A Methodological Study on Improving the Accuracy of Soil Organic Matter Mapping in Mountainous Areas Based on Geo-Positional Transformer-CNN: A Case Study of Longshan County, Hunan Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Environmental Covariates
2.4. Dataset Construction
2.5. Geo-Positional Transformer-CNN
2.5.1. GPTransformer Branch
2.5.2. The 1D-CNN Branch
2.5.3. GPTransCNN
2.6. Model Evaluation
3. Results
3.1. Descriptive Statistics of Soil Organic Matter
3.2. Prediction Results of Soil Organic Matter Content
3.3. Spatial Distribution of Soil Organic Matter Content
4. Discussion
4.1. Ablation Study
4.2. Uncertainty Quantification
4.3. Comparison with Similar Studies
4.4. Limitations and Outlook
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wood, S.A.; Tirfessa, D.; Baudron, F. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agric. Ecosyst. Environ. 2018, 266, 100–108. [Google Scholar] [CrossRef]
- Kik, M.; Claassen, G.; Meuwissen, M.; Ros, G.; Smit, A.; Saatkamp, H. Economic optimization of sustainable soil management: A Dutch case study. Agron. Sustain. Dev. 2024, 44, 48. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Maring, L.; Prokop, G.; Brils, J.; Bender, J.; Bispo, A.; Helming, K. Systems knowledge for sustainable soil and land management. Sci. Total. Environ. 2022, 822, 153389. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Chalchissa, F.B.; Kuris, B.K. Modelling soil organic carbon dynamics under extreme climate and land use and land cover changes in Western Oromia Regional state, Ethiopia. J. Environ. Manag. 2024, 350, 119598. [Google Scholar] [CrossRef] [PubMed]
- Jerray, A.; Rumpel, C.; Le Roux, X.; Massad, R.S.; Chabbi, A. N2O emissions from cropland and grassland management systems are determined by soil organic matter quality and soil physical parameters rather than carbon stock and denitrifier abundances. Soil Biol. Biochem. 2024, 190, 109274. [Google Scholar] [CrossRef]
- Triantakonstantis, D.; Karakostas, A. Soil Organic Carbon Monitoring and Modelling via Machine Learning Methods Using Soil and Remote Sensing Data. Agriculture 2025, 15, 910. [Google Scholar] [CrossRef]
- Bui, E.N. Soil survey as a knowledge system. Geoderma 2004, 120, 17–26. [Google Scholar] [CrossRef]
- Hu, B.; Geng, Y.; Shi, K.; Xie, M.; Ni, H.; Zhu, Q.; Qiu, Y.; Zhang, Y.; Bourennane, H. Fine-resolution baseline maps of soil nutrients in farmland of Jiangxi Province using digital soil mapping and interpretable machine learning. Catena 2025, 249, 108635. [Google Scholar] [CrossRef]
- Robb, C.; Aitkenhead, M.; Coull, M.; MacFarlane, F.; Matthews, K. Soil Property, Carbon Stock and Peat Extent Mapping at 10 m Resolution in Scotland Using Digital Soil Mapping Techniques. Eur. J. Soil Sci. 2025, 76, e70123. [Google Scholar] [CrossRef]
- McBratney, A.B.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Stumpf, F.; Behrens, T.; Schmidt, K.; Keller, A. Exploiting Soil and Remote Sensing Data Archives for 3D Mapping of Multiple Soil Properties at the Swiss National Scale. Remote. Sens. 2024, 16, 2712. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Schmidt, K.; Amirian-Chakan, A.; Rentschler, T.; Zeraatpisheh, M.; Sarmadian, F.; Valavi, R.; Davatgar, N.; Behrens, T.; Scholten, T. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space. Remote. Sens. 2020, 12, 1095. [Google Scholar] [CrossRef]
- Guo, L.; Fu, P.; Shi, T.; Chen, Y.; Zeng, C.; Zhang, H.; Wang, S. Exploring influence factors in mapping soil organic carbon on low-relief agricultural lands using time series of remote sensing data. Soil Tillage Res. 2021, 210, 104982. [Google Scholar] [CrossRef]
- Guo, L.; Fu, P.; Shi, T.; Chen, Y.; Zhang, H.; Meng, R.; Wang, S. Mapping field-scale soil organic carbon with unmanned aircraft system-acquired time series multispectral images. Soil Tillage Res. 2020, 196, 104477. [Google Scholar] [CrossRef]
- Luo, C.; Wang, Y.; Zhang, X.; Zhang, W.; Liu, H. Spatial prediction of soil organic matter content using multiyear synthetic images and partitioning algorithms. Catena 2022, 211, 106023. [Google Scholar] [CrossRef]
- Andrade, R.; Silva, S.H.G.; Weindorf, D.C.; Chakraborty, S.; Faria, W.M.; Mesquita, L.F.; Guilherme, L.R.G.; Curi, N. Assessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plains. Geoderma 2020, 357, 113957. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, S.; Hu, B.; Wang, N.; Xue, J.; Zhuo, Z.; Yang, Y.; Chen, Y.; Peng, J.; Liu, Y.; et al. Spectral fusion modeling for soil organic carbon by a parallel input-convolutional neural network. Geoderma 2023, 437, 116584. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, Y.; Chen, S.; Shen, R.; Hu, B.; Peng, J.; Wang, N.; Guo, L.; Zhuo, Z.; Yang, Y.; et al. Data mining of urban soil spectral library for estimating organic carbon. Geoderma 2022, 426, 116102. [Google Scholar] [CrossRef]
- Deng, Y.; Xiao, L.; Shi, Y. Enhanced Hyperspectral Forest Soil Organic Matter Prediction Using a Black-Winged Kite Algorithm-Optimized Convolutional Neural Network and Support Vector Machine. Appl. Sci. 2025, 15, 503. [Google Scholar] [CrossRef]
- Feng, B.; Yang, H.; Ren, Y.; Zheng, S.; Feng, G.; Huang, Y. Study on Change of Landscape Pattern Characteristics of Comprehensive Land Improvement Based on Optimal Spatial Scale. Land 2025, 14, 135. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M.; Liu, Z.; Li, X.; Ji, X.; Wang, F. Spatial and temporal evolution of soil organic matter and its response to dynamic factors in the Southern part of Black Soil Region of Northeast China. Soil Tillage Res. 2025, 248, 106475. [Google Scholar] [CrossRef]
- Doetterl, S.; Berhe, A.A.; Heckman, K.; Lawrence, C.; Schnecker, J.; Vargas, R.; Vogel, C.; Wagai, R. A landscape-scale view of soil organic matter dynamics. Nat. Rev. Earth Environ. 2025, 6, 1–15. [Google Scholar] [CrossRef]
- Kakhani, N.; Rangzan, M.; Jamali, A.; Attarchi, S.; Alavipanah, S.K.; Mommert, M.; Tziolas, N.; Scholten, T. SSL-SoilNet: A Hybrid Transformer-Based Framework with Self-Supervised Learning for Large-Scale Soil Organic Carbon Prediction. IEEE Trans. Geosci. Remote. Sens. 2024, 62, 4509915. [Google Scholar] [CrossRef]
- Tresson, P.; Dumont, M.; Jaeger, M.; Borne, F.; Boivin, S.; Marie-Louise, L.; François, J.; Boukcim, H.; Goëau, H. Self-supervised learning of Vision Transformers for digital soil mapping using visual data. Geoderma 2024, 450, 117056. [Google Scholar] [CrossRef]
- Wang, Y.; Zha, Y. Comparison of transformer, LSTM and coupled algorithms for soil moisture prediction in shallow-groundwater-level areas with interpretability analysis. Agric. Water Manag. 2024, 305, 109120. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsakiridis, N.; Heiden, U.; van Wesemael, B. Soil organic carbon mapping utilizing convolutional neural networks and Earth observation data, a case study in Bavaria state Germany. Geoderma 2024, 444, 116867. [Google Scholar] [CrossRef]
- Dong, Z.; Yao, L.; Bao, Y.; Zhang, J.; Yao, F.; Bai, L.; Zheng, P. Prediction of soil organic carbon content in complex vegetation areas based on CNN-LSTM model. Land 2024, 13, 915. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Sekulić, A.; Kilibarda, M.; Heuvelink, G.; Nikolić, M.; Bajat, B. Random forest spatial interpolation. Remote. Sens. 2020, 12, 1687. [Google Scholar] [CrossRef]
- Hernández, T.D.B.; Slater, B.K.; Shaffer, J.M.; Basta, N. Comparison of methods for determining organic carbon content of urban soils in Central Ohio. Geoderma Reg. 2023, 34, e00680. [Google Scholar] [CrossRef]
- Chen, L.; He, Z.; Du, J.; Yang, J.; Zhu, X. Patterns and environmental controls of soil organic carbon and total nitrogen in alpine ecosystems of northwestern China. Catena 2016, 137, 37–43. [Google Scholar] [CrossRef]
- Ma, S.; Qiao, Y.; Wang, L.; Zhang, J. Terrain gradient variations in ecosystem services of different vegetation types in mountainous regions: Vegetation resource conservation and sustainable development. For. Ecol. Manag. 2021, 482, 118856. [Google Scholar] [CrossRef]
- Zhu, M.; Feng, Q.; Qin, Y.; Cao, J.; Zhang, M.; Liu, W.; Deo, R.C.; Zhang, C.; Li, R.; Li, B. The role of topography in shaping the spatial patterns of soil organic carbon. Catena 2019, 176, 296–305. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Villarino, S.H.; Pinto, P.; Jackson, R.B.; Piñeiro, G. Plant rhizodeposition: A key factor for soil organic matter formation in stable fractions. Sci. Adv. 2021, 7, eabd3176. [Google Scholar] [CrossRef] [PubMed]
- Beattie, G.A.; Edlund, A.; Esiobu, N.; Gilbert, J.; Nicolaisen, M.H.; Jansson, J.K.; Jensen, P.; Keiluweit, M.; Lennon, J.T.; Martiny, J.; et al. Soil microbiome interventions for carbon sequestration and climate mitigation. mSystems 2025, 10, e01129–24. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Niu, B.; Hu, Y.; Luo, T.; Zhang, G. Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci. Total. Environ. 2020, 714, 136787. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; An, C.; Zhang, W.; Zheng, L.; Zhang, Y.; Lu, C.; Liu, L. Drivers of mountain soil organic carbon stock dynamics: A review. J. Soils Sediments 2023, 23, 64–76. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, J.; Zhu, C.; Chen, X.; Wang, J.; Han, L.; Ma, X.; Xu, D. Bivariate empirical mode decomposition of the spatial variation in the soil organic matter content: A case study from NW China. Catena 2021, 206, 105572. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y.; Wang, P.; Tansey, K.; Liu, J.; Zhang, S. Enhancing Winter Wheat Yield Estimation With a CNN-Transformer Hybrid Framework Utilizing Multiple Remotely Sensed Parameters. IEEE Trans. Geosci. Remote. Sens. 2025, 63, 4405213. [Google Scholar] [CrossRef]
- Gorishniy, Y.; Rubachev, I.; Khrulkov, V.; Babenko, A. Revisiting deep learning models for tabular data. Adv. Neural Inf. Process. Syst. 2021, 34, 18932–18943. [Google Scholar]
- Yang, L.; Cai, Y.; Zhang, L.; Guo, M.; Li, A.; Zhou, C. A deep learning method to predict soil organic carbon content at a regional scale using satellite-based phenology variables. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102428. [Google Scholar] [CrossRef]
- Tsakiridis, N.L.; Keramaris, K.D.; Theocharis, J.B.; Zalidis, G.C. Simultaneous prediction of soil properties from VNIR-SWIR spectra using a localized multi-channel 1-D convolutional neural network. Geoderma 2020, 367, 114208. [Google Scholar] [CrossRef]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015; pp. 104–118. [Google Scholar]
- Prechelt, L. Early stopping-but when? In Neural Networks: Tricks of the Trade; Springer: Berlin/Heidelberg, Germany, 2002; pp. 55–69. [Google Scholar]
- Tziachris, P.; Aschonitis, V.; Chatzistathis, T.; Papadopoulou, M. Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters. Catena 2019, 174, 206–216. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, H.; Zhang, M.; Yang, H.; Jin, Y.; Han, Y.; Tang, H.; Zhang, X.; Zhang, X. Mapping soil organic matter and analyzing the prediction accuracy of typical cropland soil types on the Northern Songnen Plain. Remote. Sens. 2021, 13, 5162. [Google Scholar] [CrossRef]
- Li, Y.; Henrion, M.; Moore, A.; Lambot, S.; Opfergelt, S.; Vanacker, V.; Jonard, F.; Van Oost, K. Factors controlling peat soil thickness and carbon storage in temperate peatlands based on UAV high-resolution remote sensing. Geoderma 2024, 449, 117009. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, Y.; Wu, S.; Liu, J.; Luo, Y.; Ma, Y.; Pan, X. Prediction and spatial–temporal changes of soil organic matter in the Huanghuaihai Plain by combining legacy and recent data. Geoderma 2024, 450, 117031. [Google Scholar] [CrossRef]
- Biedenkapp, A.; Lindauer, M.; Eggensperger, K.; Hutter, F.; Fawcett, C.; Hoos, H. Efficient parameter importance analysis via ablation with surrogates. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the International Conference on Machine Learning, PMLR, New York City, NY, USA, 19–24 June 2016; pp. 1050–1059. [Google Scholar]
- Maxwell, A.E.; Shobe, C.M. Land-surface parameters for spatial predictive mapping and modeling. Earth-Sci. Rev. 2022, 226, 103944. [Google Scholar] [CrossRef]
- Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.; Fernandes Filho, E.I. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, Y.; Huang, H.; Li, A.; Yang, L.; Zhou, C. A CNN-LSTM model for soil organic carbon content prediction with long time series of MODIS-based phenological variables. Remote. Sens. 2022, 14, 4441. [Google Scholar] [CrossRef]
- Liu, W.; Jiang, Y.; Yang, Q.; Yang, H.; Li, Y.; Li, Z.; Mao, W.; Luo, Y.; Wang, X.; Tan, Z. Spatial distribution and stability mechanisms of soil organic carbon in a tropical montane rainforest. Ecol. Indic. 2021, 129, 107965. [Google Scholar] [CrossRef]
- Jiquan, C.; Kyaw, T.P.U.; Malcolm, N.; Jerry, F.F. The contributions of microclimatic information in advancing ecosystem science. Agric. For. Meteorol. 2024, 355, 110105. [Google Scholar] [CrossRef]
- Lv, X.; Jia, G.; Yu, X.; Niu, L. Vegetation and topographic factors affecting SOM, SOC, and N contents in a mountainous watershed in north China. Forests 2022, 13, 742. [Google Scholar] [CrossRef]
- Fan, M.; Lal, R.; Zhang, H.; Margenot, A.J.; Wu, J.; Wu, P.; Zhang, L.; Yao, J.; Chen, F.; Gao, C. Variability and determinants of soil organic matter under different land uses and soil types in eastern China. Soil Tillage Res. 2020, 198, 104544. [Google Scholar] [CrossRef]
Indices | Description | Spatial Resolution |
---|---|---|
Aspect (Asp) | The angle between the projection of the downslope direction (i.e., surface normal) on the horizontal plane and true north. | 30 m |
Analytical Hillshading Index (AHI) | Terrain shadow distribution calculated based on solar azimuth and elevation at a specific time. | 30 m |
Channel Network Distance (CND) | The distance from a specific point on the terrain to the nearest stream or river in the channel network. | 30 m |
Channel Network Base Level (CNBL) | A hierarchical classification of the channel network, typically based on flow volume, catchment area, and channel width. | 30 m |
Convergence Index (CI) | Indicates the tendency of water flow to converge on the terrain surface. | 30 m |
Profile Curvature (PrCu) | Measures the convexity or concavity of the terrain surface along the direction of the steepest slope. | 30 m |
Plan Curvature (PlCu) | Measures the curvature of the terrain surface in the direction perpendicular to the steepest slope. | 30 m |
Slope (Slo) | The overall steepness of the terrain at a given point. | 30 m |
Total Catchment Area (TCaAr) | The area from which all surface water flows to a common outlet point (e.g., a river mouth). | 30 m |
Topographic Wetness Index (TWI) | An index used to assess the influence of topography on soil moisture distribution. | 30 m |
Relative Slope Position (RSP) | Describes the relative position of a point within specific terrain features (e.g., valley or ridge). | 30 m |
LS-Factor (LSF) | Evaluates the potential impact of topography on soil erosion. | 30 m |
Valley Depth (VD) | The vertical distance from the valley bottom to the highest points on either side. | 30 m |
Terrain Undulation (TU) | The elevation difference between the highest and lowest points within a defined area (e.g., a 11 × 11 window). | 30 m |
Topographic Position Index (TPI) | Assesses the relative position of a point compared to the average elevation of its surroundings. | 30 m |
Terrain Ruggedness Index (TRI) | Quantifies the ruggedness or roughness of the terrain surface. | 30 m |
Elevation (Ele) | The vertical distance of a point on the terrain surface relative to a reference level. | 30 m |
Indices | Description | Spatial Resolution |
---|---|---|
BIO1 | Annual Mean Temperature | 30 m |
BIO2 | Mean Diurnal Range (Mean of monthly (max temp - min temp)) | 30 m |
BIO3 | Isothermality (BIO2/BIO7) (×100) | 30 m |
BIO4 | Temperature Seasonality (standard deviation ×100) | 30 m |
BIO5 | Max Temperature of Warmest Month | 30 m |
BIO6 | Min Temperature of Coldest Month | 30 m |
BIO7 | Temperature Annual Range (BIO5-BIO6) | 30 m |
BIO8 | Mean Temperature of Wettest Quarter | 30 m |
BIO9 | Mean Temperature of Driest Quarter | 30 m |
BIO10 | Mean Temperature of Warmest Quarter | 30 m |
BIO11 | Mean Temperature of Coldest Quarter | 30 m |
BIO12 | Annual Precipitation | 30 m |
BIO13 | Precipitation of Wettest Month | 30 m |
BIO14 | Precipitation of Driest Month | 30 m |
BIO15 | Precipitation Seasonality (Coefficient of Variation) | 30 m |
BIO16 | Precipitation of Wettest Quarter | 30 m |
BIO17 | Precipitation of Driest Quarter | 30 m |
BIO18 | Precipitation of Warmest Quarter | 30 m |
BIO19 | Precipitation of Coldest Quarter | 30 m |
Layer | Filter Size | Stride | Activation | Shape |
---|---|---|---|---|
Conv1d_1 | 3 | 1 | - | (32, 16, 34) |
BatchNorm_1 | - | - | ReLU | (32, 16, 34) |
Conv1d_2 | 5 | 1 | - | (32, 32, 30) |
BatchNorm_2 | - | - | ReLU | (32, 32, 30) |
Conv1d_3 | 7 | 1 | - | (32, 64, 24) |
BatchNorm_3 | - | - | ReLU | (32, 64, 24) |
Conv1d_4 | 11 | 1 | - | (32, 128, 14) |
BatchNorm_4 | - | - | ReLU | (32, 128, 14) |
Flatten | - | - | - | (32, 1792) |
FC_1 | - | - | ReLU | (32, 32) |
FC_2 | - | - | - | (32, 1) |
Min (g/kg) | Max (g/kg) | Mean (g/kg) | Standard Deviation (g/kg) | Kurtosis | Skewness | CV (%) | |
---|---|---|---|---|---|---|---|
SOM | 4.9 | 63.7 | 25.4820 | 8.0814 | 4.6163 | 0.8877 | 31.71 |
Model | R2 | RMSE | MAE |
---|---|---|---|
GPTransformer | 0.3643 | 6.5685 | 5.0842 |
1D-CNN | 0.3765 | 6.5050 | 4.7157 |
GPTransCNN | 0.4329 | 6.2037 | 4.4975 |
Model | R2 | RMSE | MAE |
---|---|---|---|
GPTransformer | 0.3227 | 6.5835 | 5.0062 |
1D-CNN | 0.3998 | 6.2091 | 4.4844 |
GPTransCNN | 0.4260 | 6.0631 | 4.4334 |
Model | R2 | RMSE | MAE |
---|---|---|---|
Transformer | 0.3019 | 6.8830 | 5.0743 |
NPTransformer | 0.2996 | 6.8946 | 5.1991 |
GPTransformer | 0.3643 | 6.5685 | 5.0842 |
1D-CNN | 0.3765 | 6.5050 | 4.7157 |
TransCNN | 0.4036 | 6.3620 | 4.7035 |
NPTransCNN | 0.4035 | 6.3625 | 4.6679 |
GPTransCNN | 0.4329 | 6.2037 | 4.4975 |
Model | R2 | RMSE | MAE |
---|---|---|---|
Transformer | 0.2963 | 6.7240 | 5.0769 |
NPTransformer | 0.3096 | 6.6560 | 4.9973 |
GPTransformer | 0.3227 | 6.5835 | 5.0062 |
1D-CNN | 0.3998 | 6.2091 | 4.4844 |
TransCNN | 0.4151 | 6.1289 | 4.4499 |
NPTransCNN | 0.4135 | 6.1249 | 4.4925 |
GPTransCNN | 0.4260 | 6.0631 | 4.4334 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, L.; Xie, Y.; Deng, Y.; Feng, Y.; Zhou, Q.; Xie, H. A Methodological Study on Improving the Accuracy of Soil Organic Matter Mapping in Mountainous Areas Based on Geo-Positional Transformer-CNN: A Case Study of Longshan County, Hunan Province, China. Appl. Sci. 2025, 15, 8060. https://doi.org/10.3390/app15148060
Shen L, Xie Y, Deng Y, Feng Y, Zhou Q, Xie H. A Methodological Study on Improving the Accuracy of Soil Organic Matter Mapping in Mountainous Areas Based on Geo-Positional Transformer-CNN: A Case Study of Longshan County, Hunan Province, China. Applied Sciences. 2025; 15(14):8060. https://doi.org/10.3390/app15148060
Chicago/Turabian StyleShen, Luming, Yangfan Xie, Yangjun Deng, Yujie Feng, Qing Zhou, and Hongxia Xie. 2025. "A Methodological Study on Improving the Accuracy of Soil Organic Matter Mapping in Mountainous Areas Based on Geo-Positional Transformer-CNN: A Case Study of Longshan County, Hunan Province, China" Applied Sciences 15, no. 14: 8060. https://doi.org/10.3390/app15148060
APA StyleShen, L., Xie, Y., Deng, Y., Feng, Y., Zhou, Q., & Xie, H. (2025). A Methodological Study on Improving the Accuracy of Soil Organic Matter Mapping in Mountainous Areas Based on Geo-Positional Transformer-CNN: A Case Study of Longshan County, Hunan Province, China. Applied Sciences, 15(14), 8060. https://doi.org/10.3390/app15148060