Ischemic Preconditioning (IPC) Enhances the Accuracy and Stability of Proprioception
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Design
2.3. Ischemic Preconditioning
2.4. Two-Point Discrimination Test
2.5. Knee Position Sense Test
2.6. Statistical Analyses
3. Results
4. Discussion
4.1. Effect of IPC on Proprioception
4.2. Optimal Time Frame for IPC’s Effect on Proprioception
4.3. Practical Application of IPC for Influencing Proprioception
5. Conclusions
6. Limitation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TPD | Two-point discrimination |
KPS | Knee position sense |
D40 | Difference in knee position sense test |
TPDR | Two-point discrimination threshold on right lower limb |
TPDL | Two-point discrimination threshold on left lower limb |
D40R | Difference in position sense test of right lower limb |
D40L | Difference in position sense test of left lower limb |
References
- Franco, P.G.; Santos, K.B.; Rodacki, A.L. Joint positioning sense, perceived force level and two-point discrimination tests of young and active elderly adults. Braz. J. Phys. Ther. 2015, 19, 304. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Madhavan, S.; Cole, K. Sustained muscle activity minimally influences dynamic position sense of the ankle. J. Orthop. Sports Phys. Ther. 2005, 35, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.A.; Sarter, N.B. Tactile displays: Guidance for their design and application. Hum. Factors 2008, 50, 90–111. [Google Scholar] [CrossRef] [PubMed]
- Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiol. Rev. 2001, 81, 1725–1789. [Google Scholar] [CrossRef] [PubMed]
- Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 1986, 74, 1124. [Google Scholar] [CrossRef] [PubMed]
- Leung, C.H.; Wang, L.; Nielsen, J.M.; Tropak, M.B.; Fu, Y.Y.; Kato, H.; Callahan, J.; Redington, A.N.; Caldarone, C.A. Remote cardioprotection by transfer of coronary effluent from ischemic preconditioned rabbit heart preserves mitochondrial integrity and function via adenosine receptor activation. Cardiovasc. Drugs Ther. 2014, 28, 7–17. [Google Scholar] [CrossRef] [PubMed]
- de Groot, P.C.E.; Thijssen, D.H.J.; Sanchez, M.; Ellenkamp, R.; Hopman, M.T.E. Ischemic preconditioning improves maximal performance in humans. Eur. J. Appl. Physiol. 2010, 108, 141. [Google Scholar] [CrossRef] [PubMed]
- Gilhodes, J.C.; Roll, J.P.; Tardy-Gervet, M.F. Perceptual and motor effects of agonist-antagonist muscle vibration in man. Exp. Brain Res. 1986, 61, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Patterson, S.D.; Bezodis, N.E.; Glaister, M.; Pattison, J.R. The effect of ischemic preconditioning on repeated sprint cycling performance. Med. Sci. Sports Exerc. 2015, 47, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- da Silva Novaes, J.; da Silva Telles, L.G.; Monteiro, E.R.; da Silva Araujo, G.; Vingren, J.L.; Panza, P.S.; Reis, V.M.; Laterza, M.C.; Vianna, J.M. Ischemic preconditioning improves resistance training session performance. J. Strength Cond. Res. 2021, 35, 2993–2998. [Google Scholar] [CrossRef] [PubMed]
- Pethick, J.; Casselton, C.; Winter, S.L.; Burnley, M. Ischemic Preconditioning Blunts Loss of Knee Extensor Torque Complexity with Fatigue. Med. Sci. Sports Exerc. 2021, 53, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Zhao, Y.; Hu, S.; Wang, Q.; Semeah, L.M.; Jia, H.; Lv, T.; Li, X.; Wang, R. Immediate Effect of Local Vibration Therapy for Sport-induced Fatigue Based on Traditional Chinese Medicine’s Holistic Theory. J. Multidiscip. Healthc. 2020, 13, 1993–2001. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Park, S.; Jung, S.; Choi, Y.; Song, H. Comparisons of changes in the two-point discrimination test following muscle fatigue in healthy adults. J. Phys. Ther. Sci. 2015, 27, 551. [Google Scholar] [CrossRef] [PubMed]
- Romero-Franco, N.; Romero-Franco, J.; Jiménez-Reyes, P. Jogging and Practical-Duration Foam-Rolling Exercises and Range of Motion, Proprioception, and Vertical Jump in Athletes. J. Athl. Train. 2019, 54, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, F.; Monjo, F.; Gioda, J.; Blain, G.M.; Piponnier, E.; Corcelle, B.; Colson, S.S. Knee position sense and knee flexor neuromuscular function are similarly altered after two submaximal eccentric bouts. Eur. J. Appl. Physiol. 2023, 123, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Jacob, C. Statistical power analysis for the behavioral sciences (2nd ed.). J. Am. Stat. Assoc. 1988, 84, 1096. [Google Scholar]
- Cruz, R.S.; de Aguiar, R.A.; Turnes, T.; Pereira, K.L.; Caputo, F. Effects of ischemic preconditioning on maximal constant-load cycling performance. J. Appl. Physiol. 2015, 119, 961. [Google Scholar] [CrossRef] [PubMed]
- Jeffries, O.; Waldron, M.; Pattison, J.R.; Patterson, S.D. Enhanced Local Skeletal Muscle Oxidative Capacity and Microvascular Blood Flow Following 7-Day Ischemic Preconditioning in Healthy Humans. Front. Physiol. 2018, 9, 463. [Google Scholar] [CrossRef] [PubMed]
- Marocolo, M.; Marocolo, I.C.; da Mota, G.R.; Simão, R.; Maior, A.S.; Coriolano, H.-J.A. Beneficial Effects of Ischemic Preconditioning in Resistance Exercise Fade over Time. Int. J. Sports Med. 2016, 37, 819. [Google Scholar] [CrossRef] [PubMed]
- Salvador, A.F.; De Aguiar, R.A.; Lisbôa, F.D.; Pereira, K.L.; Cruz, R.S.d.O.; Caputo, F. Ischemic Preconditioning and Exercise Performance: A Systematic Review and Meta-Analysis. Int. J. Sports Physiol. Perform. 2016, 11, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Clevidence, M.W.; Mowery, R.E.; Kushnick, M.R. The effects of ischemic preconditioning on aerobic and anaerobic variables associated with submaximal cycling performance. Eur. J. Appl. Physiol. 2012, 112, 3649. [Google Scholar] [CrossRef] [PubMed]
- Richard, P.; Billaut, F. Time-Trial Performance in Elite Speed Skaters After Remote Ischemic Preconditioning. Int. J. Sports Physiol. Perform. 2018, 13, 1308–1316. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Marsh, R.; Cunniffe, B.; Cardinale, M.; Yellon, D.M.; Davidson, S.M. From Protecting the Heart to Improving Athletic Performance—The Benefits of Local and Remote Ischaemic Preconditioning. Cardiovasc. Drugs Ther. 2015, 29, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, A.; Tangianu, F.; Tocco, F.; Concu, A.; Mameli, O.; Mulliri, G.; Caria, M.A. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J. Appl. Physiol. 2011, 111, 530. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.L.; Ide, B.N.; Sasaki, J.E.; DE Oliveira, D.C.X.; Assumpção, C.D.O.; Marocolo, M.; Mota, G.R. Ischemic preconditioning improves the bench-press maximal strength in resistance-trained men. Int. J. Exerc. Sci. 2023, 16, 217–229. [Google Scholar] [PubMed]
- Kraus, A.S.; Pasha, E.P.; Machin, D.R.; Alkatan, M.; Kloner, R.A. Bilateral upper limb remote ischemic preconditioning improves anaerobic power. Open Sports Med. J. 2015, 15, 1–6. [Google Scholar] [CrossRef]
- Donato, M.; Buchholz, B.; Rodriguez, M.; Pérez, V.; Inserte, J.; García-Dorado, D.; Gelpi, R.J. Role of the parasym pathetic nervous system in cardioprotection by remote hindlimb ischemic preconditioning. Exp. Physiol. 2013, 98, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.C.; Yan, Z.M.; Wei, D.; Gao, X.; Chen, X.; Zhao, H. Limb remote ischemic post conditioning protects against focal ischemia in rats. Brain Res. 2009, 1288, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Mastitskaya, S.; Marina, N.; Gourine, A.; Gilbey, M.P.; Spyer, K.M.; Teschemacher, A.G.; Kasparov, S.; Trapp, S.; Ackland, G.L.; Gourine, A.V. Cardioprotection evoked by remote ischemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc. Res. 2012, 95, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Niespodziński, B.; Mieszkowski, J.; Kochanowicz, M.; Kochanowicz, A.; Antosiewicz, J. Effect of 10 consecutive days of remote ischemic preconditioning on local neuromuscular performance. J. Electromyogr. Kinesiol. 2021, 60, 102584. [Google Scholar] [CrossRef] [PubMed]
- Keller, D.M.; Ogoh, S.; Greene, S.; Olivencia-Yurvati, A.; Raven, P.B. Inhibition of KATP channel activity augments baroreflex-mediated vasoconstriction in exercising human skeletal muscle. J. Physiol. 2004, 561, 273. [Google Scholar] [CrossRef] [PubMed]
- Proske, U.; Gandevia, S.C. The proprioceptive senses: Their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 2012, 92, 1651–1697. [Google Scholar] [CrossRef] [PubMed]
- Roll, J.P.; Vedel, J.P.; Ribot, E. Alteration of proprioceptive messages induced by tendon vibration in man: A microneurographic study. Exp. Brain Res. 1989, 76, 213–222. [Google Scholar] [CrossRef] [PubMed]
Accuracy | Stability | ||
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Pre | TPDR | 56.28 ± 13.32 | 14.31 ± 9.89 |
TPDL | 56.08 ± 12.86 | 14.49 ± 11.95 | |
D40R | −6.21 ± 10.06 | 14.55 ± 11.18 | |
D40L | −7.38 ± 8.71 | 10.11 ± 7.07 | |
Post | TPDR | 47.56 ± 8.02 | 7.87 ± 5.22 |
TPDL | 45.55 ± 10.15 | 7.93 ± 5.54 | |
D40R | 0.22 ± 7.87 | 6.98 ± 5.80 | |
D40L | −2.73 ± 6.49 | 6.36 ± 6.83 | |
90 min | TPDR | 39.82 ± 6.63 | 2.55 ± 2.92 |
TPDL | 39.20 ± 7.00 | 2.45 ± 1.60 | |
D40R | 0.49 ± 3.51 | 2.06 ± 1.72 | |
D40L | −1.55 ± 2.96 | 1.72 ± 2.02 | |
24 h | TPDR | 49.62 ± 9.02 | 11.88 ± 7.03 |
TPDL | 48.26 ± 8.51 | 9.22 ± 6.64 | |
D40R | −1.55 ± 2.96 | 8.78 ± 7.72 | |
D40L | −1.29 ± 9.09 | 8.99 ± 6.87 |
Source | df | Mean Square | F | p | Partial Eta Squared | |
---|---|---|---|---|---|---|
Accuracy | TPDR | 2.011 | 1304.199 | 27.168 | <0.001 | 0.601 |
TPDL | 3.000 | 930.075 | 28.154 | <0.001 | 0.610 | |
D40R | 3.000 | 183.726 | 6.259 | 0.001 | 0.258 | |
D40L | 2.033 | 192.183 | 4.806 | 0.014 | 0.211 | |
Stability | TPDR | 2.175 | 693.134 | 11.586 | <0.001 | 0.392 |
TPDL | 1.555 | 892.681 | 9.117 | 0.002 | 0.336 | |
D40R | 2.187 | 694.108 | 11.027 | <0.001 | 0.380 | |
D40L | 2.001 | 395.699 | 7.064 | 0.003 | 0.282 |
Measurement | (I) Time | (J) Time | Error of the Mean (I–J) | SD | p | CI, 95% | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
TPDR | Pre | Post | 8.726 * | 1.978 | 0.002 | 2.866 | 14.587 |
90 min | 16.468 * | 2.498 | <0.001 | 9.068 | 23.869 | ||
24 h | 6.663 * | 1.928 | 0.017 | 0.952 | 12.374 | ||
Post | Pre | −8.726 * | 1.978 | 0.002 | −14.587 | −2.866 | |
90 min | 7.742 * | 1.402 | <0.001 | 3.589 | 11.895 | ||
24 h | −2.063 | 1.634 | 1.000 | −6.903 | 2.777 | ||
90 min | Pre | −16.468 * | 2.498 | <0.001 | −23.869 | −9.068 | |
Post | −7.742 * | 1.402 | <0.001 | −11.895 | −3.589 | ||
24 h | −9.805 * | 1.349 | <0.001 | −13.802 | −5.808 | ||
24 h | Pre | −6.663 * | 1.928 | 0.017 | −12.374 | −0.952 | |
Post | 2.063 | 1.634 | 1.000 | −2.777 | 6.903 | ||
90 min | 9.805 * | 1.349 | <0.001 | 5.808 | 13.802 | ||
TPDL | Pre | Post | 10.537 * | 2.130 | 0.001 | 4.227 | 16.846 |
90 min | 16.889 * | 2.088 | <0.001 | 10.702 | 23.077 | ||
24 h | 7.821 * | 2.353 | 0.023 | 0.849 | 14.793 | ||
Post | Pre | −10.537 * | 2.130 | 0.001 | −16.846 | −4.227 | |
90 min | 6.353 * | 1.562 | 0.004 | 1.726 | 10.979 | ||
24 h | −2.716 | 1.620 | 0.666 | −7.516 | 2.085 | ||
90 min | Pre | −16.889 * | 2.088 | <0.001 | −23.077 | −10.702 | |
Post | −6.353 * | 1.562 | 0.004 | −10.979 | −1.726 | ||
24 h | −9.068 * | 1.169 | <0.001 | −12.532 | −5.605 | ||
24 h | Pre | −7.821 * | 2.353 | 0.023 | −14.793 | −0.849 | |
Post | 2.716 | 1.620 | 0.666 | −2.085 | 7.516 | ||
90 min | 9.068 * | 1.169 | <0.001 | 5.605 | 12.532 | ||
D40R | Pre | Post | −6.437 * | 1.423 | 0.002 | −10.654 | −2.220 |
90 min | −6.700 * | 1.930 | 0.016 | −12.418 | −0.982 | ||
24 h | −4.911 | 1.985 | 0.141 | −10.791 | 0.970 | ||
Post | Pre | 6.437 * | 1.423 | 0.002 | 2.220 | 10.654 | |
90 min | −0.263 | 1.360 | 1.000 | −4.293 | 3.766 | ||
24 h | 1.526 | 1.824 | 1.000 | −3.879 | 6.932 | ||
90 min | Pre | 6.700 * | 1.930 | 0.016 | 0.982 | 12.418 | |
Post | 0.263 | 1.360 | 1.000 | −3.766 | 4.293 | ||
24 h | 1.789 | 1.916 | 1.000 | −3.887 | 7.465 | ||
24 h | Pre | 4.911 | 1.985 | 0.141 | −0.970 | 10.791 | |
Post | −1.526 | 1.824 | 1.000 | −6.932 | 3.879 | ||
90 min | −1.789 | 1.916 | 1.000 | −7.465 | 3.887 | ||
D40L | Pre | Post | −4.663 * | 1.490 | 0.035 | −9.077 | −0.249 |
90 min | −5.832 | 2.282 | 0.119 | −12.593 | 0.930 | ||
24 h | −2.074 | 1.300 | 0.768 | −5.924 | 1.776 | ||
Post | Pre | 4.663 * | 1.490 | 0.035 | 0.249 | 9.077 | |
90 min | −1.168 | 1.501 | 1.000 | −5.615 | 3.278 | ||
24 h | 2.589 | 1.473 | 0.574 | −1.773 | 6.952 | ||
90 min | Pre | 5.832 | 2.282 | 0.119 | −0.930 | 12.593 | |
Post | 1.168 | 1.501 | 1.000 | −3.278 | 5.615 | ||
24 h | 3.758 | 1.891 | 0.374 | −1.845 | 9.361 | ||
24 h | Pre | 2.074 | 1.300 | 0.768 | −1.776 | 5.924 | |
Post | −2.589 | 1.473 | 0.574 | −6.952 | 1.773 | ||
90 min | −3.758 | 1.891 | 0.374 | −9.361 | 1.845 |
Measurement | (I) Time | (J) Time | Error of the Mean (I−J) | SD | p | CI, 95% | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
TPDR | Pre | Post | 6.442 | 2.749 | 0.185 | −1.701 | 14.586 |
90 min | 11.763 * | 2.056 | <0.001 | 5.671 | 17.856 | ||
24 h | 2.426 | 2.452 | 1.000 | −4.838 | 9.690 | ||
Post | Pre | −6.442 | 2.749 | 0.185 | −14.586 | 1.701 | |
90 min | 5.321 * | 1.442 | 0.010 | 1.049 | 9.593 | ||
24 h | −4.016 | 2.284 | 0.574 | −10.783 | 2.752 | ||
90 min | Pre | −11.763 * | 2.056 | <0.001 | −17.856 | −5.671 | |
Post | −5.321 * | 1.442 | 0.010 | −9.593 | −1.049 | ||
24 h | −9.337 * | 1.517 | <0.001 | −13.833 | −4.841 | ||
24 h | Pre | −2.426 | 2.452 | 1.000 | −9.690 | 4.838 | |
Post | 4.016 | 2.284 | 0.574 | −2.752 | 10.783 | ||
90 min | 9.337 * | 1.517 | <0.001 | 4.841 | 13.833 | ||
TPDL | Pre | Post | 6.526 | 3.323 | 0.391 | −3.318 | 16.370 |
90 min | 12.021 * | 2.814 | 0.003 | 3.684 | 20.359 | ||
24 h | 5.253 | 2.094 | 0.132 | −0.953 | 11.458 | ||
Post | Pre | −6.526 | 3.323 | 0.391 | −16.370 | 3.318 | |
90 min | 5.495 * | 1.252 | 0.002 | 1.786 | 9.203 | ||
24 h | −1.274 | 2.133 | 1.000 | −7.593 | 5.045 | ||
90 min | Pre | −12.021 * | 2.814 | 0.003 | −20.359 | −3.684 | |
Post | −5.495 * | 1.252 | 0.002 | −9.203 | −1.786 | ||
24 h | −6.768 * | 1.613 | 0.003 | −11.546 | −1.990 | ||
24 h | Pre | −5.253 | 2.094 | 0.132 | −11.458 | 0.953 | |
Post | 1.274 | 2.133 | 1.000 | −5.045 | 7.593 | ||
90 min | 6.768 * | 1.613 | 0.003 | 1.990 | 11.546 | ||
D40R | Pre | Post | 7.574 | 2.683 | 0.068 | −0.374 | 15.521 |
90 min | 12.500 * | 2.465 | <0.001 | 5.197 | 19.803 | ||
24 h | 5.784 | 2.373 | 0.152 | −1.247 | 12.815 | ||
Post | Pre | −7.574 | 2.683 | 0.068 | −15.521 | 0.374 | |
90 min | 4.926 * | 1.244 | 0.006 | 1.239 | 8.613 | ||
24 h | −1.789 | 2.295 | 1.000 | −8.589 | 5.010 | ||
90 min | Pre | −12.500 * | 2.465 | <0.001 | −19.803 | −5.197 | |
Post | −4.926 * | 1.244 | 0.006 | −8.613 | −1.239 | ||
24 h | −6.716 * | 1.807 | 0.009 | −12.070 | −1.361 | ||
24 h | Pre | −5.784 | 2.373 | 0.152 | −12.815 | 1.247 | |
Post | 1.789 | 2.295 | 1.000 | −5.010 | 8.589 | ||
90 min | 6.716 * | 1.807 | 0.009 | 1.361 | 12.070 | ||
D40L | Pre | Post | 3.742 | 2.519 | 0.928 | −3.722 | 11.206 |
90 min | 8.384 * | 1.749 | 0.001 | 3.203 | 13.565 | ||
24 h | 1.121 | 2.541 | 1.000 | −6.408 | 8.650 | ||
Post | Pre | −3.742 | 2.519 | 0.928 | −11.206 | 3.722 | |
90 min | 4.642 | 1.597 | 0.056 | −0.088 | 9.373 | ||
24 h | −2.621 | 1.530 | 0.624 | −7.155 | 1.913 | ||
90 min | Pre | −8.384 * | 1.749 | 0.001 | −13.565 | −3.203 | |
Post | −4.642 | 1.597 | 0.056 | −9.373 | 0.088 | ||
24 h | −7.263 * | 1.688 | 0.003 | −12.263 | −2.263 | ||
24 h | Pre | −1.121 | 2.541 | 1.000 | −8.650 | 6.408 | |
Post | 2.621 | 1.530 | 0.624 | −1.913 | 7.155 | ||
90 min | 7.263 * | 1.688 | 0.003 | 2.263 | 12.263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Zhang, P.; Zhang, Y.; Su, Y.; Shi, Y.; Li, C. Ischemic Preconditioning (IPC) Enhances the Accuracy and Stability of Proprioception. Appl. Sci. 2025, 15, 7941. https://doi.org/10.3390/app15147941
Wu J, Zhang P, Zhang Y, Su Y, Shi Y, Li C. Ischemic Preconditioning (IPC) Enhances the Accuracy and Stability of Proprioception. Applied Sciences. 2025; 15(14):7941. https://doi.org/10.3390/app15147941
Chicago/Turabian StyleWu, Junqi, Peng Zhang, Yecheng Zhang, Yuying Su, Yu Shi, and Chunlei Li. 2025. "Ischemic Preconditioning (IPC) Enhances the Accuracy and Stability of Proprioception" Applied Sciences 15, no. 14: 7941. https://doi.org/10.3390/app15147941
APA StyleWu, J., Zhang, P., Zhang, Y., Su, Y., Shi, Y., & Li, C. (2025). Ischemic Preconditioning (IPC) Enhances the Accuracy and Stability of Proprioception. Applied Sciences, 15(14), 7941. https://doi.org/10.3390/app15147941