Pilot-Scale Fenton-like System for Wastewater Treatment Using Iron Mud Carbon Catalyst
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Preparation of Iron Sludge Based-Catalyst
2.3. Characterization of Catalyst
2.4. Pilot-Scale Device and Performance Testing
2.5. Quenching Experiments
2.6. Analysis Methods
3. Results and Discussion
3.1. Characterizations of Catalyst
3.2. Catalytic Performance Test Using Sequential Batch Experiments
3.2.1. The Removal Performance of COD in Different Systems
3.2.2. Optimization of the FSC/Fe(VI)/H2O2 System for COD Removal
3.3. The Removal Performance of COD in the FSC/Fe(VI)/H2O2 System at the Pilot Scale
3.4. Identification of Active Species
3.5. The Catalytic Mechanism in the FSC/Fe(VI)/H2O2 System
3.6. Analysis of Economic and Environmental Benefits of Heterogeneous Fenton Pilot
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yao, W.R.; Qi, Y.L.; Han, Y.F.; Ge, J.F.; Dong, Y.Y.; Wang, J.W.; Yi, Y.B.; Volmer, D.A.; Li, S.L.; Fu, P.Q. Seasonal variation and dissolved organic matter influence on the distribution, transformation, and environmental risk of pharmaceuticals and personal care products in coastal zone: A case study of Tianjin, China. Water Res. 2024, 249, 120881. [Google Scholar] [CrossRef] [PubMed]
- DB32/1072-2018; Discharge Standard of Main Water Pollutants for Municipal Wastewater Treatment Plant & Key Industries of Taihu Area: Jiangsu, China. The Standardization Administration of China (SAC): Beijing, China, 2018.
- Gao, L.H.; Cao, Y.J.; Wang, L.Z.; Li, S.L. A review on sustainable reuse applications of Fenton sludge during wastewater treatment. Front. Environ. Sci. Eng. Chin. 2022, 16, 77. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Yan, Q.Y.; Ou, H.S.; Li, D.W.; Zhang, Y.Y.; Zhang, J.L.; Zeng, L.X.; Xing, M.Y. Effective green treatment of sewage sludge from Fenton reactions: Utilizing MoS2 for sustainable resource recovery. Proc. Natl. Acad. Sci. USA 2024, 121, e2317394121. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Q.; Qin, H.H.; Fan, J.H.; Xie, H.J. New insight into the mechanism of ferric hydroxide-based heterogeneous Fenton-like reaction. J. Hazard. Mater. 2023, 443, 130278. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Ye, Z.H.; Zhao, L.L.; Xue, Q.; Lanzalaco, S.; He, Q.; Qi, X.Q.; Sires, I. Tailoring single-atom FeN4 moieties as a robust heterogeneous catalyst for high-performance electro-Fenton treatment of organic pollutants. Appl. Catal. B Environ. 2023, 322, 122116. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, P.; Peng, J.L.; Liu, Y.; Zhang, H.; He, C.S.; Xiong, Z.K.; Liu, W.; Lai, B. Insight into metal-free carbon catalysis in enhanced permanganate oxidation: Changeover from electron donor to electron mediator. Water Res. 2022, 219, 118626. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.H.; Feng, D.; Ahmad, S.; Liu, L.A.; Tang, J.C. Recent advances in metal-organic frameworks-derived carbon-based materials in sulfate radical-based advanced oxidation processes for organic pollutant removal. Chem. Eng. J. 2023, 454, 140244. [Google Scholar] [CrossRef]
- He, Y.Z.; Qin, H.; Wang, Z.W.; Wang, H.; Zhu, Y.; Zhou, C.Y.; Zeng, Y.; Li, Y.C.; Xu, P.; Zeng, G.M. Fe-Mn oxycarbide anchored on N-doped carbon for enhanced Fenton-like catalysis: Importance of high-valent metal-oxo species and singlet oxygen. Appl. Catal. B Environ. 2024, 340, 123204. [Google Scholar] [CrossRef]
- Qi, D.F.; Wang, J.Q.; Zhang, J.; Su, K.; Xu, J.; Lv, W.Q.; Wang, Y.; Zhang, Z.; Xiao, Y. Improving Generation Performance of 1O2 by Atomic Doping for Efficient Catalytic Advanced Oxidation Processes. Adv. Funct. Mater. 2024, 34, 2406470. [Google Scholar] [CrossRef]
- Soon, A.N.; Hameed, B.H. Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 2011, 269, 1–16. [Google Scholar] [CrossRef]
- Ziembowicz, S.; Kida, M. Limitations and future directions of application of the Fenton-like process in micropollutants degradation in water and wastewater treatment: A critical review. Chemosphere 2022, 296, 134041. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.M.; Sheng, M.; Niu, W.F.; Fei, Y.L.; Li, D. Regeneration and reuse of iron catalyst for Fenton-like reactions. J. Hazard. Mater. 2009, 172, 1446–1449. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Lin, T.; Wang, Y.C.; Lu, F.Y.; Shi, Y.L.; Yin, J.D. Advanced oxidation process with hydrogen peroxide and sulfite for superfast degradation of micro-contaminants in drinking water. J. Hazard. Mater. 2025, 490, 137790. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.R.; Wang, W.; Dong, N.N.; Chen, P.; Ge, L.F.; Tan, F.T.; Wang, X.Y.; Qiao, X.L.; Wong, P.K. A dual-oxidant advanced oxidation process system containing CaO2 and peroxymonosulfate for organic pollutant degradation: High adaptability and synergistic effect. Sep. Purif. Technol. 2023, 308, 122909. [Google Scholar] [CrossRef]
- Zhu, J.H.; Yu, F.L.; Meng, J.R.; Shao, B.B.; Dong, H.Y.; Chu, W.H.; Cao, T.C.; Wei, G.F.; Wang, H.J.; Guan, X.H. Overlooked Role of Fe(IV) and Fe(V) in Organic Contaminant Oxidation by Fe(VI). Environ. Sci. Technol. 2020, 54, 9702–9710. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K. Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism. Coord. Chem. Rev. 2013, 257, 495–510. [Google Scholar] [CrossRef]
- Liang, C.J.; Su, H.W. Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate. Ind. Eng. Chem. Res. 2009, 48, 5558–5562. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, Y.; Metz, J.; He, S.; Alvarez, P.J.J.; Long, M. Persistent free radicals in biochar enhance superoxide-mediated Fe(III)/Fe(II) cycling and the efficacy of CaO2 Fenton-like treatment. J. Hazard. Mater. 2022, 421, 126805. [Google Scholar] [CrossRef] [PubMed]
- Nimai, S.; Zhang, H.; Wu, Z.; Li, N.; Lai, B. Efficient degradation of sulfamethoxazole by acetylene black activated peroxydisulfate. Chin. Chem. Lett. 2020, 31, 2657–2660. [Google Scholar] [CrossRef]
- Ahmed, M.H.M.; Batalha, N.; Alothman, Z.A.; Yamauchi, Y.; Kaneti, Y.V.; Konarova, M. Transforming red mud into an efficient Acid-Base catalyst by hybridization with mesoporous ZSM-5 for Co-pyrolysis of biomass and plastics. Chem. Eng. J. 2022, 430, 132965. [Google Scholar] [CrossRef]
- Tang, M.; Wan, J.Q.; Wang, Y.; Ye, G.; Yan, Z.C.; Ma, Y.W.; Sun, J. Overlooked role of void-nanoconfined effect in emerging pollutant degradation: Modulating the electronic structure of active sites to accelerate catalytic oxidation. Water Res. 2024, 249, 120950. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Nie, C.; Li, W.; Duan, X.; Lai, B.; Ao, Z.; Wang, S.; An, T. Insight into the effect of lignocellulosic biomass source on the performance of biochar as persulfate activator for aqueous organic pollutants remediation: Epicarp and mesocarp of citrus peels as examples. J. Hazard. Mater. 2020, 399, 123043. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Hua, Y.; Zhao, J.; Wang, C.; Tan, Q.; Shen, G. Insights into the mechanism of hydrogen peroxide activation with biochar produced from anaerobically digested residues at different pyrolysis temperatures for the degradation of BTEXS. Sci. Total Environ. 2021, 788, 147718. [Google Scholar] [CrossRef] [PubMed]
- Mian, M.M.; Alam, N.; Ahommed, M.S.; He, Z.B.; Ni, Y.H. Emerging applications of sludge biochar-based catalysts for environmental remediation and energy storage: A review. J. Clean. Prod. 2022, 360, 132131. [Google Scholar] [CrossRef]
- Jin, L.; Huang, Y.P.; Liu, H.L.; Ye, L.Q.; Liu, X.; Huang, D. Efficient treatment of actual glyphosate wastewater via non-radical Fenton-like oxidation. J. Hazard. Mater. 2024, 463, 132904. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.L.; Zhang, H.; Luo, M.F.; Zhao, J.; Huang, B.K.; Chen, P.J.; Cai, Z.P.; Yuan, Y.; Liu, Y.; He, C.S.; et al. Regulating the dominant reactive oxygen species from Fe(IV)-oxo to 1O2 by deprotonation of Fe(IV)-oxo in electro-Fe(II)/periodate system. Chem. Eng. J. 2024, 497, 154896. [Google Scholar] [CrossRef]
- Luo, M.F.; Zhou, H.Y.; Zhou, P.; Lai, L.D.; Liu, W.; Ao, Z.M.; Yao, G.; Zhang, H.; Lai, B. Insights into the role of in-situ and ex-situ hydrogen peroxide for enhanced ferrate(VI) towards oxidation of organic contaminants. Water Res. 2021, 203, 117548. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.Y.; Wang, W.Y.; Tian, Q.; Kong, Y.; Ye, X.S.; Yang, H.P.; Hu, Q.; He, C.X. Efficient Neutral H2O2 Electrosynthesis from Favorable Reaction Microenvironments via Porous Carbon Carrier Engineering. Angew. Chem. Int. Ed. Engl. 2024, 63, e202403023. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Z.; Zhu, X.K.; Wang, J.; Ding, H.D.; Zhao, S.Y.; Zhou, Z.R.; Lu, K.; Chen, Z.M.; Xu, B.L.; Huang, D. Boosting interfacial electron transfer via built-in electric fields in N-doped biochar-supported nanoscale zero-valent iron for highly efficient sulfite activation. Appl. Catal. B Environ. 2025, 370, 125155. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Chen, L.; Cheng, X.; Yang, C.Y.; Chen, G.J.; Shu, J.Y.; Liu, W.; Tiraferri, A.; Liu, B.C. Ultra-efficient degradation of isoquinoline from shale gas wastewater with the diethylamine-ferrate(VI) system: The key role of Fe(IV)/Fe(V) active species. J. Hazard. Mater. 2025, 492, 138215. [Google Scholar] [CrossRef] [PubMed]
- Hao, M.; Wang, Q.; Yu, F.; Guan, Z.; Zhang, X.; Sun, Y. Efficient degradation of 2,4-dichlorophphenol in groundwater using persulfate activated by nitrogen-doped biochar-supported nano zero-valent iron. J. Clean. Prod. 2024, 458, 142415. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, F.; Yan, J.; Liu, X.; Li, X. Constructing carbon nitride embedded Fe0 for efficient activation of peroxymonosulfate towards organic pollutants degradation in water. J. Water Process. Eng. 2024, 68, 106556. [Google Scholar] [CrossRef]
- Xu, G.Z.; Sun, L.; Tu, Y.Z.; Teng, X.L.; Qi, Y.M.; Wang, Y.Y.; Li, A.M.; Xie, X.C.; Gu, X.Y. Highly stable carbon-coated nZVI composite Fe0@RF-C for efficient degradation of emerging contaminants. Environ. Sci. Ecotechnol. 2024, 22, 100457. [Google Scholar] [CrossRef] [PubMed]
Index | COD/mg·L−1 | SS/mg·L−1 | TN/mg·L−1 | NH3-N/mg·L−1 | TP | pH |
---|---|---|---|---|---|---|
Inflow | 70 | 220 | 40 | 8 | 5 | 6~7.5 |
Outflow | 40 | 5 | 10 | 1.0 | 0.2 | 6~9 |
Catalyst | Sites | Content (at.%) | |
---|---|---|---|
Fresh FSC | Used FSC | ||
C1s | C-C/C=C | 26.01 | 30.31 |
C-N/C-O | 6.74 | 9.12 | |
C=O | 6.79 | 5.67 | |
COOH | 6.05 | 3.62 | |
Fe2p | Fe(III) | 1.79 | 2.74 |
Fe(II) | 1.03 | 1.37 | |
N1s | Pyridine N | 1.05 | 0.78 |
Pyrrole N | 2.07 | 1.56 | |
Graphite N | 1.39 | 1.17 | |
O1s | Fe-O | 9.37 | 8.87 |
Oads | 6.27 | 15.89 | |
C=O | 27.19 | 10.79 | |
O-C=O | 27.41 | 12.18 | |
C-O | 20.14 | 8.22 |
Technology | Technical Contrast | Economic Contrast | ||||
---|---|---|---|---|---|---|
Pharmacy Name | Pharmacy Specifications | Investment and Quantity | Unit-Price (USD/t) | Prime Cost (USD/t of Sewage) | ||
This technology | Strong oxidation No iron mud pH wide range | H2O2 | Technical grade | 169.83 mL/t | 904 | 0.1528 |
FSC | Self-made | 1.48 kg/t | 68.95 | 0.0607 | ||
Potassium ferrate | Technical grade | 37.13 g/t | 9000 | 0.3342 | ||
Sulfuric acid | Technical grade | 98 mL/t | 400 | 0.06624 | ||
Caustic potash | Technical grade | 2.8 g/t | 2500 | 0.007 | ||
Power consumption | - | kW·h | 0.75 USD/(kW·h) | 0.2200 | ||
Total (USD/t of wastewater) | - | - | - | 0.8409 | ||
Fenton technology | More iron mud Using a variety of chemical agents Acid conditions | H2O2 | Technical grade | 199.91 g/t | 904 | 0.235 |
Ferrisulfas | Technical grade | 425.73 g/t | 530 | 0.111 | ||
Sulfuric acid | Technical grade | 410.72 g/t | 400 | 0.244 | ||
Calcium hydroxide | Technical grade | 190.07 g/t | 200 | 0.0349 | ||
Nonionic polyacrylamide | Technical grade | 4.28 g/t | 1600 | 0.01261 | ||
Sludge disposal | - | - | - | 0.303 | ||
Power consumption | - | kW·h | 0.75 USD/(kW·h) | 0.1100 | ||
Total (USD/t of wastewater) | - | - | - | 1.0505 | ||
Ozone technology | Hard to remove completely Difficult to degrade organic matter Low utilization rate of ozone | Liquid oxygen | Technical grade | 103 g/t | 720 | 0.7416 |
Electric charge | - | 0.8848 kW·h | 0.75 USD/(kW·h) | 0.6636 | ||
Total (USD/t of wastewater) | - | - | - | 1.4052 |
Water Volume (10,000 Tons) | Ferrous Iron (PPM) | Sulfuric Acid (PPM) | Hydrogen Peroxide (PPM) | Lime (PPM) | Sludge (PPM) |
---|---|---|---|---|---|
874 | 425.73 | 410.72 | 199.91 | 190.07 | 3.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Liang, L.; Xu, J.; Wang, Y.; Yan, B.; Chen, G.; Li, N.; Hou, L. Pilot-Scale Fenton-like System for Wastewater Treatment Using Iron Mud Carbon Catalyst. Appl. Sci. 2025, 15, 8210. https://doi.org/10.3390/app15158210
Wang L, Liang L, Xu J, Wang Y, Yan B, Chen G, Li N, Hou L. Pilot-Scale Fenton-like System for Wastewater Treatment Using Iron Mud Carbon Catalyst. Applied Sciences. 2025; 15(15):8210. https://doi.org/10.3390/app15158210
Chicago/Turabian StyleWang, Lia, Lan Liang, Jinglei Xu, Yanshan Wang, Beibei Yan, Guanyi Chen, Ning Li, and Li’an Hou. 2025. "Pilot-Scale Fenton-like System for Wastewater Treatment Using Iron Mud Carbon Catalyst" Applied Sciences 15, no. 15: 8210. https://doi.org/10.3390/app15158210
APA StyleWang, L., Liang, L., Xu, J., Wang, Y., Yan, B., Chen, G., Li, N., & Hou, L. (2025). Pilot-Scale Fenton-like System for Wastewater Treatment Using Iron Mud Carbon Catalyst. Applied Sciences, 15(15), 8210. https://doi.org/10.3390/app15158210