The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. The Test Materials
2.2. The Experimental Design
2.3. Testing of the Garlic Sprout Growth Indicators
2.4. Testing of the Physiological Indicators of the Garlic Sprouts
2.4.1. Determination of the Soluble Sugar Content Using the Anthrone Colorimetric Method
2.4.2. The Coomassie Brilliant Blue Colorimetric Method for the Soluble Protein Content
2.4.3. Determination of the Free Amino Acid Content Using the Indene Ketone Colorimetric Method
2.4.4. Determination of the Vitamin C (Vc) Content Using UV Spectrophotometry
2.4.5. Determination of the Allicin Content Using the Phenylhydrazone Method
2.5. Testing of the Soil’s Chemical Properties
2.6. Data Analysis
3. Results and Analysis
3.1. The Effects of Different Treatment Groups on the Yield per Unit Area of Garlic Sprouts
3.2. The Effects of Different Treatment Groups on Garlic Sprout Growth
3.3. The Effects of Different Treatment Groups on the Chlorophyll Content of the Garlic Seedlings
3.4. The Effects of Different Treatment Groups on Physiological Indicators of Garlic Sprouts
3.5. The Effects of Different Treatment Groups on Soil Nutrients
3.6. Regulation of the Soil’s Heavy Metal Content by the Slow-Release Fertilizer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, Z.; Liu, J.; Kattel, G. Historical nitrogen fertilizers use in China from 1952 to 2018. Earth Syst. Sci. Data Discuss. 2022, 2022, 5179–5194. [Google Scholar] [CrossRef]
- Bhadu, A.; Singh, B.; Gulshan, T.; Kumawat, S.N.; Choudhary, R.K.; Farooq, F. Customized fertilizer: A key for enhanced crop production. Int. J. Plant Soil Sci. 2022, 34, 954–964. [Google Scholar] [CrossRef]
- Liu, L.; Zheng, X.; Wei, X.; Kai, Z.; Xu, Y. Excessive application of chemical fertilizer and organophosphorus pesticides induced total phosphorus loss from planting causing surface water eutrophication. Sci. Rep. 2021, 11, 23015. [Google Scholar] [CrossRef] [PubMed]
- Priya, E.; Sarkar, S.; Maji, P.K. A review on slow-release fertilizer: Nutrient release mechanism and agricultural sustainability. J. Environ. Chem. Eng. 2024, 12, 113211. [Google Scholar] [CrossRef]
- Moradi, S.; Babapoor, A.; Ghanbarlou, S.; Kalashgarani, M.Y.; Salahshoori, I.; Seyfaee, A. Toward a new generation of fertilizers with the approach of controlled-release fertilizers: A review. J. Coat. Technol. Res. 2024, 21, 31–54. [Google Scholar] [CrossRef]
- Wesołowska, M.; Rymarczyk, J.; Góra, R.; Baranowski, P.; Sławiński, C.; Klimczyk, M.; Supryn, G.; Schimmelpfennig, L. New slow-release fertilizers—Economic, legal and practical aspects: A review. Int. Agrophys. 2021, 35, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Van Wesenbeeck, C.F.A.; Keyzer, M.A.; Van Veen, W.C.M.; Qiu, H. Can China’s overuse of fertilizer be reduced without threatening food security and farm incomes. Agric. Syst. 2021, 190, 103093. [Google Scholar] [CrossRef]
- Tyagi, J.; Ahmad, S.; Malik, M. Nitrogenous fertilizers: Impact on environment sustainability, mitigation strategies, and challenges. Int. J. Environ. Sci. Technol. 2022, 19, 11649–11672. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Qiu, H. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef] [PubMed]
- Dhankhar, N.; Kumar, J. Impact of increasing pesticides and fertilizers on human health: A review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Fu, J.; Wang, C.; Chen, X. Classification research and types of slow controlled release fertilizers (SRFs) used—A review. Commun. Soil Sci. Plant Anal. 2018, 49, 2219–2230. [Google Scholar] [CrossRef]
- Almutari, M.M. Synthesis and modification of slow-release fertilizers for sustainable agriculture and environment: A review. Arab. J. Geosci. 2023, 16, 518. [Google Scholar] [CrossRef]
- Yuan, S.; Cheng, L.; Tan, Z. Characteristics and preparation of oil-coated fertilizers: A review. J. Control. Release 2022, 345, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Li, X.; Jia, Y.; Li, K.; Hou, X.; Zhao, F.; Huang, H. Bentonite-enhanced sanxan: A pathway to slow-release, eco-friendly fertilizers. J. Clean. Prod. 2024, 485, 144396. [Google Scholar] [CrossRef]
- Li, M.; Yun, W.; Wang, G.; Li, A.; Gao, J.; He, Q. Roles and mechanisms of garlic and its extracts on atherosclerosis: A review. Front. Pharmacol. 2022, 13, 954938. [Google Scholar] [CrossRef] [PubMed]
- Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Yang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods 2019, 8, 246. [Google Scholar] [CrossRef] [PubMed]
- Emamat, H.; Tangestani, H.; Totmaj, A.S.; Ghalandari, H.; Nasrollahzadeh, J. The effect of garlic on vascular function: A systematic review of randomized clinical trials. Clin. Nutr. 2020, 39, 3563–3570. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ye, Y.; Chu, X.; Wang, Y. Responses of garlic quality and yields to various types and rates of potassium fertilizer applications. HortScience 2022, 57, 72–80. [Google Scholar] [CrossRef]
- Ma, B.; Karimi, M.S.; Mohammed, K.S.; Shahzadi, I.; Dai, J. Nexus between climate change, agricultural output, fertilizer use, agriculture soil emissions: Novel implications in the context of environmental management. J. Clean. Prod. 2024, 450, 141801. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, M.; Zhao, C.; Li, B.; Peng, H.; Zhang, Y.; Shao, Q.; Hassan, M. Application of lignin in preparation of slow-release fertilizer: Current status and future perspectives. Ind. Crops Prod. 2022, 176, 114267. [Google Scholar] [CrossRef]
- Gwenzi, W.; Nyambishi, T.J.; Chaukura, N.; Nyamande, M. Synthesis and nutrient release patterns of a biochar-based N–P–K slow-release fertilizer. Int. J. Environ. Sci. Technol. 2018, 15, 405–414. [Google Scholar] [CrossRef]
- Dong, D.; Wang, C.; Van Zwieten, L.; Wang, H.; Jiang, P.; Zhou, M.; Wu, W. An effective biochar-based slow-release fertilizer for reducing nitrogen loss in paddy fields. J. Soils Sediments 2020, 20, 3027–3040. [Google Scholar] [CrossRef]
- Eddarai, E.M.; El Mouzahim, M.; Ragaoui, B.; Eladaoui, S.; Bourd, Y.; Bellaouchou, A.; Boussen, R. Review of current trends in chitosan based controlled and slow-release fertilizer: From green chemistry to circular economy. Int. J. Biol. Macromol. 2024, 278, 134982. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, T.; Dong, J.F.; Chen, G.; Li, Z.; Zhou, J.L.; Chen, Z. Sustainable application for agriculture using biochar-based slow-release fertilizers: A review. ACS Sustain. Chem. Eng. 2022, 11, 1–12. [Google Scholar] [CrossRef]
- Seddighi, H.; Shayesteh, K. Slow-release fertilizers: A promising solution to environment pollution. J. Environ. Sci. Stud. 2024, 9, 8407–8417. [Google Scholar]
- Jariwala, H.; Santos, R.M.; Lauzon, J.D.; Dutta, A.; Chiang, Y.W. Controlled release fertilizers (CRFs) for climate-smart agriculture practices: A comprehensive review on release mechanism, materials, methods of preparation, and effect on environmental parameters. Environ. Sci. Pollut. Res. 2022, 29, 53967–53995. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Fu, P.; Cheng, G.; Lu, W.; Lu, D. Delaying application time of slow-release fertilizer increases soil rhizosphere nitrogen content, root activity, and grain yield of spring maize. Crop J. 2022, 10, 1798–1806. [Google Scholar] [CrossRef]
- Salimi, M.; Channab, B.; El Idrissi, A.; Zahouily, M.; Motamedi, E. A comprehensive review on starch: Structure, modification, and applications in slow/controlled-release fertilizers in agriculture. Carbohydr. Polym. 2023, 322, 121326. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Deng, K.; Zhu, Y.; Jiang, T.; Peng, W.; Feng, K.; Li, L. Optimization of slow-release fertilizer application improves lotus rhizome quality by affecting physicochemical properties of starch. J. Integr. Agric. 2023, 22, 2–14. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, Y.; Ding, Y.; Tao, W.; Gao, S.; Li, Q.; Li, W.; Liu, Z.; Li, G. Effects of different types of slow- and controlled-release fertilizers on rice yield. J. Integr. Agric. 2021, 20, 1503–1514. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, C.; Li, G.; Jiang, Y.; Hou, P.; Xue, L.; Yang, L.; Ding, Y. Lower dose of controlled/slow release fertilizer with higher rice yield and N utilization in paddies: Evidence from a meta-analysis. Field Crops Res. 2023, 294, 108879. [Google Scholar] [CrossRef]
- Hou, P.; Xue, L.; Zhou, Y.; Li, G.; Yang, L.; Xue, L. Yield and N utilization of transplanted and direct-seeded rice with controlled or slow-release fertilizer. Agron. J. 2019, 111, 1208–1217. [Google Scholar] [CrossRef]
- Li, G.H.; Cheng, G.G.; Lu, W.P.; Lu, D.L. Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize. J. Integr. Agric. 2021, 20, 554–564. [Google Scholar] [CrossRef]
- Shoukat, M.R.; Bohoussou, Y.N.D.; Ahmad, N.; Saleh, I.A.; Okla, M.K.; Elshikh, M.S.; Ahmad, A.; Haider, F.U.; Khan, K.S.; Adnan, M. Growth, yield, and agronomic use efficiency of delayed sown wheat under slow-release nitrogen fertilizer and seeding rate. Agronomy 2023, 13, 1830. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, C.; Tao, C.; Fan, X.; Liu, R. Preparation of Phosphogypsum–Bentonite-Based Slow-Release Potassium Magnesium Sulfate Fertilizer. Agriculture 2025, 15, 692. [Google Scholar] [CrossRef]
- Goldring, J.P.D. Measuring Protein Concentration with Absorbance, Lowry, Bradford Coomassie Blue, or the Smith Bicinchoninic Acid Assay Before Electrophoresis. In Electrophoretic Separation of Proteins: Methods and Protocols; Springer: New York, NY, USA, 2018; pp. 31–39. [Google Scholar]
- Moore, S. Amino acid analysis: Aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J. Biol. Chem. 1968, 243, 6281–6283. [Google Scholar] [CrossRef] [PubMed]
- Ringvold, A.; Anderssen, E.; Kjønniksen, I. Ascorbate in the corneal epithelium of diurnal and nocturnal species. Investig. Ophthalmol. Vis. Sci. 1998, 39, 2774–2777. [Google Scholar] [PubMed]
- Mansor, N.; Herng, H.J.; Samsudin, S.J.; Sufian, S.; Uemura, Y. Quantification and characterization of allicin in garlic extract. J. Med. Bioeng. 2016, 5, 24–27. [Google Scholar] [CrossRef]
- LY/T 1232-2015; Determination of Forest Soil Phosphorus. State Forestry Administration: Beijing, China, 2015.
- Zhang, S.W.; Zong, Y.J.; Fang, C.Y.; Huang, S.H.; Li, J.; Xu, J.H.; Wang, Y.F.; Liu, C.H. Optimization of anthrone colorimetric method for rapid determination of soluble sugar in barley leaves. Food Res. Dev. 2020, 41, 190–200. [Google Scholar]
- LY/T 1234-2015; Determination of Forest Soil Potassium. State Forestry Administration: Beijing, China, 2015.
- NY/T 1121.6-2006; Soil Testing—Part 6: Determination of Soil Organic Carbon and Organic Matter. Ministry of Agriculture: Beijing, China, 2006.
- NY/T 1377-2007; Determination of pH in Soils. Ministry of Agriculture: Beijing, China, 2007.
- NY/T 1121.7-2014; Soil Testing—Part 7: Determination of Soil Available Phosphorus. Ministry of Agriculture: Beijing, China, 2014.
- NY/T 1121.14-2023; Soil Testing—Part 14: Determination of Soil Available Sulfur. Ministry of Agriculture and Rural Affairs: Beijing, China, 2023.
- NY/T 295-1995; Determination of Cation Exchange Capacity and Exchangeable Base in Neutral Soils. Ministry of Agriculture: Beijing, China, 1995.
- Ilieva, D.; Surleva, A.; Murariu, M.; Drochioiu, G.; Abdullah, M.M. Evaluation of ICP-OES method for heavy metal and metalloids determination in sterile dump material. Solid State Phenom. 2018, 273, 159–166. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Liao, S.; Zou, G.; Zhao, T.; Chen, Y.; Yang, J.; Zhang, L. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato. Agric. Water Manag. 2017, 186, 139–146. [Google Scholar] [CrossRef]
- Zareabyaneh, H.; Bayatvarkeshi, M. Effects of slow-release fertilizers on nitrate leaching, its distribution in soil profile, N-use efficiency, and yield in potato crop. Environ. Earth Sci. 2015, 74, 3385–3393. [Google Scholar] [CrossRef]
- Dutra, T.R.; Massad, M.D.; Sarmento, M.F.Q.; Matos, P.S.; Oliveira, J.C. Fertilizante de liberação lenta no crescimento e qualidade de mudas de canafístula (Peltophorum dubium). Floresta 2016, 46, 491–498. [Google Scholar] [CrossRef]
- Lang, A.; Malavasi, U.C.; Decker, V.; Pérez, P.V.; Aleixo, M.A.; Malavasi, M.D. Aplicação de fertilizante de liberação lenta no estabelecimento de mudas de ipê-roxo e angico-branco em área de domínio ciliar. Rev. Floresta 2011, 41, 271–276. [Google Scholar] [CrossRef][Green Version]
- Motalebifard, R. The effect of irrigation and nitrogen on growth attributes and chlorophyll content of garlic in line source sprinkler irrigation system. J. Water Soil 2016, 30, 1043–1058. [Google Scholar]
- Kevlani, L.; Leghari, Z.; Wahocho, N.A.; Memon, N.U.; Talpur, K.H.; Ahmed, W.; Jamali, M.F.; Kubar, A.A.; Wahocho, S.A. Nitrogen nutrition affect the growth and bulb yield of garlic (Allium sativum L.). J. Appl. Res. Plant Sci. 2023, 4, 485–493. [Google Scholar] [CrossRef]
- Ghafoor, I.; Habib-ur-Rahman, M.; Ali, M.; Afzal, M.; Ahmed, W.; Gaiser, T.; Ghaffar, A. Slow-release nitrogen fertilizers enhance growth, yield, NUE in wheat crop and reduce nitrogen losses under an arid environment. Environ. Sci. Pollut. Res. 2021, 28, 43528–43543. [Google Scholar] [CrossRef] [PubMed]
- Joshi, N.; Chandrashekar, C.P. Precision nutrient management in maize (Zea mays L.) under northern transition zone of Karnataka. J. Farm. Sci. 2017, 30, 343–348. [Google Scholar]
- Jerčić, I.H.; Mihovilović, A.B.; Stanković, A.M.; Lazarević, B.; Ban, S.G.; Ban, D.; Major, N.; Tomaz, I.; Banjavčić, Z.; Kereša, S. Garlic ecotypes utilise different morphological, physiological and biochemical mechanisms to cope with drought stress. Plants 2023, 12, 1824. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumar, D.; Sharma, A.; Bhadauria, S.; Thakur, A.; Bhatia, A. Micronutrients throughout the life cycle: Needs and functions in health and disease. Curr. Nutr. Food Sci. 2024, 20, 62–84. [Google Scholar] [CrossRef]
- Li, J.; Dadmohammadi, Y.; Abbaspourrad, A. Flavor components, precursors, formation mechanisms, production and characterization methods: Garlic, onion, and chili pepper flavors. Crit. Rev. Food Sci. Nutr. 2022, 62, 8265–8287. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Lv, J.; Xie, J.; Yu, J.; Li, J.; Zhang, J.; Tang, C.; Niu, T.; Patience, B.E. Effect of slow-release fertilizer on soil fertility and growth and quality of wintering Chinese chives (Allium tuberm Rottler ex Spreng.) in greenhouses. Sci. Rep. 2021, 11, 8070. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhao, H.; Zhang, M.; Dongdong, C.; Chen, J.; Ma, J.; Liu, Z. Liquid urea-formaldehyde slow release fertilizer reduced the frequency of fertigation and increased the yield of spinach (Spinacia oleracea L.). J. Plant Nutr. 2021, 44, 2971–2983. [Google Scholar] [CrossRef]
- Faqir, Y.; Chai, Y.; Jakhar, A.M.; Luo, T.; Liao, S.; Kalhoro, M.T.; Tan, C.; Sajid, S.; Hu, S.; Luo, J.; et al. Chitosan microspheres-based controlled-release nitrogen fertilizers improve the biological characteristics of Brassica rapa ssp. pekinensis and the soil. Int. J. Biol. Macromol. 2023, 253, 127124. [Google Scholar] [CrossRef] [PubMed]
- Teng, Q.; Zhang, D.; Niu, X.; Jiang, C. Influences of Application of Slow-Release Nano-Fertilizer on Green Pepper Growth, Soil Nutrients and Enzyme Activity. IOP Conf. Ser. Earth Environ. Sci. 2018, 208, 012014. [Google Scholar] [CrossRef]
- Jin, X.; Cai, J.; Yang, S.; Li, S.; Shao, X.; Fu, C.; Li, C.; Deng, Y.; Huang, J.; Ruan, Y.; et al. Partial substitution of chemical fertilizer with organic fertilizer and slow-release fertilizer benefits soil microbial diversity and pineapple fruit yield in the tropics. Appl. Soil Ecol. 2023, 189, 104974. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Z.; Zhang, M.; Li, C.; Li, Y.C.; Wan, Y.; Martin, C.G. Long-term effects of controlled-release potassium chloride on soil available potassium, nutrient absorption and yield of maize plants. Soil Tillage Res. 2020, 196, 104438. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Ma, B.; Liu, J. Changes in soil biochemical properties following application of bentonite as a soil amendment. Eur. J. Soil Biol. 2021, 102, 103251. [Google Scholar] [CrossRef]
- Liu, C.; Lin, H.; He, P.; Li, X.; Geng, Y.; Tuerhong, A.; Dong, Y. Peat and bentonite amendments assisted soilless revegetation of oligotrophic and heavy metal contaminated nonferrous metallic tailing. Chemosphere 2022, 287, 132101. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.T.; Ali, S.A.K. Removal of heavy metal by ion exchange using bentonite clay. J. Ecol. Eng. 2021, 22, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Zhu, H.; Zhou, P.; Wang, X.; Wang, Z.; Yang, S.; Yang, D.; Li, B. Application of phosphogypsum in soilization: A review. Int. J. Environ. Sci. Technol. 2023, 20, 10449–10464. [Google Scholar] [CrossRef]
- Ma, M.; Xu, X.; Ha, Z.; Su, Q.; Lv, C.; Li, J.; Du, D.; Chi, R. Deep insight on mechanism and contribution of arsenic removal and heavy metals remediation by mechanical activation phosphogypsum. Environ. Pollut. 2023, 336, 122258. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, E.; Abd El-Kader, N. Heavy metal immobilization in contaminated soils using phosphogypsum and rice straw compost. Land Degrad. Dev. 2015, 26, 819–824. [Google Scholar] [CrossRef]
- Kumararaja, P.; Manjaiah, K.M.; Datta, S.C.; Sarkar, B. Remediation of metal contaminated soil by aluminium pillared bentonite: Synthesis, characterisation, equilibrium study and plant growth experiment. Appl. Clay Sci. 2017, 137, 115–122. [Google Scholar] [CrossRef]
- Kumararaja, P.; Shabeer, T.P.A.; Manjaiah, K.M. Effect of bentonite on heavy metal uptake by amaranth (Amaranthus blitum cv. Pusa Kirti) grown on metal contaminated soil. Indian J. Hortic. 2016, 73, 224–228. [Google Scholar] [CrossRef]
Treatment | Fertilizer | Potassium Magnesium Sulfate Fertilizer (g/g) | Usage (g) |
---|---|---|---|
CK | - | - | - |
T1 | potassium magnesium sulfate fertilizer | 1.00 | 5.00 |
T2 | slow-release fertilizer | 0.61 | 5.00 |
T3 | slow-release fertilizer | 0.61 | 8.20 |
Project | Testing Methods | Instruments and Equipment | References |
---|---|---|---|
Total P | ⟪Determination of Forest Soil Phosphorus⟫ (LY/T 1232-2015) | Agilent Technologies (Santa Clara, CA, USA) 5110 ICP-OES | [40] |
Total K | ⟪Determination of Forest Potassium in Soil⟫ (LY/T 1234-2015) | Agilent Technologies 5110 ICP-OES | [42] |
Available K | ⟪Determination of Forest Potassium in Soil⟫ (LY/T 1234-2015) | Agilent Technologies 5110 ICP-OES | [42] |
Organic matter | NY/T 1121.6-2006 Soil Testing Part 6: Determination of Soil Organic Carbon and Organic Matter | Fully automatic organic matter analyzer JX-S7066 (JX, Shanghai, CHINA) | [43] |
pH | NY/T 1377-2007 Determination of pH value in soil | LEICI PHS-3C PH Meter (LEICI, Shanghai, CHINA) | [44] |
Available P | NY/T 1121.7-2014 Soil testing—Part 7: Determination of available phosphorus in soil | UV visible spectrophotometer TU-1900 (Persee, Beijing, CHINA) | [45] |
Available S | NY/T 1121.14-2023 Soil testing—Part 14: Determination of soil available sulfur | Agilent Technologies 5110 ICP-OES | [46] |
Interchangeable Mg | NY/T 295-1995 Determination of Cation Exchange Capacity and Exchangeable Base in Neutral Soils | Agilent Technologies 5110 ICP-OES | [47] |
Metal content | ICP-OES measurement of soil metal content | Agilent Technologies 5110 ICP-OES | [48] |
CK | T1 | T2 | T3 | |
---|---|---|---|---|
pH | 7.42 ± 0.01 c | 7.16 ± 0.04 c | 6.75 ± 0.02 b | 6.88 ± 0.03 a |
Total K (g/kg) | 17.30 ± 0.10 b | 18.23 ± 0.18 a | 17.55 ± 0.12 ab | 17.62 ± 0.21 ab |
Total P (g/kg) | 0.53 ± 0.07 a | 0.53 ± 0.01 a | 0.54 ± 0.02 a | 0.53 ± 0.02 a |
Available K (mg/kg) | 80.02 ± 3.94 d | 691.80 ± 5.31 c | 338.45 ± 7.50 b | 788.92 ± 4.01 a |
Available P (mg/kg) | 9.06 ± 0.33 b | 9.57 ± 0.51 b | 16.58 ± 0.47 a | 17.43 ± 0.50 a |
Organic matter (g/kg) | 2.66 ± 0.26 c | 2.65 ± 0.21 c | 3.30 ± 0.14 b | 5.56 ± 0.35 a |
Available S (mg/kg) | 63.25 ± 2.57 d | 532.3 ± 6.56 b | 323.25 ± 2.91 c | 548.03 ± 7.80 a |
Interchangeable Mg (mg/kg) | 1.91 ± 0.13 d | 3.52 ± 0.07 c | 2.73 ± 0.21 b | 3.88 ± 0.14 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.; Zhang, Z.; Liu, R.; Tao, C.; Fan, X. The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment. Appl. Sci. 2025, 15, 8216. https://doi.org/10.3390/app15158216
Han C, Zhang Z, Liu R, Tao C, Fan X. The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment. Applied Sciences. 2025; 15(15):8216. https://doi.org/10.3390/app15158216
Chicago/Turabian StyleHan, Chunxiao, Zhizhi Zhang, Renlong Liu, Changyuan Tao, and Xing Fan. 2025. "The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment" Applied Sciences 15, no. 15: 8216. https://doi.org/10.3390/app15158216
APA StyleHan, C., Zhang, Z., Liu, R., Tao, C., & Fan, X. (2025). The Effect of Slow-Release Fertilizer on the Growth of Garlic Sprouts and the Soil Environment. Applied Sciences, 15(15), 8216. https://doi.org/10.3390/app15158216