Knee Loading Asymmetries During Descent and Ascent Phases of Squatting After ACL Reconstruction
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
Participant Characteristics
2.3. Squats
2.4. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sigward, S.M.; Chan, M.S.; Lin, P.E.; Almansouri, S.Y.; Pratt, K.A. Compensatory strategies that reduce knee extensor demand during a bilateral squat change from 3 to 5 months following anterior cruciate ligament reconstruction. J. Orthop. Sports Phys. Ther. 2018, 48, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Malempati, C.; Jurjans, J.; Noehren, B.; Ireland, M.L.; Johnson, D.L. Current rehabilitation concepts for anterior cruciate ligament surgery in athletes-pubmed. Orthopedics 2015, 38, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Garrison, J.C.; Hannon, J.; Goto, S.; Kosmopoulos, V.; Aryal, S.; Bush, C.; Bothwell, J.M.; Singleton, S.B. Knee loading after acl-r is related to quadriceps strength and knee extension differences across the continuum of care. Orthop. J. Sports Med. 2019, 7, 2325967119870155. [Google Scholar] [CrossRef]
- Strong, A.; Markström, J.L.; Schelin, L.; Häger, C.K. Asymmetric loading strategies during squats following anterior cruciate ligament reconstruction: A longitudinal investigation with curve analyses throughout and after rehabilitation-pubmed. Scand. J. Med. Sci. Sports 2024, 34, e14524. [Google Scholar] [CrossRef] [PubMed]
- Sanford, B.A.; Williams, J.L.; Zucker-Levin, A.; Mihalko, W.M. Asymmetric ground reaction forces and knee kinematics during squat after anterior cruciate ligament (acl) reconstruction. Knee 2016, 23, 820–825. [Google Scholar] [CrossRef]
- Wellsandt, E.; Gardinier, E.S.; Manal, K.; Axe, M.J.; Buchanan, T.S.; Snyder-Mackler, L. Decreased knee joint loading associated with early knee osteoarthritis after anterior cruciate ligament injury. Am. J. Sports Med. 2015, 44, 143–151. [Google Scholar] [CrossRef]
- Paterno, M.V.; Schmitt, L.C.; Ford, K.R.; Rauh, M.J.; Myer, G.D.; Huang, B.; Hewett, T.E. Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med. 2010, 38, 1968–1978. [Google Scholar] [CrossRef]
- Renström, P.; Arms, S.W.; Stanwyck, T.S.; Johnson, R.J.; Pope, M. Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am. J. Sports Med. 1986, 14, 83–87. [Google Scholar] [CrossRef]
- Garrison, J.C.; Hannon, J.; Goto, S.; Giesler, L.; Bush, C.; Bothwell, J.M. Participants at three months post-operative anterior cruciate ligament reconstruction (acl-r) demonstrate differences in lower extremity energy absorption contribution and quadriceps strength compared to healthy controls. Knee 2018, 25, 782–789. [Google Scholar] [CrossRef]
- Myer, G.D.; Kushner, A.M.; Brent, J.L.; Schoenfeld, B.J.; Hugentobler, J.; Lloyd, R.S.; Vermeil, A.; Chu, D.A.; Harbin, J.; McGill, S.M. The back squat: A proposed assessment of functional deficits and technical factors that limit performance. Strength Cond. J. 2014, 36, 4–27. [Google Scholar] [CrossRef]
- Straub, R.K.; Powers, C.M. A biomechanical review of the squat exercise: Implications for clinical practice-pubmed. Int. J. Sports Phys. Ther. 2024, 19, 490. [Google Scholar] [CrossRef]
- Wellsandt, E.; Manzer, M.; Sajja, B.; Golightly, Y.M.; Wichman, C.; Tao, M. Cumulative knee joint loading and early markers of cartilage microstructure after acl injury. Osteoarthr. Cartil. 2024, 32, S278–S279. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The redcap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (redcap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Wellsandt, E.; Kallman, T.; Golightly, Y.; Podsiadlo, D.; Dudley, A.; Vas, S.; Michaud, K.; Tao, M.; Sajja, B.; Manzer, M. Knee joint unloading and daily physical activity associate with cartilage T2 relaxation times 1 month after acl injury. J. Orthop. Res. 2021, 40, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Kritz, M.; Cronin, J.; Hume, P. The bodyweight squat: A movement screen for the squat pattern. Strength Cond. J. 2009, 31, 76–85. [Google Scholar] [CrossRef]
- Fiorentino, N.M.; Kutschke, M.J.; Atkins, P.R.; Foreman, K.B.; Kapron, A.L.; Anderson, A.E. Accuracy of functional and predictive methods to calculate the hip joint center in young non-pathologic asymptomatic adults with dual fluoroscopy as a reference standard. Ann. Biomed. Eng. 2016, 44, 2168–2180. [Google Scholar] [CrossRef]
- Bell, A.L.; Brand, R.A.; Pedersen, D.R. Prediction of hip joint centre location from external landmarks. Hum. Mov. Sci. 1989, 8, 3–16. [Google Scholar] [CrossRef]
- Bell, A.L.; Pedersen, D.R.; Brand, R.A. A comparison of the accuracy of several hip center location prediction methods. J. Biomech. 1990, 23, 617–621. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 107–138. [Google Scholar]
- Duchateau, J.; Baudry, S. Insights into the neural control of eccentric contractions. J. Appl. Physiol. 2014, 116, 1418–1425. [Google Scholar] [CrossRef]
- Patel, H.H.; Berlinberg, E.J.; Nwachukwu, B.; Williams, R.J.; Mandelbaum, B.; Sonkin, K.; Forsythe, B. Quadriceps weakness is associated with neuroplastic changes within specific corticospinal pathways and brain areas after anterior cruciate ligament reconstruction: Theoretical utility of motor imagery-based brain-computer interface technology for rehabilitation. Arthrosc. Sports Med. Rehabil. 2023, 5, e207–e216. [Google Scholar] [PubMed]
- Hunnicutt, J.L.; McLeod, M.M.; Slone, H.S.; Gregory, C.M. Quadriceps neuromuscular and physical function after anterior cruciate ligament reconstruction. J. Athl. Train. 2020, 55, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Wilk, K.E.; Escamilla, R.F.; Fleisig, G.S.; Barrentine, S.W.; Andrews, J.R.; Boyd, M.L. A comparison of tibiofemoral joint forces and electromyographic activit during open and closed kinetic chain exercises. Am. J. Sports Med. 1996, 24, 518–527. [Google Scholar] [CrossRef] [PubMed]
- O’nEill, K.E.; Psycharakis, S.G. The effect of back squat depth and load on lower body muscle activity in group exercise participants. Sports Biomech. 2021, 23, 555–566. [Google Scholar] [CrossRef]
Number of Participants (%) or Mean (SD) | 95% Confidence Interval | |
---|---|---|
Sex (female) | 21 (60.0) | |
Age (years) | 19.7 (4.6) | 18.1–21.3 |
Race | ||
Asian | 2 (5.7) | |
Black or African American | 3 (8.6) | |
Hispanic, Latino or Spanish | 3 (8.6) | |
White | 25 (71.4) | |
Other | 2 (5.7) | |
Weight (kg) | 74.2 (16.3) | 68.6–79.8 |
Height (m) | 1.7 (0.1) | 1.7–1.7 |
Body mass index (BMI; kg/m2) | 25.9 (4.8) | 24.2–27.5 |
Concomitant meniscus repair (Yes) | 19 (54.3) | |
Graft type | ||
Hamstring tendon autograft | 4 (11.4) | |
Patellar tendon autograft | 22 (62.9) | |
Quadriceps tendon autograft | 8 (22.9) | |
Allograft | 1 (2.9) |
Descent (Mean ± SD) | Ascent (Mean ± SD) | p-Value | |||||
---|---|---|---|---|---|---|---|
Injured | Uninjured | ILR | Injured | Uninjured | ILR | ||
vGRFi (BW/kg·m) | 0.48 ± 0.12 | 0.52 ± 0.13 | 0.93 ± 0.12 | 0.45 ± 0.10 | 0.51 ± 0.10 | 0.90 ± 0.14 | 0.045 * |
KFMi (N·m·s/kg·m) | 0.22 ± 0.10 | 0.35 ± 0.15 | 0.70 ± 0.39 | 0.18 ± 0.09 | 0.32 ± 0.11 | 0.64 ± 0.39 | <0.001 * |
HKRi (N·m·s/kg·m) | 1.74 ± 0.71 | 1.12 ± 0.53 | 1.84 ± 0.93 | 2.04 ± 0.84 | 1.17 ± 0.53 | 2.06 ± 1.12 | 0.006 |
Time (s) | 1.00 ± 0.25 | 0.96 ± 019 | 0.036 * |
Mean Difference | SD | SEM | 95% CI | p | ||
---|---|---|---|---|---|---|
vGRFi ILR | Unadjusted | 0.029 | 0.083 | 0.014 | 0.001 to 0.058 | 0.045 * |
Adjusted | 0.024 | - | 0.032 | −0.039 to 0.088 | 0.449 | |
KFMi ILR | Unadjusted | 0.066 | 0.095 | 0.016 | 0.034 to 0.099 | <0.005 * |
Adjusted | 0.071 | - | 0.093 | −0.115 to 0.257 | 0.449 | |
HKRi ILR † | Unadjusted | −0.218 | 0.418 | 0.074 | −0.368 to −0.067 | 0.006 * |
Adjusted | −0.223 | - | 0.260 | −0.744 to 0.298 | 0.395 | |
Time (s) | - | 0.047 | 0.129 | 0.022 | 0.003 to 0.092 | 0.036 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero Padron, M.A.; Jorgensen, A.; Werner, D.M.; Tao, M.A.; Wellsandt, E. Knee Loading Asymmetries During Descent and Ascent Phases of Squatting After ACL Reconstruction. Appl. Sci. 2025, 15, 7780. https://doi.org/10.3390/app15147780
Romero Padron MA, Jorgensen A, Werner DM, Tao MA, Wellsandt E. Knee Loading Asymmetries During Descent and Ascent Phases of Squatting After ACL Reconstruction. Applied Sciences. 2025; 15(14):7780. https://doi.org/10.3390/app15147780
Chicago/Turabian StyleRomero Padron, Manuel Angel, Alyx Jorgensen, David M. Werner, Matthew Alan Tao, and Elizabeth Wellsandt. 2025. "Knee Loading Asymmetries During Descent and Ascent Phases of Squatting After ACL Reconstruction" Applied Sciences 15, no. 14: 7780. https://doi.org/10.3390/app15147780
APA StyleRomero Padron, M. A., Jorgensen, A., Werner, D. M., Tao, M. A., & Wellsandt, E. (2025). Knee Loading Asymmetries During Descent and Ascent Phases of Squatting After ACL Reconstruction. Applied Sciences, 15(14), 7780. https://doi.org/10.3390/app15147780