Motivation of University Students to Use LLMs to Assist with Online Consumption of Sustainable Products: An Analysis Based on a Hybrid SEM–ANN Approach
Abstract
1. Introduction
2. Theoretical Foundations
3. Hypothesis Development and Research Model
4. Methodology
4.1. Questionnaire Design
4.2. Basic Information About Respondents
4.3. Analytical Method
5. Results’ Analysis
5.1. Model Measurement
5.2. Structural Equation Modeling and Hypothesis Testing
5.3. ANN Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | Item | Scale Item | Factor Loading | CR | AVE | Cronbach’s Alpha |
---|---|---|---|---|---|---|
Performance Expectancy Value (PEV) | PEV1 | LLMs is able to reduce my workload when I select and purchase green products in unfamiliar categories online. | 0.796 | 0.903 | 0.651 | 0.903 |
PEV2 | I think using LLMs will make my consumption more efficient. | 0.809 | ||||
PEV3 | I think LLMs will improve the accuracy of my consumption decisions. | 0.799 | ||||
PEV4 | My consumption operation process has become more convenient with the assistance of LLMs. | 0.820 | ||||
PEV5 | I save time spent consumption with the assistance of LLMs. | 0.811 | ||||
Information Quality Value (IQV) | IQV1 | The green product information I get from LLMs fits my needs. | 0.769 | 0.897 | 0.637 | 0.893 |
IQV2 | The green product information I get from LLMs is accurate. | 0.762 | ||||
IQV3 | LLMs can provide product information based on my preferences during the online consumption process. | 0.787 | ||||
IQV4 | The information provided by LLMs helps me to understand the green product specifics. | 0.722 | ||||
IQV5 | I believe using LLMs help me compare different green products. | 0.934 | ||||
Trust Transfer Value (TTV) | TTV1 | The search results for green products that I obtain from LLMs is trustworthy. | 0.828 | 0.889 | 0.617 | 0.888 |
TTV2 | LLMs enable me to discover and be willing to try unknown or unfamiliar green products. | 0.791 | ||||
TT3 | LLMs can enhance my confidence in unfamiliar or unknown green products. | 0.763 | ||||
TTV4 | I am willing to pay a price premium for green products recommended by LLMs. | 0.809 | ||||
TTV5 | My trust in LLMs leads me to trust any green product they recommend. | 0.733 | ||||
Green Perceived Value (GPV) | GPV1 | The green products offered by LLMs align with my sustainability values. | 0.731 | 0.917 | 0.690 | 0.915 |
GPV2 | LLMs can help me find more sustainable products. | 0.886 | ||||
GPV3 | The green attributes of products recommended by LLMs is worth what I pay. | 0.752 | ||||
GPV4 | With the assistance of LLMs, I can buy more sustainable products at the same price. | 0.879 | ||||
GPV5 | LLMs can recommend products that better align with my green consumption values. | 0.891 | ||||
Green Self-Identity Value (GSV) | GSV1 | Recommendations from LLMs help me confirm that my consumption decisions are sustainable. | 0.748 | 0.906 | 0.661 | 0.905 |
GSV2 | Green feedback from LLMs make me feel like an environmentally responsible person. | 0.760 | ||||
GSV3 | I feel my sustainability beliefs are understood when my preferences align with LLMs’ recommendations. | 0.839 | ||||
GSV4 | I consider myself a green consumer when LLMs recommend products based on my green preferences. | 0.786 | ||||
GSV5 | LLMs’ feedback convinces me that buying green products is the right thing to do. | 0.919 | ||||
Perceived Ease of Use (PEU) | PEU1 | Learning how to use LLMs to aid my online consumption was very easy. | 0.835 | 0.902 | 0.648 | 0.900 |
PEU2 | Using LLMs to aid my online consumption does not require much effort. | 0.779 | ||||
PEU3 | I find LLMs very user-friendly when I use it to assist with online consumption. | 0.820 | ||||
PEU4 | LLMs is smooth and timely when I use them to assist with online consumption. | 0.751 | ||||
PEU5 | Using LLMs make my online consumption easy. | 0.835 | ||||
Perceived Usefulness (PU) | PU1 | I think LLMs recommendations are more useful than other recommendations (search engines, shopping lists, shopping review sites, etc.). | 0.852 | 0.935 | 0.743 | 0.929 |
PU2 | LLMs help me make better online consumption decisions. | 0.799 | ||||
PU3 | LLMs make my online consumption experience better. | 0.887 | ||||
PU4 | LLMs can give me satisfactory recommendations during the online consumption process. | 0.909 | ||||
PU5 | I think LLMs is useful for my online consumption. | 0.859 | ||||
Continue Using Intention (CUI) | CUI1 | My continued intention to use LLMs is not affected by other factors during the online consumption process. | 0.690 | 0.864 | 0.562 | 0.856 |
CUI2 | I’m going to continue to use LLMs to assist with online consumption. | 0.671 | ||||
CUI3 | I plan to use LLMs often to assist with online consumption. | 0.677 | ||||
CUI4 | I am willing to recommend others to use LLMs to assist with online consumption. | 0.798 | ||||
CUI5 | 0.889 |
References
- Ahmad, W.; Zhang, Q. Green purchase intention: Effects of electronic service quality and customer green psychology. J. Clean. Prod. 2020, 267, 122053. [Google Scholar] [CrossRef]
- Qi, X.; Yu, H.; Ploeger, A. Exploring influential factors including COVID-19 on green food purchase intentions and the intention–behaviour gap: A qualitative study among consumers in a Chinese context. Int. J. Environ. Res. Public Health 2020, 17, 7106. [Google Scholar] [CrossRef] [PubMed]
- Ghosal, I.; Prasad, B.; Gupta, B. Restructuring the green consumerism through e-commerce portals: A behavioural congruence during post-COVID-19. In Future of Work and Business in COVID-19 Era: Proceedings of IMC-2021; Springer Nature: Singapore, 2022; pp. 89–99. [Google Scholar]
- Panopoulos, A.; Poulis, A.; Theodoridis, P.; Kalampakas, A. Influencing green purchase intention through eco labels and user-generated content. Sustainability 2022, 15, 764. [Google Scholar] [CrossRef]
- Ali, M.; Ullah, S.; Ahmad, M.S.; Cheok, M.Y.; Alenezi, H. Assessing the impact of green consumption behavior and green purchase intention among millennials toward sustainable environment. Environ. Sci. Pollut. Res. 2023, 30, 23335–23347. [Google Scholar] [CrossRef] [PubMed]
- Lam, H.K.; Yeung, A.C.; Lo, C.K.; Cheng, T.C.E. Should firms invest in social commerce? An integrative perspective. Inf. Manag. 2019, 56, 103164. [Google Scholar] [CrossRef]
- He, H.; Zhang, S.; Zhu, L. Green product quality supervision strategy in online shopping with consumer evaluation and complaint. Front. Environ. Sci. 2021, 9, 702151. [Google Scholar] [CrossRef]
- Sadiq, M.W.; Akhtar, M.W.; Huo, C.; Zulfiqar, S. ChatGPT-powered chatbot as a green evangelist: An innovative path toward sustainable consumerism in E-commerce. Serv. Ind. J. 2024, 44, 173–217. [Google Scholar] [CrossRef]
- Nagy, S.; Hajdú, N. Consumer acceptance of the use of artificial intelligence in online shopping: Evidence from Hungary. Amfiteatru Econ. 2021, 23, 155–173. [Google Scholar] [CrossRef]
- Harrer, S. Attention is not all you need: The complicated case of ethically using large language models in healthcare and medicine. EBioMedicine 2023, 90, 104512. [Google Scholar] [CrossRef] [PubMed]
- Forgas-Coll, S.; Huertas-Garcia, R.; Andriella, A.; Alenyà, G. Social robot-delivered customer-facing services: An assessment of the experience. Serv. Ind. J. 2023, 43, 154–184. [Google Scholar] [CrossRef]
- Karakaş, N.; Jaeger, B. Changes in attitudes toward meat consumption after chatting with a large language model. Soc. Influ. 2025, 20, 2475802. [Google Scholar] [CrossRef]
- Askari, H.; Chhabra, A.; von Hohenberg, B.C.; Heseltine, M.; Wojcieszak, M. Incentivizing news consumption on social media platforms using large language models and realistic bot accounts. PNAS Nexus 2024, 3, 368. [Google Scholar] [CrossRef] [PubMed]
- Iranmanesh, M.; Senali, M.G.; Ghobakhloo, M.; Foroughi, B.; Yadegaridehkordi, E.; Annamalai, N. Determinants of intention to use ChatGPT for obtaining shopping information. J. Mark. Theory Pract. 2024, 1–18. [Google Scholar] [CrossRef]
- Foroughi, B.; Iranmanesh, M.; Yadegaridehkordi, E.; Wen, J.; Ghobakhloo, M.; Senali, M.G.; Annamalai, N. Factors Affecting the Use of ChatGPT for Obtaining Shopping Information. Int. J. Consum. Stud. 2025, 49, e70008. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, Z.; Wang, S.; Huang, C.; Zhao, W. Unlocking the impact of user experience on AI-powered mobile advertising engagement. J. Knowl. Econ. 2024, 16, 4818–4854. [Google Scholar] [CrossRef]
- Prieto-Sandoval, V.; Torres-Guevara, L.E.; García-Díaz, C. Green marketing innovation: Opportunities from an environmental education analysis in young consumers. J. Clean. Prod. 2022, 363, 132509. [Google Scholar] [CrossRef]
- Rahman, M.S.; Sabbir, M.M.; Zhang, J.; Moral, I.H.; Hossain, G.M.S. Examining students’ intention to use ChatGPT: Does trust matter? Australas. J. Educ. Technol. 2023, 39, 51–71. [Google Scholar] [CrossRef]
- Jansson, J.; Marell, A.; Nordlund, A. Green consumer behavior: Determinants of curtailment and eco-innovation adoption. J. Consum. Mark. 2010, 27, 358–370. [Google Scholar] [CrossRef]
- Alizadeh, H.; Nazarpour Kashani, H. The impact of perceived experience with ChatGPT on online consumers’ information searching behavior: An empirical study of Iranian college students. Asia Pac. J. Mark. Logist. 2025, 37, 1007–1028. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Kim, H.W.; Chan, H.C.; Gupta, S. Value-based adoption of mobile internet: An empirical investigation. Decis. Support Syst. 2007, 43, 111–126. [Google Scholar] [CrossRef]
- Yang, H.; Yu, J.; Zo, H.; Choi, M. User acceptance of wearable devices: An extended perspective of perceived value. Telemat. Inform. 2016, 33, 256–269. [Google Scholar] [CrossRef]
- Soomro, R.B.; Al-Rahmi, W.M.; Dahri, N.A.; Almuqren, L.; Al-Mogren, A.S.; Aldaijy, A. A SEM–ANN analysis to examine impact of artificial intelligence technologies on sustainable performance of SMEs. Sci. Rep. 2025, 15, 5438. [Google Scholar] [CrossRef] [PubMed]
- Zeithaml, V.A. Consumer perceptions of price, quality, and value: A means-end model and synthesis of evidence. J. Mark. 1988, 52, 2–22. [Google Scholar] [CrossRef]
- Al-Abdullatif, A.M.; Alsubaie, M.A. ChatGPT in learning: Assessing students’ use intentions through the lens of perceived value and the influence of AI literacy. Behav. Sci. 2024, 14, 845. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Thong, J.Y.; Tam, K.Y. Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decis. Support Syst. 2006, 42, 1819–1834. [Google Scholar] [CrossRef]
- Richad, R.; Vivensius, V.; Sfenrianto, S.; Kaburuan, E.R. Analysis of factors influencing millennial’s technology acceptance of chatbot in the banking industry in Indonesia. Int. J. Manag. 2019, 10, 2428–2439. [Google Scholar] [CrossRef]
- Belda-Medina, J.; Kokošková, V. ChatGPT for language learning: Assessing teacher candidates’ skills and perceptions using the Technology Acceptance Model (TAM). Innov. Lang. Learn. Teach. 2024, 1–16. [Google Scholar] [CrossRef]
- Jo, H. Decoding the ChatGPT mystery: A comprehensive exploration of factors driving AI language model adoption. Inf. Dev. 2023, 02666669231202764. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Z.; Chen, Y.; Zhu, W.; Qiu, J.; Jiang, S.; Guo, R. Modeling the Urban Low-Altitude Traffic Space Based on the Land Administration Domain Model—Case Studies in Shenzhen, China. Land 2024, 13, 2062. [Google Scholar] [CrossRef]
- Zhang, C.; Pan, S.; Zhao, Y. More is not always better: Examining the drivers of livestream sales from an information overload perspective. J. Retail. Consum. Serv. 2024, 77, 103651. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Shahsavar, Y.; Choudhury, A. User intentions to use ChatGPT for self-diagnosis and health-related purposes: Cross-sectional survey study. JMIR Hum. Factors 2023, 10, e47564. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, M.; Qu, Y.; Rehman, S.U.; Zafar, A.U. Adoption of green innovation technology to accelerate sustainable development among manufacturing industry. J. Innov. Knowl. 2022, 7, 100231. [Google Scholar] [CrossRef]
- Mun, I.B. A study of the impact of ChatGPT self-efficacy on the information seeking behaviors in ChatGPT: The mediating roles of ChatGPT characteristics and utility. Online Inf. Rev. 2025, 49, 373–394. [Google Scholar] [CrossRef]
- Lee, H.J.; Park, S.Y. Environmental orientation in going green: A qualitative approach to consumer psychology and sociocultural factors of green consumption. J. Glob. Sch. Mark. Sci. 2013, 23, 245–262. [Google Scholar] [CrossRef]
- Pickett-Baker, J.; Ozaki, R. Pro-environmental products: Marketing influence on consumer purchase decision. J. Consum. Mark. 2008, 25, 281–293. [Google Scholar] [CrossRef]
- Chang, W.; Park, J. A comparative study on the effect of ChatGPT recommendation and AI recommender systems on the formation of a consideration set. J. Retail. Consum. Serv. 2024, 78, 103743. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.H.; Kim, C.; Park, J. Decisions with ChatGPT: Reexamining choice overload in ChatGPT recommendations. J. Retail. Consum. Serv. 2023, 75, 103494. [Google Scholar] [CrossRef]
- Yen, C.; Chiang, M.C. Trust me, if you can: A study on the factors that influence consumers’ purchase intention triggered by chatbots based on brain image evidence and self-reported assessments. Behav. Inf. Technol. 2021, 40, 1177–1194. [Google Scholar] [CrossRef]
- Stewart, K.J. Trust transfer on the world wide web. Organ. Sci. 2003, 14, 5–17. [Google Scholar] [CrossRef]
- Langer, M.; König, C.J.; Back, C.; Hemsing, V. Trust in artificial intelligence: Comparing trust processes between human and automated trustees in light of unfair bias. J. Bus. Psychol. 2023, 38, 493–508. [Google Scholar] [CrossRef]
- Choudhury, A.; Shamszare, H. Investigating the impact of user trust on the adoption and use of ChatGPT: Survey analysis. J. Med. Internet Res. 2023, 25, e47184. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhang, J.; Wu, J.; Liu, Y. AI is better when I’m sure: The influence of certainty of needs on consumers’ acceptance of AI chatbots. J. Bus. Res. 2022, 150, 642–652. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Thach, K.T.D.; Nguyen, C.N.L.; Nguyen, A.C.; Doan, H.K. The Influence of AI Chatbots on Green Satisfaction and Loyalty: Evidence from Sustainability-Driven Consumer Behavior. J. Glob. Mark. 2025, 1–30. [Google Scholar] [CrossRef]
- Chakraborty, D. From algorithms to adoption of AI-based online food delivery platforms: The role of technology fit and emotional trust in adoption. Br. Food J. 2025, 127, 2586–2607. [Google Scholar] [CrossRef]
- Brandtzaeg, P.B.; Følstad, A. Why people use chatbots. In Proceedings of the Internet Science: 4th International Conference, INSCI 2017, Thessaloniki, Greece, 22–24 November 2017; Proceedings 4. Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 377–392. [Google Scholar]
- Bolton, R.N.; Drew, J.H. A multistage model of customers’ assessments of service quality and value. J. Consum. Res. 1991, 17, 375–384. [Google Scholar] [CrossRef]
- Patterson, P.G.; Spreng, R.A. Modelling the relationship between perceived value, satisfaction and repurchase intentions in a business-to-business, services context: An empirical examination. Int. J. Serv. Ind. Manag. 1997, 8, 414–434. [Google Scholar] [CrossRef]
- Chen, Y.S.; Chang, C.H. Enhance green purchase intentions: The roles of green perceived value, green perceived risk, and green trust. Manag. Decis. 2012, 50, 502–520. [Google Scholar] [CrossRef]
- Lee, K.H.; Lee, M.; Gunarathne, N. Do green awards and certifications matter? Consumers’ perceptions, green behavioral intentions, and economic implications for the hotel industry: A Sri Lankan perspective. Tour. Econ. 2019, 25, 593–612. [Google Scholar] [CrossRef]
- Han, H. Consumer behavior and environmental sustainability in tourism and hospitality: A review of theories, concepts, and latest research. Sustain. Consum. Behav. Environ. 2021, 29, 1–22. [Google Scholar]
- Chen, Q.; Lu, Y.; Gong, Y.; Xiong, J. Can AI chatbots help retain customers? Impact of AI service quality on customer loyalty. Internet Res. 2023, 33, 2205–2243. [Google Scholar] [CrossRef]
- Conner, M.; Armitage, C.J. Extending the theory of planned behavior: A review and avenues for further research. J. Appl. Soc. Psychol. 1998, 28, 1429–1464. [Google Scholar] [CrossRef]
- Wasilewski, A.; Chawla, Y.; Pralat, E. Enhanced E-commerce Personalization Through AI-Powered Content Generation Tools. IEEE Access 2025, 13, 48083–48095. [Google Scholar] [CrossRef]
- Wang, S.; Ahn, S. Exploring user behavior based on metaverse: A modeling study of user experience factors. In International Conference on Human-Computer Interaction; Springer Nature: Cham, Switzerland, 2024; pp. 99–118. [Google Scholar]
- Arbore, A.; Soscia, I.; Bagozzi, R.P. The role of signaling identity in the adoption of personal technologies. J. Assoc. Inf. Syst. 2014, 15, 1. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, X. The impact of AR online shopping experience on customer purchase intention: An empirical study based on the TAM model. PLoS ONE 2024, 19, e0309468. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Wang, P.; Li, B.; Wang, T.; Pang, X.S.; Wang, D. Exploring user adoption of ChatGPT: A technology acceptance model perspective. Int. J. Hum.–Comput. Interact. 2025, 41, 1431–1445. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A theoretical extension of the technology acceptance model: Four longitudinal field studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Choudhury, A.; Shahsavar, Y.; Shamszare, H. User Intent to Use DeepSeek for Health Care Purposes and Their Trust in the Large Language Model: Multinational Survey Study. JMIR Hum. Factors 2025, 12, e72867. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Nah, K. Exploring Sustainable Learning Intentions of Employees Using Online Learning Modules of Office Apps Based on User Experience Factors: Using the Adapted UTAUT Model. Appl. Sci. 2024, 14, 4746. [Google Scholar] [CrossRef]
- Mehrolia, S.; Alagarsamy, S.; Moorthy, V.; Jeevananda, S. Will users continue using banking chatbots? The moderating role of perceived risk. FIIB Bus. Rev. 2023, 23197145231169900. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J.; Yang, W.; Yan, W.; Nah, K. The Impact of Role-Playing Game Experience on the Sustainable Development of Ancient Architectural Cultural Heritage Tourism: A Mediation Modeling Study Based on SOR Theory. Buildings 2025, 15, 2032. [Google Scholar] [CrossRef]
- Ajzen, I.; Fishbein, M. Attitude-behavior relations: A theoretical analysis and review of empirical research. Psychol. Bull. 1977, 84, 888. [Google Scholar] [CrossRef]
- Kerlinger, F.N. Foundations of Behavioral Research; Holt, Rinehart and Winston: New York, NY, USA, 1966. [Google Scholar]
- Strzelecki, A. To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interact. Learn. Environ. 2024, 32, 5142–5155. [Google Scholar] [CrossRef]
- Yin, J.; Qiu, X. AI technology and online purchase intention: Structural equation model based on perceived value. Sustainability 2021, 13, 5671. [Google Scholar] [CrossRef]
- Riva, F.; Magrizos, S.; Rubel, M.R.B.; Rizomyliotis, I. Green consumerism, green perceived value, and restaurant revisit intention: Millennials’ sustainable consumption with moderating effect of green perceived quality. Bus. Strategy Environ. 2022, 31, 2807–2819. [Google Scholar] [CrossRef]
- Sharma, N.; Saha, R.; Sreedharan, V.R.; Paul, J. Relating the role of green self-concepts and identity on green purchasing behaviour: An empirical analysis. Bus. Strategy Environ. 2020, 29, 3203–3219. [Google Scholar] [CrossRef]
- Grębosz-Krawczyk, M.; Zakrzewska-Bielawska, A.; Flaszewska, S. From words to deeds: The impact of pro-environmental self-identity on green energy purchase intention. Energies 2021, 14, 5732. [Google Scholar] [CrossRef]
- Mun, I.B.; Hwang, K.H. Exploring the Influence of Prompt Self-Efficacy: Accurate and Customized Information, Perceived Ease of Use, Satisfaction, and Continuance Intention to Use ChatGPT. Int. J. Hum.–Comput. Interact. 2025, 1–12. [Google Scholar] [CrossRef]
- Meyer, J.G.; Urbanowicz, R.J.; Martin, P.C.; O’Connor, K.; Li, R.; Peng, P.C.; Bright, T.J.; Tatonetti, N.; Won, K.J.; Gonzalez-Hernandez, G.; et al. ChatGPT and large language models in academia: Opportunities and challenges. BioData Min. 2023, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, S.; Masini, A.; Aflaki, S.; Fahimnia, B. Right information at the right time: Reevaluating the attitude–behavior gap in environmental technology adoption. Int. J. Prod. Econ. 2021, 242, 108278. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Y.; Xu, X. The effects of trust and platform innovation characteristics on consumer behaviors in social commerce: A social influence perspective. Electron. Commer. Res. Appl. 2023, 60, 101284. [Google Scholar] [CrossRef]
- Kline, R.B.; Santor, D.A. Principles & practice of structural equation modelling. Can. Psychol. 1999, 40, 381. [Google Scholar]
- Armstrong, J.S.; Overton, T.S. Estimating nonresponse bias in mail surveys. J. Mark. Res. 1977, 14, 396–402. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Thiele, K.O. Mirror, mirror on the wall: A comparative evaluation of composite-based structural equation modeling methods. J. Acad. Mark. Sci. 2017, 45, 616–632. [Google Scholar] [CrossRef]
- Mustafa, S.; Zhang, W. Predicting users knowledge contribution behaviour in technical vs. non-technical online Q&A communities: SEM-Neural Network approach. Behav. Inf. Technol. 2023, 42, 2521–2544. [Google Scholar]
- Teo, A.C.; Tan, G.W.H.; Ooi, K.B.; Hew, T.S.; Yew, K.T. The effects of convenience and speed in m-payment. Ind. Manag. Data Syst. 2015, 115, 311–331. [Google Scholar] [CrossRef]
- Okewu, E.; Adewole, P.; Misra, S.; Maskeliunas, R.; Damasevicius, R. Artificial neural networks for educational data mining in higher education: A systematic literature review. Appl. Artif. Intell. 2021, 35, 983–1021. [Google Scholar] [CrossRef]
- Taneja, A.; Arora, A. Modeling user preferences using neural networks and tensor factorization model. Int. J. Inf. Manag. 2019, 45, 132–148. [Google Scholar] [CrossRef]
- Sharma, S.K.; Sharma, H.; Dwivedi, Y.K. A hybrid SEM-neural network model for predicting determinants of mobile payment services. Inf. Syst. Manag. 2019, 36, 243–261. [Google Scholar] [CrossRef]
- Idrissi, T.E.; Idri, A.; Bakkoury, Z. Systematic map and review of predictive techniques in diabetes self-management. Int. J. Inf. Manag. 2019, 46, 263–277. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Chin, W.W.; Thatcher, J.B.; Wright, R.T. Assessing common method bias: Problems with the ULMC technique. MIS Q. 2012, 36, 1003–1019. [Google Scholar] [CrossRef]
- Cheung, G.W.; Cooper-Thomas, H.D.; Lau, R.S.; Wang, L.C. Reporting reliability, convergent and discriminant validity with structural equation modeling: A review and best-practice recommendations. Asia Pac. J. Manag. 2024, 41, 745–783. [Google Scholar] [CrossRef]
- Bentler, P.M.; Bonett, D.G. Significance tests and goodness of fit in the analysis of covariance structures. Psychol. Bull. 1980, 88, 588. [Google Scholar] [CrossRef]
- Rönkkö, M.; Cho, E. An updated guideline for assessing discriminant validity. Organ. Res. Methods 2022, 25, 6–14. [Google Scholar] [CrossRef]
- Wright, S. Path coefficients and path regressions: Alternative or complementary concepts? Biometrics 1960, 16, 189–202. [Google Scholar] [CrossRef]
- Mallinckrodt, B.; Abraham, W.T.; Wei, M.; Russell, D.W. Advances in testing the statistical significance of mediation effects. J. Couns. Psychol. 2006, 53, 372. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Marinković, V.; Kalinić, Z. A SEM-neural network approach for predicting antecedents of m-commerce acceptance. Int. J. Inf. Manag. 2017, 37, 14–24. [Google Scholar] [CrossRef]
- Hew, T.S.; Leong, L.Y.; Ooi, K.B.; Chong, A.Y.L. Predicting drivers of mobile entertainment adoption: A two-stage SEM-artificial-neural-network analysis. J. Comput. Inf. Syst. 2016, 56, 352–370. [Google Scholar] [CrossRef]
- Leong, L.Y.; Jaafar, N.I.; Ainin, S. Understanding facebook commerce (f-commerce) actual purchase from an artificial neural network perspective. J. Electron. Commer. Res. 2018, 19, 75–103. [Google Scholar]
- Ooi, K.B.; Tan, G.W.H. Mobile technology acceptance model: An investigation using mobile users to explore smartphone credit card. Expert Syst. Appl. 2016, 59, 33–46. [Google Scholar] [CrossRef]
- Olden, J.D.; Jackson, D.A. Illuminating the “black box”: A randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 2002, 154, 135–150. [Google Scholar] [CrossRef]
- Karaca, Y.; Moonis, M.; Zhang, Y.D.; Gezgez, C. Mobile cloud computing based stroke healthcare system. Int. J. Inf. Manag. 2019, 45, 250–261. [Google Scholar] [CrossRef]
- Ashfaq, M.; Yun, J.; Yu, S.; Loureiro, S.M.C. I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telemat. Inform. 2020, 54, 101473. [Google Scholar] [CrossRef]
- Cheng, Y.; Jiang, H. How do AI-driven chatbots impact user experience? Examining gratifications, perceived privacy risk, satisfaction, loyalty, and continued use. J. Broadcast. Electron. Media 2020, 64, 592–614. [Google Scholar] [CrossRef]
- Jasrai, L. Extending UTAUT model to examine the usages of ChatGPT among Indian students in higher education: A structural equation modelling approach. TQM J. 2025. ahead-of-print. [Google Scholar] [CrossRef]
- Rahaman, M.A.; Hassan, H.K.; Asheq, A.A.; Islam, K.A. The interplay between eWOM information and purchase intention on social media: Through the lens of IAM and TAM theory. PLoS ONE 2022, 17, e0272926. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.; Ko, E.; Joung, H.; Kim, S.J. Chatbot e-service and customer satisfaction regarding luxury brands. J. Bus. Res. 2020, 117, 587–595. [Google Scholar] [CrossRef]
- Westjohn, S.A.; Arnold, M.J.; Magnusson, P.; Zdravkovic, S.; Zhou, J.X. Technology readiness and usage: A global-identity perspective. J. Acad. Mark. Sci. 2009, 37, 250–265. [Google Scholar] [CrossRef]
- Cao, J.; Qiu, H.; Morrison, A.M. Self-identity matters: An extended theory of planned behavior to decode tourists’ waste sorting intentions. Int. J. Environ. Res. Public Health 2023, 20, 5099. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. ChatGPT: Perspectives from human–computer interaction and psychology. Front. Artif. Intell. 2024, 7, 1418869. [Google Scholar] [CrossRef] [PubMed]
- Kuen, L.; Westmattelmann, D.; Bruckes, M.; Schewe, G. Who earns trust in online environments? A meta-analysis of trust in technology and trust in provider for technology acceptance. Electron. Mark. 2023, 33, 61. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Trust and TAM in online shopping: An integrated model. MIS Q. 2003, 27, 51–90. [Google Scholar] [CrossRef]
- Chan, C.K.Y.; Hu, W. Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. Int. J. Educ. Technol. High. Educ. 2023, 20, 43. [Google Scholar] [CrossRef]
- Chen, S.Y.; Lu, C.C. Exploring the relationships of green perceived value, the diffusion of innovations, and the technology acceptance model of green transportation. Transp. J. 2016, 55, 51–77. [Google Scholar] [CrossRef]
- Shang, D.; Wu, W.; Schroeder, D. Exploring determinants of the green smart technology product adoption from a sustainability adapted value-belief-norm perspective. J. Retail. Consum. Serv. 2023, 70, 103169. [Google Scholar] [CrossRef]
- Solomovich, L.; Abraham, V. Exploring the influence of ChatGPT on tourism behavior using the technology acceptance model. Tour. Rev. 2024. ahead-of-print. [Google Scholar] [CrossRef]
- Bhaskar, P.; Misra, P.; Chopra, G. Shall I use ChatGPT? A study on perceived trust and perceived risk towards ChatGPT usage by teachers at higher education institutions. Int. J. Inf. Learn. Technol. 2024, 41, 428–447. [Google Scholar] [CrossRef]
Measure | Reference Scale |
---|---|
Performance Expectancy Value (PEV) | Shahsavar and Choudhury [34] Strzelecki [68] |
Information Quality Value (IQV) | Iranmanesh et al. [14] Yin and Qiu [69] |
Trust Transfer Value (TTV) | Chang and Park [39] Iranmanesh et al. [14] |
Green Perceived Value (GPV) | Riva et al. [70] |
Green Self-Identity Value (GSV) | Sharma et al. [71] Grębosz-Krawczyk et al. [72] |
Perceived Ease of Use (PEU) | Mun and Hwang [73] Iranmanesh et al. [14] |
Perceived Usefulness (PU) | Iranmanesh et al. [14] |
Continue Using Intention (CUI) | Mun and Hwang [73] |
Measurement Indicators | CMIN | DF | CMIN/DF | RMR | GFI | TLI | CFI | RMSEA |
---|---|---|---|---|---|---|---|---|
Reference Standard | - | - | <3 | <0.05 | >0.9 | >0.9 | >0.9 | <0.05 |
Measured Value | 980.938 | 712 | 1.378 | 0.039 | 0.926 | 0.982 | 0.983 | 0.025 |
Hypothesis | Direct Effect Path | STD. Estimate | S.E. | C.R. | p-Value | Result | ||
---|---|---|---|---|---|---|---|---|
_ | PEU | <--- | PEV | 0.167 | 0.047 | 2.894 | 0.004 | Supported |
_ | PEU | <--- | IQV | 0.184 | 0.045 | 3.616 | *** | Supported |
_ | PEU | <--- | TTV | 0.051 | 0.040 | 1.180 | 0.238 | Not Supported |
_ | PEU | <--- | GPV | 0.184 | 0.066 | 3.414 | *** | Supported |
_ | PEU | <--- | GSV | 0.081 | 0.047 | 1.612 | 0.107 | Not Supported |
_ | PU | <--- | PEV | 0.164 | 0.051 | 3.233 | 0.001 | Supported |
_ | PU | <--- | IQV | 0.121 | 0.048 | 2.716 | 0.007 | Supported |
_ | PU | <--- | TTV | 0.099 | 0.043 | 2.620 | 0.009 | Supported |
_ | PU | <--- | GPV | 0.174 | 0.071 | 3.647 | *** | Supported |
_ | PU | <--- | GSV | 0.148 | 0.050 | 3.369 | *** | Supported |
H1 | CUI | <--- | PEV | 0.130 | 0.049 | 2.378 | 0.017 | Supported |
H2 | CUI | <--- | IQV | 0.132 | 0.046 | 2.734 | 0.006 | Supported |
H3 | CUI | <--- | TTV | 0.077 | 0.041 | 1.895 | 0.058 | Not Supported |
H4 | CUI | <--- | GPV | −0.008 | 0.068 | −0.155 | 0.877 | Not Supported |
H5 | CUI | <--- | GSV | 0.192 | 0.049 | 3.979 | *** | Supported |
H16 | PU | <--- | PEU | 0.216 | 0.051 | 5.144 | *** | Supported |
H17 | CUI | <--- | PEU | 0.199 | 0.051 | 4.261 | *** | Supported |
H18 | CUI | <--- | PU | 0.166 | 0.045 | 3.287 | 0.001 | Supported |
Hypothesis | Indirect Effect Path | Estimate | Bias-Corrected 95% CI | p-Value | Result | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
H6 | PEV-PEU-CUI | 0.033 | 0.011 | 0.072 | 0.003 | Supported |
H7 | IQV-PEU-CUI | 0.037 | 0.013 | 0.076 | 0.002 | Supported |
H8 | TTV-PEU-CUI | 0.010 | −0.005 | 0.032 | 0.171 | Not Supported |
H9 | GPV-PEU-CUI | 0.037 | 0.012 | 0.075 | 0.002 | Supported |
H10 | GSV-PEU-CUI | 0.016 | −0.002 | 0.047 | 0.083 | Not Supported |
H11 | PEV-PU-CUI | 0.027 | 0.007 | 0.063 | 0.004 | Supported |
H12 | IQV-PU-CUI | 0.020 | 0.005 | 0.046 | 0.005 | Supported |
H13 | TTV-PU-CUI | 0.016 | 0.004 | 0.041 | 0.008 | Supported |
H14 | GPV-PU-CUI | 0.029 | 0.009 | 0.063 | 0.002 | Supported |
H15 | GSV-PU-CUI | 0.025 | 0.007 | 0.055 | 0.002 | Supported |
Training | Testing | Total Samples | ||||
---|---|---|---|---|---|---|
N | SSE | RMSE | N | SSE | RMSE | |
521 | 172.359 | 1.7386 | 70 | 19.794 | 0.5318 | 591 |
525 | 168.255 | 1.7664 | 66 | 14.576 | 0.4699 | 591 |
531 | 157.924 | 1.8337 | 60 | 21.942 | 0.6047 | 591 |
531 | 172.425 | 1.7549 | 60 | 13.815 | 0.4798 | 591 |
532 | 164.818 | 1.7966 | 59 | 20.620 | 0.5912 | 591 |
528 | 155.263 | 1.8441 | 63 | 27.289 | 0.6581 | 591 |
526 | 167.652 | 1.7713 | 65 | 24.139 | 0.6094 | 591 |
530 | 170.517 | 1.7630 | 61 | 17.875 | 0.5413 | 591 |
521 | 156.677 | 1.8235 | 70 | 23.428 | 0.5785 | 591 |
534 | 172.623 | 1.7588 | 57 | 14.520 | 0.5047 | 591 |
Mean | 165.851 | 1.7851 | 19.800 | 0.5570 | ||
SD | 6.499 | 0.0350 | 4.336 | 0.0583 |
Neural Network (NN) | PEV | IQV | TTV | GPV | GSV | PEU | PU |
---|---|---|---|---|---|---|---|
NN (i) | 0.210 | 0.115 | 0.036 | 0.155 | 0.119 | 0.064 | 0.301 |
NN (ii) | 0.151 | 0.147 | 0.056 | 0.091 | 0.210 | 0.192 | 0.154 |
NN (iii) | 0.172 | 0.111 | 0.110 | 0.047 | 0.130 | 0.230 | 0.199 |
NN (ix) | 0.156 | 0.125 | 0.066 | 0.049 | 0.189 | 0.227 | 0.189 |
NN (v) | 0.136 | 0.136 | 0.051 | 0.089 | 0.197 | 0.252 | 0.139 |
NN (vi) | 0.138 | 0.112 | 0.101 | 0.075 | 0.170 | 0.229 | 0.175 |
NN (vii) | 0.167 | 0.194 | 0.090 | 0.025 | 0.177 | 0.149 | 0.198 |
NN (viii) | 0.063 | 0.126 | 0.171 | 0.086 | 0.164 | 0.200 | 0.190 |
NN (ix) | 0.139 | 0.100 | 0.109 | 0.047 | 0.180 | 0.215 | 0.211 |
NN (x) | 0.090 | 0.062 | 0.109 | 0.166 | 0.131 | 0.179 | 0.263 |
Average importance | 0.142 | 0.123 | 0.090 | 0.083 | 0.167 | 0.194 | 0.202 |
Normalized importance (%) | 0.615 | 0.545 | 0.403 | 0.345 | 0.737 | 0.857 | 0.867 |
Predictor (SEM Path to CUI) | SEM Standardized Path Coefficient | ANN Normalized Relative Importance | SEM Rank | ANN Rank | Remark |
---|---|---|---|---|---|
PEU → CUI | 0.199 | 85.7% | 1 | 2 | Dominant in both models; very strong convergent evidence |
GSV → CUI | 0.192 | 73.7% | 2 | 3 | Consistently high; confirms critical role of enjoyment |
PU → CUI | 0.166 | 86.7% | 3 | 1 | Highest in ANN, top three in SEM; instrumental value decisive |
IQV → CUI | 0.132 | 54.5% | 4 | 5 | Moderate, significant in SEM and ANN; informational reliability matters |
PEV → CUI | 0.130 | 61.5% | 5 | 4 | Mid-tier in both analyses; functional efficacy remains important |
TTV → CUI | 0.077 | 40.3% | 6 | 6 | Low importance; non-significant in SEM, minor in ANN |
GPV → CUI | –0.008 | 34.5% | 7 | 7 | Lowest and non-significant across methods; limited direct influence |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Yan, W.; Gong, J.; Wang, S.; Nah, K.; Cheng, W. Motivation of University Students to Use LLMs to Assist with Online Consumption of Sustainable Products: An Analysis Based on a Hybrid SEM–ANN Approach. Appl. Sci. 2025, 15, 8088. https://doi.org/10.3390/app15148088
Yu J, Yan W, Gong J, Wang S, Nah K, Cheng W. Motivation of University Students to Use LLMs to Assist with Online Consumption of Sustainable Products: An Analysis Based on a Hybrid SEM–ANN Approach. Applied Sciences. 2025; 15(14):8088. https://doi.org/10.3390/app15148088
Chicago/Turabian StyleYu, Junjie, Wenjun Yan, Jiaxuan Gong, Siqin Wang, Ken Nah, and Wei Cheng. 2025. "Motivation of University Students to Use LLMs to Assist with Online Consumption of Sustainable Products: An Analysis Based on a Hybrid SEM–ANN Approach" Applied Sciences 15, no. 14: 8088. https://doi.org/10.3390/app15148088
APA StyleYu, J., Yan, W., Gong, J., Wang, S., Nah, K., & Cheng, W. (2025). Motivation of University Students to Use LLMs to Assist with Online Consumption of Sustainable Products: An Analysis Based on a Hybrid SEM–ANN Approach. Applied Sciences, 15(14), 8088. https://doi.org/10.3390/app15148088