Performance Predictors in Elite Athletes: Evaluating the Role of Eccentric Utilization Ratio and Mechanical Power Outputs
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Vertical Jump Tests
2.4. Change of Direction Tests
2.5. Change of Direction Deficit
2.6. Sprint Test
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
6. Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haff, G.; Ruben, R.; Molinari, M.; Painter, K.; Ramsey, M.W.; Stone, M.E.; Stone, M.H. The Relationship Between The Eccentric Utilization Ratio, Reactive Strength, and Pre-Stretch Augmentation and Selected Dynamic and Isometric Muscle Actions. J. Strength Cond. Res. 2010, 24, 1. [Google Scholar] [CrossRef]
- McGuigan, M.R.; Doyle, T.L.; Newton, M.; Edwards, D.J.; Nimphius, S.; Newton, R.U. Eccentric utilization ratio: Effect of sport and phase of training. J. Strength Cond. Res. 2006, 20, 992–995. [Google Scholar] [CrossRef] [PubMed]
- Diallo, O.; Dore, E.; Duche, P.; Van Praagh, E. Effects of plyometric training followed by a reduced training programme on physical performance in prepubescent soccer players. J. Sports Med. Phys. Fit. 2001, 41, 342. [Google Scholar]
- Komi, P.V. Stretch-shortening cycle: A powerful model to study normal and fatigued muscle. J. Biomech. 2000, 33, 1197–1206. [Google Scholar] [CrossRef]
- Turner, A.N.; Jeffreys, I. The stretch-shortening cycle: Proposed mechanisms and methods for enhancement. Strength Cond. J. 2010, 32, 87–99. [Google Scholar] [CrossRef]
- Massidda, M.; Scorcu, M.; Calò, C.M. New genetic model for predicting phenotype traits in sports. Int. J. Sports Physiol. Perform. 2014, 9, 554–560. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Sole, C.J.; Stone, M.H. Comparison of methods that assess lower-body stretch-shortening cycle utilization. J. Strength Cond. Res. 2016, 30, 547–554. [Google Scholar] [CrossRef]
- Zikica, T.; Serjoza, G.; Markovski, N.; Kalach, R.; Vuksanovikj, V. The influence of a specially programmed functional training in improving the vertical jump of senior soccer players. Res. Phys. Educ. Sport Health 2019, 8, 3–8. [Google Scholar]
- Van Hooren, B.; Zolotarjova, J. The difference between countermovement and squat jump performances: A review of underlying mechanisms with practical applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.-B. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front. Physiol. 2017, 7, 677. [Google Scholar] [CrossRef]
- Young, W. Laboratory strength assessment of athletes. New Stud. Athl. 1995, 10, 89–95. [Google Scholar]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A review of countermovement and squat jump testing methods in the context of public health examination in adolescence: Reliability and feasibility of current testing procedures. Front. Physiol. 2019, 10, 1384. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Viitasalo, J.T.; Komi, P.V.; Luhtanen, P. Combined effect of elastic energy and myoelectrical potentiation during stretch-shortening cycle exercise. Acta Physiol. Scand. 1982, 114, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Bosco, C.; Montanari, G.; Ribacchi, R.; Giovenali, P.; Latteri, F.; Iachelli, G.; Faina, M.; Colli, R.; Dal Monte, A.; La Rosa, M.; et al. Relationship between the efficiency of muscular work during jumping and the energetics of running. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Bobbert, M.F.; Casius, L.J. Is the effect of a countermovement on jump height due to active state development? Med. Sci. Sports Exerc. 2005, 37, 440–446. [Google Scholar] [CrossRef]
- Komi, P.V.; Bosco, C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports 1978, 10, 261–265. [Google Scholar]
- Hawkins, S.B.; Doyle, T.L.; McGuigan, M.R. The effect of different training programs on eccentric energy utilization in college-aged males. J. Strength Cond. Res. 2009, 23, 1996–2002. [Google Scholar] [CrossRef]
- Gehri, D.J.; Ricard, M.D.; Kleiner, D.M.; Kirkendall, D.T. A comparison of plyometric training techniques for improving vertical jump ability and energy production. J. Strength Cond. Res. 1998, 12, 85–89. [Google Scholar]
- Kozinc, Ž.; Pleša, J.; Šarabon, N. Questionable utility of the eccentric utilization ratio in relation to the performance of volleyball players. Int. J. Environ. Res. Public Health 2021, 18, 11754. [Google Scholar] [CrossRef]
- Kozinc, Ž.; Žitnik, J.; Smajla, D.; Šarabon, N. The difference between squat jump and countermovement jump in 770 male and female participants from different sports. Eur. J. Sport Sci. 2022, 22, 985–993. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Collings, T.J.; Lima, Y.L.; Dutaillis, B.; Bourne, M.N. Concurrent validity and test–retest reliability of VALD ForceDecks’ strength, balance, and movement assessment tests. J. Sci. Med. Sport 2024, 27, 572–580. [Google Scholar] [CrossRef]
- Walshe, A.D.; Wilson, G.; Murphy, A. The validity and reliability of a test of lower body musculotendinous stiffness. Eur. J. Appl. Physiol. Occup. Physiol. 1996, 73, 332–339. [Google Scholar] [CrossRef]
- Young, W.; Mc Lean, B.; Ardagna, J. Relationship between strength qualities and sprinting performance. J. Sports Med. Phys. Fit. 1995, 35, 13–19. [Google Scholar]
- Stewart, P.; Turner, A.; Miller, S. Reliability, factorial validity, and interrelationships of five commonly used change of direction speed tests. Scand. J. Med. Sci. Sports 2014, 24, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Harman, E. Essentials of Strength Training and Conditioning; Human Kinetics: Champaign, IL, USA, 2000. [Google Scholar]
- Freitas, T.T.; Pereira, L.A.; Alcaraz, P.E.; Azevedo, P.H.S.M.; Bishop, C.; Loturco, I. Percentage-Based Change of Direction Deficit: A New Approach to Standardize Time and Velocity-Derived Calculations. J. Strength Cond. Res. 2022, 36, 3521–3526. [Google Scholar] [CrossRef] [PubMed]
- Katz, B. The relation between force and speed in muscular contraction. J. Physiol. 1939, 96, 45. [Google Scholar] [CrossRef]
- Graham-Smith, P.; Jones, P.; Read, P. Taking a step back to reconsider change of direction and its application following ACL injury. Aspetar Sport Med. J. 2020, 9, 42–47. [Google Scholar]
- Dos’Santos, T.; Bishop, C.; Thomas, C.; Comfort, P.; Jones, P.A. The effect of limb dominance on change of direction biomechanics: A systematic review of its importance for injury risk. Phys. Ther. Sport 2019, 37, 179–189. [Google Scholar] [CrossRef]
- Donelon, T.A.; Dos’ Santos, T.; Pitchers, G.; Brown, M.; Jones, P.A. Biomechanical determinants of knee joint loads associated with increased anterior cruciate ligament loading during cutting: A systematic review and technical framework. Sports Med.-Open 2020, 6, 1–21. [Google Scholar] [CrossRef]
- McBurnie, A.J.; Harper, D.J.; Jones, P.A.; Dos’ Santos, T. Deceleration training in team sports: Another potential ‘vaccine’ for sports-related injury? Sports Med. 2022, 52, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing maximal neuromuscular power: Part 1—Biological basis of maximal power production. Sports Med. 2011, 41, 17–38. [Google Scholar] [CrossRef]
- Pupo, J.; Ache-Dias, J.; Kons, R.L.; Detanico, D. Are vertical jump height and power output correlated to physical performance in different sports? An allometric approach. Hum. Mov. 2020, 22, 60–67. [Google Scholar] [CrossRef]
- Rumpf, M.C.; Lockie, R.G.; Cronin, J.B.; Jalilvand, F. Effect of different sprint training methods on sprint performance over various distances: A brief review. J. Strength Cond. Res. 2016, 30, 1767–1785. [Google Scholar] [CrossRef] [PubMed]
- Haugen, T.; McGhie, D.; Ettema, G. Sprint running: From fundamental mechanics to practice—A review. Eur. J. Appl. Physiol. 2019, 119, 1273–1287. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.-B.; Edouard, P.; Samozino, P. Technical ability of force application as a determinant factor of sprint performance. Med. Sci. Sports Exerc. 2011, 43, 1680–1688. [Google Scholar] [CrossRef]
- Cabarkapa, D.V.; Cabarkapa, D.; Aleksic, J.; Fry, A.C. Sport-Specific Differences in Vertical Jump Force-Time Metrics Between Professional Female Volleyball, Basketball, and Handball Players. J. Strength Cond. Res. 2025, 39, 587–592. [Google Scholar] [CrossRef]
- Kubo, K.; Kanehisa, H.; Fukunaga, T. Gender differences in the viscoelastic properties of tendon structures. Eur. J. Appl. Physiol. 2003, 88, 520–526. [Google Scholar] [CrossRef]
- Waugh, C.M.; Korff, T.; Fath, F.; Blazevich, A.J. Rapid force production in children and adults: Mechanical and neural contributions. Med. Sci. Sports Exerc. 2013, 45, 762–771. [Google Scholar] [CrossRef]
- Miller, A.E.J.; MacDougall, J.; Tarnopolsky, M.; Sale, D. Gender differences in strength and muscle fiber characteristics. Eur. J. Appl. Physiol. Occup. Physiol. 1993, 66, 254–262. [Google Scholar] [CrossRef]
- Smirniotou, A.; Katsikas, C.; Paradisis, G.; Argeitaki, P.; Zacharogiannis, E.; Tziortzis, S. Strength-power parameters as predictors of sprinting performance. J. Sports Med. Phys. Fit. 2008, 48, 447. [Google Scholar]
- Nagahara, R.; Naito, H.; Miyashiro, K.; Morin, J.; Zushi, K. Traditional and ankle-specific vertical jumps as strength-power indicators for maximal sprint acceleration. J. Sports Med. Phys. Fit. 2014, 54, 691–699. [Google Scholar]
- Healy, R.; Smyth, C.; Kenny, I.C.; Harrison, A.J. Influence of Reactive and Maximum Strength Indicators on Sprint Performance. J. Strength Cond. Res. 2019, 33, 3039–3048. [Google Scholar] [CrossRef] [PubMed]
Group | Characteristics | Mean () | SD | Min | Max |
---|---|---|---|---|---|
Male | Age | 20.18 | 0.98 | 18 | 22 |
Height (cm) | 185.18 | 9.17 | 173 | 201 | |
Weight (kg) | 83.06 | 13.75 | 65 | 110 | |
BMI (kg/m2) | 24.07 | 2.25 | 20.53 | 28.34 | |
Training experience (years) | 8.87 | 2.52 | 5 | 14 | |
Female | Age | 20.18 | 2.61 | 18 | 27 |
Height (cm) | 166.25 | 6.78 | 155 | 177 | |
Weight (kg) | 63.62 | 7.16 | 53 | 76 | |
BMI (kg/m2) | 23.02 | 2.37 | 19.95 | 28.13 | |
Training experience (years) | 9.93 | 2.32 | 5 | 15 |
SJ | CMJ | COD | CODD% | 0–10 m | 10–20 m | 0–20 m | 20–30 m | 0–30 m | ||
---|---|---|---|---|---|---|---|---|---|---|
EUR | β | −0.055 | 0.156 | −0.159 | −0.238 | 0.169 | −0.040 | 0.150 | 0.127 | 0.133 |
p | 0.765 | 0.395 | 0.384 | 0.190 | 0.354 | 0.826 | 0.412 | 0.489 | 0.468 | |
R2 | 0.003 | 0.024 | 0.025 | 0.057 | 0.029 | 0.002 | 0.023 | 0.016 | 0.018 | |
CONMP | β | 0.747 | 0.762 | −0.686 | −0.602 | 0.513 | 0.559 | 0.573 | 0.550 | 0.662 |
p | 0.001 | 0.001 | 0.001 | 0.001 | 0.003 | 0.001 | 0.001 | 0.001 | 0.001 | |
R2 | 0.747 | 0.567 | 0.471 | 0.363 | 0.263 | 0.312 | 0.328 | 0.303 | 0.438 | |
CONPF/BM | β | 0.347 | 0.301 | −0.173 | −0.234 | 0.176 | 0.360 | 0.284 | 0.178 | 0.267 |
p | 0.052 | 0.094 | 0.326 | 0.198 | 0.337 | 0.043 | 0.116 | 0.330 | 0.140 | |
R2 | 0.120 | 0.091 | 0.032 | 0.055 | 0.031 | 0.130 | 0.081 | 0.032 | 0.071 | |
ECCMP | β | 0.652 | 0.704 | −0.666 | −0.668 | 0.576 | 0.267 | 0.487 | 0.501 | 0.616 |
p | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.140 | 0.005 | 0.003 | 0.001 | |
R2 | 0.425 | 0.495 | 0.443 | 0.446 | 0.332 | 0.071 | 0.237 | 0.251 | 0.359 | |
ECCPP | β | 0.677 | 0.705 | −0.700 | −0.682 | 0.594 | 0.347 | 0.517 | 0.503 | 0.642 |
p | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.052 | 0.002 | 0.003 | 0.001 | |
R2 | 0.459 | 0.496 | 0.490 | 0.465 | 0.353 | 0.120 | 0.268 | 0.253 | 0.412 | |
ECCPF/BM | β | 0.482 | 0.471 | −0.290 | −0.316 | 0.325 | 0.421 | 0.412 | 0.107 | 0.335 |
p | 0.005 | 0.007 | 0.107 | 0.079 | 0.070 | 0.016 | 0.019 | 0.561 | 0.061 | |
R2 | 0.232 | 0.221 | 0.084 | 0.100 | 0.106 | 0.178 | 0.170 | 0.011 | 0.112 | |
PP | β | 0.762 | 0.774 | −0.712 | −0.629 | 0.503 | 0.603 | 0.578 | 0.581 | 0.681 |
p | 0.001 | 0.001 | 0.001 | 0.001 | 0.003 | 0.001 | 0.001 | 0.001 | 0.001 | |
R2 | 0.581 | 0.599 | 0.507 | 0.396 | 0.253 | 0.363 | 0.334 | 0.338 | 0.463 | |
RSI | β | 0.204 | 0.244 | −0.252 | −0.412 | 0.318 | −0.055 | 0.238 | 0.085 | 0.203 |
p | 0.262 | 0.178 | 0.165 | 0.019 | 0.076 | 0.765 | 0.190 | 0.645 | 0.264 | |
R2 | 0.042 | 0.060 | 0.063 | 0.170 | 0.101 | 0.003 | 0.056 | 0.007 | 0.041 | |
STIFFNESS | β | 0.300 | 0.222 | 0.117 | −0.294 | 0.350 | −0.143 | 0.205 | 0.149 | 0.224 |
p | 0.095 | 0.223 | 0.523 | 0.102 | 0.049 | 0.434 | 0.261 | 0.417 | 0.218 | |
R2 | 0.090 | 0.049 | 0.014 | 0.086 | 0.123 | 0.021 | 0.042 | 0.022 | 0.050 | |
PSAP | β | −0.120 | 0.073 | −0.056 | −0.195 | 0.120 | −0.025 | 0.118 | 0.080 | 0.092 |
p | 0.512 | 0.691 | 0.759 | 0.284 | 0.513 | 0.894 | 0.520 | 0.663 | 0.615 | |
R2 | 0.014 | 0.005 | 0.003 | 0.038 | 0.014 | 0.001 | 0.014 | 0.006 | 0.009 |
SJ | CMJ | COD | CODD% | 0–10 m | 10–20 m | 0–20 m | 20–30 m | 0–30 m | ||
---|---|---|---|---|---|---|---|---|---|---|
EUR | β | −0.411 | 0.077 | −0.495 | −0.098 | 0.065 | −0.191 | 0.027 | 0.099 | −0.009 |
p | 0.114 | 0.776 | 0.051 | 0.719 | 0.811 | 0.479 | 0.921 | 0.715 | 0.975 | |
R2 | 0.169 | 0.006 | 0.245 | 0.010 | 0.004 | 0.036 | 0.001 | 0.010 | 0.000 | |
CONMP | β | −0.108 | −0.114 | −0.185 | 0.031 | −0.551 | 0.315 | −0.343 | −0.099 | −0.333 |
p | 0.692 | 0.674 | 0.492 | 0.910 | 0.027 | 0.235 | 0.194 | 0.715 | 0.207 | |
R2 | 0.012 | 0.103 | 0.034 | 0.001 | 0.304 | 0.099 | 0.118 | 0.010 | 0.111 | |
CONPF/BM | β | 0.112 | −0.074 | 0.133 | −0.013 | −0.199 | 0.290 | 0.031 | −0.070 | −0.058 |
p | 0.679 | 0.785 | 0.623 | 0.961 | 0.459 | 0.276 | 0.908 | 0.797 | 0.830 | |
R2 | 0.013 | 0.005 | 0.018 | 0.000 | 0.040 | 0.084 | 0.001 | 0.005 | 0.003 | |
ECCMP | β | −0.121 | 0.008 | −0.226 | −0.344 | −0.093 | −0.271 | −0.350 | −0.067 | −0.188 |
p | 0.654 | 0.978 | 0.399 | 0.192 | 0.732 | 0.310 | 0.184 | 0.806 | 0.485 | |
R2 | 0.015 | 0.000 | 0.051 | 0.118 | 0.009 | 0.073 | 0.123 | 0.004 | 0.035 | |
ECCPP | β | −0.114 | −0.125 | −0.291 | −0.285 | −0.029 | −0.156 | −0.284 | −0.007 | −0.060 |
p | 0.673 | 0.644 | 0.275 | 0.285 | 0.915 | 0.565 | 0.287 | 0.978 | 0.825 | |
R2 | 0.013 | 0.016 | 0.084 | 0.081 | 0.001 | 0.024 | 0.081 | 0.000 | 0.004 | |
ECCPF/BM | β | 0.112 | −0.074 | 0.133 | −0.013 | −0.199 | 0.290 | 0.031 | −0.070 | −0.058 |
p | 0.679 | 0.785 | 0.623 | 0.961 | 0.459 | 0.276 | 0.908 | 0.797 | 0.830 | |
R2 | 0.103 | 0.005 | 0.018 | 0.000 | 0.040 | 0.084 | 0.001 | 0.005 | 0.003 | |
PP | β | −0.127 | −0.106 | −0.211 | −0.006 | −0.637 | 0.432 | −0.358 | −0.055 | −0.311 |
p | 0.639 | 0.695 | 0.433 | 0.983 | 0.008 | 0.095 | 0.174 | 0.839 | 0.241 | |
R2 | 0.016 | 0.011 | 0.044 | 0.000 | 0.405 | 0.187 | 0.128 | 0.003 | 0.097 | |
RSI | β | 0.608 | 0.611 | −0.054 | −0.092 | 0.579 | 0.111 | 0.572 | −0.509 | 0.163 |
p | 0.012 | 0.012 | 0.842 | 0.735 | 0.019 | 0.683 | 0.021 | 0.044 | 0.547 | |
R2 | 0.370 | 0.373 | 0.003 | 0.008 | 0.335 | 0.012 | 0.327 | 0.259 | 0.027 | |
STIFFNESS | β | 0.260 | −0.060 | 0.736 | −0.139 | 0.229 | −0.288 | 0.005 | −0.040 | 0.012 |
p | 0.331 | 0.826 | 0.001 | 0.606 | 0.393 | 0.279 | 0.985 | 0.882 | 0.966 | |
R2 | 0.068 | 0.004 | 0.542 | 0.019 | 0.053 | 0.083 | 0.000 | 0.002 | 0.000 | |
PSAP | β | −0.415 | 0.075 | −0.493 | −0.082 | 0.050 | −0.181 | 0.016 | 0.082 | −0.027 |
p | 0.110 | 0.782 | 0.052 | 0.762 | 0.855 | 0.503 | 0.952 | 0.762 | 0.921 | |
R2 | 0.172 | 0.006 | 0.243 | 0.007 | 0.002 | 0.033 | 0.000 | 0.007 | 0.001 |
SJ | CMJ | COD | CODD% | 0–10 m | 10–20 m | 0–20 m | 20–30 m | 0–30 m | ||
---|---|---|---|---|---|---|---|---|---|---|
EUR | β | 0.051 | 0.587 | 0.062 | −0.427 | 0.516 | 0.122 | 0.494 | 0.269 | 0.423 |
p | 0.852 | 0.017 | 0.819 | 0.099 | 0.041 | 0.654 | 0.052 | 0.313 | 0.103 | |
R2 | 0.003 | 0.345 | 0.004 | 0.183 | 0.267 | 0.015 | 0.244 | 0.072 | 0.179 | |
CONMP | β | −0.098 | 0.274 | 0.258 | −0.126 | 0.419 | −0.059 | 0.344 | 0.261 | 0.323 |
p | 0.718 | 0.304 | 0.334 | 0.641 | 0.106 | 0.828 | 0.192 | 0.328 | 0.222 | |
R2 | 0.010 | 0.009 | 0.067 | 0.016 | 0.176 | 0.003 | 0.118 | 0.068 | 0.104 | |
CONPF/BM | β | 0.048 | 0.132 | 0.188 | 0.041 | 0.087 | −0.024 | 0.065 | −0.084 | 0.011 |
p | 0.859 | 0.627 | 0.485 | 0.881 | 0.749 | 0.928 | 0.812 | 0.758 | 0.968 | |
R2 | 0.002 | 0.017 | 0.035 | 0.002 | 0.008 | 0.001 | 0.004 | 0.007 | 0.000 | |
ECCMP | β | 0.186 | 0.488 | −0.203 | −0.352 | 0.542 | 0.107 | 0.505 | 0.406 | 0.483 |
p | 0.491 | 0.055 | 0.450 | 0.181 | 0.030 | 0.693 | 0.046 | 0.119 | 0.058 | |
R2 | 0.034 | 0.238 | 0.041 | 0.124 | 0.294 | 0.011 | 0.255 | 0.165 | 0.234 | |
ECCPP | β | 0.458 | 0.720 | −0.297 | −0.468 | 0.385 | 0.256 | 0.429 | 0.089 | 0.311 |
p | 0.074 | 0.002 | 0.264 | 0.068 | 0.141 | 0.339 | 0.097 | 0.744 | 0.242 | |
R2 | 0.210 | 0.519 | 0.088 | 0.219 | 0.148 | 0.065 | 0.184 | 0.008 | 0.096 | |
ECCPF/BM | β | 0.051 | 0.587 | 0.062 | −0.427 | 0.516 | 0.122 | 0.494 | 0.269 | 0.423 |
p | 0.852 | 0.017 | 0.819 | 0.099 | 0.041 | 0.654 | 0.052 | 0.313 | 0.103 | |
R2 | 0.003 | 0.345 | 0.004 | 0.183 | 0.267 | 0.015 | 0.244 | 0.072 | 0.179 | |
PP | β | −0.002 | 0.199 | 0.204 | −0.248 | 0.466 | −0.201 | 0.311 | 0.442 | 0.376 |
p | 0.994 | 0.460 | 0.448 | 0.355 | 0.069 | 0.456 | 0.241 | 0.087 | 0.151 | |
R2 | 0.000 | 0.040 | 0.042 | 0.061 | 0.218 | 0.040 | 0.097 | 0.195 | 0.141 | |
RSI | β | 0.523 | 0.605 | −0.485 | −0.642 | 0.698 | −0.317 | 0.423 | 0.334 | 0.404 |
p | 0.038 | 0.013 | 0.057 | 0.007 | 0.003 | 0.232 | 0.103 | 0.206 | 0.121 | |
R2 | 0.273 | 0.366 | 0.235 | 0.412 | 0.488 | 0.100 | 0.179 | 0.112 | 0.163 | |
STIFFNESS | β | 0.123 | 0.351 | −0.112 | −0.348 | 0.502 | −0.437 | 0.233 | 0.171 | 0.218 |
p | 0.650 | 0.182 | 0.679 | 0.187 | 0.048 | 0.091 | 0.385 | 0.525 | 0.417 | |
R2 | 0.015 | 0.123 | 0.013 | 0.121 | 0.252 | 0.191 | 0.054 | 0.029 | 0.048 | |
PSAP | β | 0.022 | 0.492 | 0.160 | −0.443 | 0.553 | 0.265 | 0.594 | 0.313 | 0.050 |
p | 0.937 | 0.053 | 0.553 | 0.086 | 0.026 | 0.321 | 0.015 | 0.238 | 0.046 | |
R2 | 0.000 | 0.242 | 0.026 | 0.196 | 0.306 | 0.070 | 0.353 | 0.098 | 0.256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaya, S.; Ersöz, M. Performance Predictors in Elite Athletes: Evaluating the Role of Eccentric Utilization Ratio and Mechanical Power Outputs. Appl. Sci. 2025, 15, 7832. https://doi.org/10.3390/app15147832
Kaya S, Ersöz M. Performance Predictors in Elite Athletes: Evaluating the Role of Eccentric Utilization Ratio and Mechanical Power Outputs. Applied Sciences. 2025; 15(14):7832. https://doi.org/10.3390/app15147832
Chicago/Turabian StyleKaya, Selman, and Mehmet Ersöz. 2025. "Performance Predictors in Elite Athletes: Evaluating the Role of Eccentric Utilization Ratio and Mechanical Power Outputs" Applied Sciences 15, no. 14: 7832. https://doi.org/10.3390/app15147832
APA StyleKaya, S., & Ersöz, M. (2025). Performance Predictors in Elite Athletes: Evaluating the Role of Eccentric Utilization Ratio and Mechanical Power Outputs. Applied Sciences, 15(14), 7832. https://doi.org/10.3390/app15147832