. Sci. 2024, 659, 159948. [Google Scholar] [CrossRef]
- Orłowska, A.; Szewczenko, J.; Kajzer, W.; Goldsztajn, K.; Basiaga, M. Study of the Effect of Anodic Oxidation on the Corrosion Properties of the Ti6Al4V Implant Produced from SLM. J. Funct. Biomater. 2023, 14, 191. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, M.N.; Verlieza, Z.; Buwana, D.S.; Rachmadi, B.T.; Soetojo, B.W.; Desnantyo, A.T. Future of orthopaedic in bone defect by using 3D-printed personalized implants: A systematic review. J. Assoc. Med. Sci. 2025, 58, 234–242. [Google Scholar] [CrossRef]
- Cong, B.; Zhang, H. Innovative 3D printing technologies and advanced materials revolutionizing orthopedic surgery: Current applications and future directions. Front. Bioeng. Biotechnol. 2025, 13, 1542179. [Google Scholar] [CrossRef] [PubMed]
- Ling, K.; Wang, W.; Liu, J. Current developments in 3D printing technology for orthopedic trauma: A review. Medicine 2025, 104, e41946. [Google Scholar] [CrossRef] [PubMed]
- Goldsztajn, K.; Godzierz, M.; Hercog, A.; Władowski, M.; Jaworska, J.; Jelonek, K.; Woźniak, A.; Kajzer, W.; Orłowska, A.; Szewczenko, J. Properties of biodegradable polymer coatings with hydroxyapatite on a titanium alloy substrate. Acta Bioeng. Biomech. 2024, 26, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Lisoń-Kubica, J.; Taratuta, A.; Goldsztajn, K.; Antonowicz, M.; Walke, W.; Dyner, A.; Basiaga, M. Modern methods of surface modification for new-generation titanium alloys. Acta Bioeng. Biomech. 2022, 24, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Warreth, A.; Ibieyou, N.; O′Leary, R.B.; Cremonese, M.; Abdulrahim, M. Dental implants: An overview. Implant. Dent. 2017, 44, 596–620. [Google Scholar] [CrossRef]
- Guo, L.; Naghavi, S.A.; Wang, Z.; Varma, S.N.; Han, Z.; Yao, Z.; Wang, L.; Wang, L.; Liu, C. On the design evolution of hip implants: A review. Mater. Des. 2022, 216, 110552. [Google Scholar] [CrossRef]
- Kiel-Jamrozik, M.; Jamrozik, W.; Witkowska, I. The heat treatment influence on the structure and mechanical properties of Ti6Al4V alloy manufactured by SLM technology. Innov. Biomed. Eng. 2017, 623, 319–327. [Google Scholar] [CrossRef]
- Chang, J.Z.-C.; Tsai, P.-I.; Kuo, M.Y.-P.; Sun, J.-S.; Chen, S.-Y.; Shen, H.-H. Augmentation of DMLS Biomimetic Dental Implants with Weight-Bearing Strut to Balance of Biologic and Mechanical Demands: From Bench to Animal. Taiwan. Mater. 2019, 12, 164. [Google Scholar] [CrossRef] [PubMed]
- Orłowska, A.; Szewczenko, J.; Kajzer, W.; Goldsztajn, K.; Basiaga, M. Influence of anodic oxidation on the biocompatibility of Ti6Al4V implants made by the SLM method. In Proceedings of the 32nd Annual Conference of the European Society for Biomaterials, Bordeaux, France, 4–8 September 2022; p. 223. [Google Scholar]
- Available online: https://gsalloy.com/pl/ti6al4v-vs-ti6al4v-eli-a-comprehensive-comparison/ (accessed on 26 April 2025).
- Campos, F.d.O.; Araujo, A.C.; Munhoz, A.L.J.; Kapoor, S.G. The influence of additive manufacturing on the micromilling machinability of Ti6Al4V: A comparison of SLM and commercial workpieces. J. Manuf. Process. 2020, 60, 299–307. [Google Scholar] [CrossRef]
- EOS GmbH-Electro Optical Systems: Krailling/Munich Germany. Available online: https://www.eos.info (accessed on 19 June 2025).
- EOSTitaniumTi64 for EOS M300-4; Material Data Sheet. EOS GmbH—Electro Optical Systems: Krailling, Germany, 2022.
- Instruction EOS M 100; User Manual EOS M100; EOS GmbH—Electro Optical Systems: Krailling, Germany, 2019.
- EOSM100; Parameter Sheet. EOS GmbH—Electro Optical Systems: Krailling, Germany, 2015.
- Gogolewski, D.; Kozior, T.; Zmarzły, P.; Mathia, T.G. Morphology of Models Manufactured by SLM Technology and the Ti6Al4V Titanium Alloy Designed for Medical Applications. Materials 2021, 14, 6249. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhao, D.; Wang, P.; Yan, M.; Yang, C.; Chen, Z.; Lu, J.; Lu, Z. Additive manufacturing of metals: Microstructure evolution and multistage control. J. Mater. Sci. Technol. 2022, 100, 224–236. [Google Scholar] [CrossRef]
- Anand, M.; Das, A.K. Issues in fabrication of 3D components through DMLS technique: A review. Opt. Laser Technol. 2021, 139, 106914. [Google Scholar] [CrossRef]
- Cabrini, M.; Carrozza, A.; Lorenzi, S.; Pastore, T.; Testa, C.; Manfredi, D.; Fino, P.; Scenini, F. Influence of surface finishing and heat treatments on the corrosion resistance of LPBF-produced Ti-6Al-4V alloy for biomedical applications. J. Mater. Process. Technol. 2022, 308, 117730. [Google Scholar] [CrossRef]
- Maimaitiyili, T.; Woracek, R.; Neikter, M.; Boin, M.; Wimpory, R.C.; Pederson, R.; Strobl, M.; Drakopoulos, M.; Schäfer, N.; Bjerkén, C. Residual Lattice Strain and Phase Distribution in Ti6Al4V Produced by Electron Beam Melting. Materials 2019, 12, 667. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://artizono.com/pl/kompleksowy-przewodnik-po-obrobce-cieplnej-stopow-tytanu/ (accessed on 12 June 2025).
- Çevik, Z.A.; Ozsoy, K.; Erçetin, A. The Effect of Machining Process on The Pyhsical and Surface Morphology of Ti6Al4V Specimens Produced Through Powder Bed Fusion Additive Manufacturing. Int. J. 3D Print. Technol. Digit. Ind. 2021, 5, 187–194. [Google Scholar] [CrossRef]
- Polska Norma PN-EN ISO 25178-1:2016-08; Specyfikacje Geometrii Wyrobów (GPS)—Struktura Geometryczna Powierzchni: Przestrzenna–Część 6: Klasyfikacja Metod Pomiaru Struktury Geometrycznej Powierzchni. Available online: https://www.iso.org/standard/46065.html (accessed on 1 April 2025).
- Polska Norma PN-EN ISO 10993-15; Biologiczna Ocena Wyrobów Medycznych—Część 1: Ocena i Badanie w Procesie Zarządzania Ryzykiem. Polski Komitet Normalizacyjny: Warsaw, Poland, 2009.
- Polska Norma PN-EN ISO 6507-1; Metale. Pomiar Twardości Sposobem Vickersa. Część 1 Metoda Badań. Polski Komitet Normalizacyjny: Warsaw, Poland, 2007.
- Kajzer, W.; Szewczenko, J.; Kajzer, A.; Basiaga, M.; Kaczmarek, M.; Antonowicz, M.; Jaworska, J.; Jelonek, K.; Orchel, A.; Nowińska, K.; et al. Electrochemical and Biological Performance of Biodegradable Polymer Coatings on Ti6Al7Nb Alloy. Materials 2020, 13, 1758. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.metalpowder.sandvik/en/webshop/metal-powders/titanium-alloys/osprey-ti-6al-4v-grade-23/ (accessed on 1 April 2025).
- Hucińska, J. “Metaloznastwo” Politechnika Gdańska. 1995, pp. 50–52. Available online: https://docer.pl/doc/xnx5xcn (accessed on 1 April 2025).
- Motyka, M.; Baran-Sadleja, A.; Garcarczyk, K. Decomposition of deformed α′(α″) martensitic phase in Ti–6Al–4V alloy. Sci. Technol. 2019, 35, 354–364. [Google Scholar] [CrossRef]
- Lekoadi, P.; Tlotleng, M.; Annan, K.; Maledi, N.; Masina, B. Evaluation of heat treatment parameters on microstructure and hardness properties of high-speed selective laser melted Ti6Al4V. Metals 2021, 11, 255. [Google Scholar] [CrossRef]
- Demirci, S.; Dalmiç, R.; Dikici, T.; Tünçay, M.M.; Kaya, N.; Güllüoğlu, A.N. Effect of surface modifications of additively manufactured Ti-6Al-4V alloys on apatite formation ability for biomedical applications. J. Alloys Compd. 2021, 887, 161445. [Google Scholar] [CrossRef]
- Tardelli, J.D.C.; Valente, M.L.d.C.; Otani, L.B.; Batalha, R.L.; Alves, F.; Pereira-da-Silva, M.A.; Bagnato, V.S.; Dibb, R.G.P.; Gargarella, P.; Bolfarini, C.; et al. Analysis of physical, chemical, mechanical, and microbiological properties of Ti–35Nb–7Zr–5Ta and Ti–6Al–4V discs obtained by machining and additive manufacturing. Ceram. Int. 2024, 50, 2845–2854. [Google Scholar] [CrossRef]
- Singh, P.K.; Kumar, S.; Jain, P.K.; Dixit, U.S. Effect of Heat Treatment on Electrochemical Behavior of Additively Manufactured Ti-6Al-4V Alloy in Ringer’s Solution. J. Mater. Eng. Perform. 2023, 33, 9570–9582. [Google Scholar] [CrossRef]
- Chávez-Díaz, M.P.; Escudero-Rincón, M.L.; Chao, J.; Arce-Estrada, E.M.; Cabrera-Sierra, R. Effect of heat treatment on the electrochemical and mechanical behavior of the Ti6Al4V alloy. Metall. Mater. Trans. A 2021, 52, 3570–3584. [Google Scholar] [CrossRef]
- Kajzer, A.; Paszenda, Z.; Basiaga, M.; Walke, W.; Kajzer, W. Influence of surface modification on physicochemical properties of titanium used for blood contacting implants. Eng. Biomater. 2014, 17, 126. [Google Scholar]
- Sobczak, N. Zwilżalność. struktura i właściwości granic rozdziału w układzie Al/Al2O3. Composites 2003, 3, 301–312. [Google Scholar]
O [%] | V [%] | Al [%] | Fe [%] | H [%] | C [%] | N [%] | Y [%] | Ti [%] |
---|---|---|---|---|---|---|---|---|
max 0.130 | 3.500–4.500 | 5.500–6.500 | max 0.250 | max 0.012 | max 0.080 | max 0.050 | max 0.005 | balance |
Group I | S | sandblasting—initial state |
S_800 | sandblasting + heat treatment_800 °C | |
S_910 | sandblasting + heat treatment_910 °C | |
S_1020 | sandblasting + heat treatment_1020 °C | |
Group II | MP | mechanical polishing—initial state |
MP_800 | mechanical polishing + heat treatment_800 °C | |
MP_910 | mechanical polishing + heat treatment_910 °C | |
MP_1020 | mechanical polishing + heat treatment_1020 °C |
Samples | Surface Layer Composition [wt.-%] | ||||
---|---|---|---|---|---|
Ti | Al | V | Si | Other Elements | |
S | 76.4 | 4.5 | 3.5 | 2.1 | 15.6 |
S_800 | 78.3 | 4.8 | 3.3 | 2.1 | 13.6 |
S_910 | 81.3 | 4.9 | 3.2 | 1.2 | 10.6 |
S_1020 | 77.1 | 4.7 | 2.7 | 2.6 | 15.5 |
MP | 89.3 | 5.6 | 3.9 | - | 1.2 |
MP_800 | 89.8 | 5.5 | 3.8 | - | 0.9 |
MP_910 | 89.3 | 5.5 | 3.9 | - | 1.3 |
MP_1020 | 89.8 | 5.6 | 3.8 | - | 0.8 |
Samples | I [mA/cm 2] | Ecor [mV] | Rp [kΩ·cm 2] |
---|---|---|---|
S | 818 ± 139 | −226 ± 87 | 29 ± 1.5 |
S_800 | 940 ± 487 | −115 ± 30 | 32 ± 0.1 |
S_910 | 766 ± 145 | −118 ± 6.4 | 31 ± 0.9 |
S_1020 | 164 ± 79 | −51 ± 54 | 89 ± 29 |
MP | 215 ± 116 | −58 ± 16 | 95 ± 43 |
MP_800 | 289 ± 69 | −63 ± 133 | 95 ± 32 |
MP_910 | 615 ± 88 | −233 ± 45 | 63 ± 48 |
MP_1020 | 150 ± 53 | −207 ± 66 | 67 ± 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajzer, A.; Wielgus, G.; Drobina, K.; Żurawska, A.; Kajzer, W. The Influence of Heat and Surface Treatment on the Functional Properties of Ti6Al4V Alloy Samples Obtained by Additive Technology for Applications in Personalized Implantology. Appl. Sci. 2025, 15, 8311. https://doi.org/10.3390/app15158311
Kajzer A, Wielgus G, Drobina K, Żurawska A, Kajzer W. The Influence of Heat and Surface Treatment on the Functional Properties of Ti6Al4V Alloy Samples Obtained by Additive Technology for Applications in Personalized Implantology. Applied Sciences. 2025; 15(15):8311. https://doi.org/10.3390/app15158311
Chicago/Turabian StyleKajzer, Anita, Gabriela Wielgus, Krystian Drobina, Aleksandra Żurawska, and Wojciech Kajzer. 2025. "The Influence of Heat and Surface Treatment on the Functional Properties of Ti6Al4V Alloy Samples Obtained by Additive Technology for Applications in Personalized Implantology" Applied Sciences 15, no. 15: 8311. https://doi.org/10.3390/app15158311
APA StyleKajzer, A., Wielgus, G., Drobina, K., Żurawska, A., & Kajzer, W. (2025). The Influence of Heat and Surface Treatment on the Functional Properties of Ti6Al4V Alloy Samples Obtained by Additive Technology for Applications in Personalized Implantology. Applied Sciences, 15(15), 8311. https://doi.org/10.3390/app15158311