DMLU-Net: A Hybrid Neural Network for Water Body Extraction from Remote Sensing Images
Abstract
1. Introduction
2. Proposed Method
2.1. Architecture of DMLU-Net
- The DMLKA module is deployed in the encoder’s terminal stage to pre-fuse 528-dimensional features (T = 0.3), uniformly considering water body features at multiple scales, maintaining the richness of feature information, and capturing the macroscopic water body morphology.
- The pre-fused features are dimensionally upgraded using a convolution layer, and then the DMLKA module is used to perform shallow feature fusion (T = 0.2) of the 1056-dimensional high-dimensional features to extract key information.
- After organizing the extracted feature information, the DMLKA module is used in the first layer of the decoder for deep feature enhancement (T = 0.1), emphasizing the focus on minor-scale features and enhancing the model’s ability to extract the boundary detail features of various objects in remote sensing imagery.
2.2. DMLKA Module
2.3. SSAM
2.4. DySample Module
3. Experiments
3.1. Datasets
3.1.1. GID Dataset
3.1.2. LoveDA Dataset
3.2. Implementation Details
3.2.1. Evaluation Indicators
3.2.2. Loss Function
- BCE Loss:
- 2.
- Dice Loss:This can be expanded asHere, is the probability value predicted by the model; is the true mask; and smooth is the smoothing term used to prevent the denominator from being zero.
- 3.
- Combined Loss:
3.2.3. Training Settings
- Warmup Stage:
- 2.
- Cosine Annealing with Warm Restarts (CosAWR) Stage:
- : The initial cycle length is set to 100 epochs.
- : The multiplication coefficient of each cycle is set to 2.
- : The minimum value of the learning rate is set to 10−7.
3.2.4. Comparative Models
3.3. Experimental Results
3.3.1. Experimental Results on GID Dataset
3.3.2. Ablation Experiments
3.4. Discussion
3.4.1. Discussion on α and β in the Loss Function
3.4.2. Temperature Parameter T in DLMKA Module
3.4.3. Model Complexity Analysis
3.4.4. Model Limitations and Future Work
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dong, Z.; Liang, Z.; Wang, G.; Amankwah, S.O.Y.; Feng, D.; Wei, X.; Duan, Z. Mapping inundation extents in Poyang Lake area using Sentinel-1 data and transformer-based change detection method. J. Hydrol. 2023, 620, 129455. [Google Scholar] [CrossRef]
- Qiu, J.; Cao, B.; Park, E.; Yang, X.; Zhang, W.; Tarolli, P. Flood Monitoring in Rural Areas of the Pearl River Basin (China) Using Sentinel-1 SAR. Remote Sens. 2021, 13, 1384. [Google Scholar] [CrossRef]
- McFEETERS, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.; Yao, J. Effectiveness of machine learning methods for water segmentation with ROI as the label: A case study of the Tuul River in Mongolia. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102497. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Li, A.; Fan, M.; Qin, G.; Xu, Y.; Wang, H. Comparative Analysis of Machine Learning Algorithms in Automatic Identification and Extraction of Water Boundaries. Appl. Sci. 2021, 11, 10062. [Google Scholar] [CrossRef]
- Cheng, Q.; Varshney, P.K.; Arora, M.K. Logistic regression for feature selection and soft classification of remote sensing data. IEEE Geosci. Remote Sens. Lett. 2006, 3, 491–494. [Google Scholar] [CrossRef]
- Alimjan, G.; Sun, T.L.; Jumahun, H.; Guan, Y.; Zhou, W.T.; Sun, H.G. A Hybrid Classification Approach Based on Support Vector Machine and K-Nearest Neighbor for Remote Sensing Data. Int. J. Pattern Recognit. Artif. Intell. 2017, 31, 1750034. [Google Scholar] [CrossRef]
- Liang, G.; Zhao, X.; Zhao, J.; Zhou, F. Feature Selection and Mislabeled Waveform Correction for Water-Land Discrimination Using Airborne Infrared Laser. Remote Sens. 2021, 13, 3628. [Google Scholar] [CrossRef]
- Mahboob, M.; Genc, B. Evaluation of ISODATA Clustering Algorithm for Surface Gold Mining Using Satellite Data. In Proceedings of the 2019 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Swat, Pakistan, 24–25 July 2019. [Google Scholar]
- Nagaraj, R.; Sutha, K.L. Pixel Level Feature Extraction and Machine Learning Classification for Water Body Extraction. Arab. J. Sci. Eng. 2022, 48, 9905–9928. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, X.; Zhang, Y.; Zhao, G. MSLWENet: A Novel Deep Learning Network for Lake Water Body Extraction of Google Remote Sensing Images. Remote Sens. 2020, 12, 4140. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, M.; Ji, S.; Yu, H.; Nie, C. Rich CNN Features for Water-Body Segmentation from Very High Resolution Aerial and Satellite Imagery. Remote Sens. 2021, 13, 1912. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Y.; Zhang, C. Water-Body Segmentation for Multi-Spectral Remote Sensing Images by Feature Pyramid Enhancement and Pixel Pair Matching. Int. J. Remote Sens. 2021, 42, 5025–5043. [Google Scholar] [CrossRef]
- Zhou, Z. Classification of landscape architecture design based on dual-channel attention improved FCN. Syst. Soft Computing 2025, 7, 200280. [Google Scholar] [CrossRef]
- Copurkaya, C.; Meric, E.; Akbulut, F.P.; Catal, C. A multi-pretraining U-Net architecture for semantic segmentation. Signal Image Video Process. 2025, 19, 669. [Google Scholar] [CrossRef]
- Kumar, K.A.; Vanmathi, C. A hybrid parallel convolutional spiking neural network for enhanced skin cancer detection. Sci. Rep. 2025, 15, 11137. [Google Scholar] [CrossRef]
- Feng, Y.; Fan, Z.; Yan, Y.; Jiang, Z.; Zhang, S. MFAFNet: Multi-Scale Feature Adaptive Fusion Network Based on DeepLab V3+ for Cloud and Cloud Shadow Segmentation. Remote Sens. 2025, 17, 1229. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.; Wang, H.; Gong, X.; Fang, Z. CAML-PSPNet: A Medical Image Segmentation Network Based on Coordinate Attention and a Mixed Loss Function. Sensors 2025, 25, 1117. [Google Scholar] [CrossRef] [PubMed]
- Sunwoo, H.; Lee, S.; Paik, W. A Software-Defined Sensor System Using Semantic Segmentation for Monitoring Remaining Intravenous Fluids. Sensors 2025, 25, 3082. [Google Scholar] [CrossRef]
- Wang, M.Z.; Li, C.S.; Yang, X.F.; Chu, D.H.; Zhou, Z.Q.; Lau, R.Y.K. QTU-Net: Quaternion Transformer-Based U-Net for Water Body Extraction of RGB Satellite Image. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5634816. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, H.; Ma, G.; Zhao, H.; Xie, D.; Geng, S.; Tian, W.; Sian, K.T.C.L.K. MU-Net: Embedding MixFormer into Unet to Extract Water Bodies from Remote Sensing Images. Remote Sens. 2023, 15, 3559. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, X.; Xiao, Y. A NOVEL HYBRID MODEL BASED ON CNN AND MULTI-SCALE TRANSFORMER FOR EXTRACTING WATER BODIES FROM HIGH RESOLUTION REMOTE SENSING IMAGES. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2023, 10, 889–894. [Google Scholar] [CrossRef]
- Lee, S.; Kim, D.-J.; Li, C.; Yoon, D.; Song, J.; Kim, J.; Kang, K.-M. A new model for high-accuracy monitoring of water level changes via enhanced water boundary detection and reliability-based weighting averaging. Remote Sens. Environ. 2024, 313, 114360. [Google Scholar] [CrossRef]
- Huang, B.; Li, P.; Lu, H.; Yin, J.; Li, Z.; Wang, H. WaterDetectionNet: A New Deep Learning Method for Flood Mapping With SAR Image Convolutional Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 14471–14485. [Google Scholar] [CrossRef]
- Liu, M.; Liu, J.; Hu, H. A Novel Deep Learning Network Model for Extracting Lake Water Bodies from Remote Sensing Images. Appl. Sci. 2024, 14, 1344. [Google Scholar] [CrossRef]
- Hu, H.; Fu, X.; Li, C.; Liu, M.; Feng, X. AMFF-LWBENet: A Novel Deep Learning Network Model for Extracting Lake Water Bodies From Remote Sensing Images. IEEE Access 2024, 12, 149001–149017. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Yu, M.; Yang, X. DMAM-UNET:An Improved Unet Semantic Segmentation for Water Body Extraction from Remotely Sensed Image. In Proceedings of the IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023. [Google Scholar] [CrossRef]
- An, S.; Rui, X. A High-Precision Water Body Extraction Method Based on Improved Lightweight U-Net. Remote Sens. 2022, 14, 4127. [Google Scholar] [CrossRef]
- Wang, L.; Shen, J.; Tang, E.; Zheng, S.; Xu, L. Multi-scale Attention Network for Image Super-Resolution. J. Vis. Commun. Image Represent. 2021, 80, 103300. [Google Scholar] [CrossRef]
- Liu, W.; Lu, H.; Fu, H.; Cao, Z. Learning to Upsample by Learning to Sample. arXiv 2023, arXiv:2308.15085. [Google Scholar] [CrossRef]
- Guo, M.; Lu, C.; Liu, Z.; Cheng, M.; Hu, S. Visual Attention Network. arXiv 2022, arXiv:2202.09741. [Google Scholar] [CrossRef]
- Sun, G.; Pan, Z.; Zhang, A.; Jia, X.; Ren, J.; Fu, H. Large Kernel Spectral and Spatial Attention Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- He, Y.; Yao, S.; Yang, W.; Yan, H.; Zhang, L.; Wen, Z.; Zhang, Y.; Liu, T. An extraction method for glacial lakes based on Landsat-8 imagery using an improved U-Net network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6544–6558. [Google Scholar] [CrossRef]
- Xiao, C.; Zhou, Z.; Hu, Y. A Lightweight Semantic Segmentation Model for Underwater Images Based on DeepLabv3+. J. Imaging 2025, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Pani, A.; Zedda, L.; Mura, D.A.; Loddo, A.; Di Ruberto, C. 3D-NASE: A Novel 3D CT Nasal Attention-Based Segmentation Ensemble. J. Imaging 2025, 11, 148. [Google Scholar] [CrossRef]
- Dang, M.; Zhou, X.; Huang, G.; Wang, X.; Zhang, T.; Tian, Y.; Ding, G.; Gao, H. Application Research on Contour Feature Extraction of Solidified Region Image in Laser Powder Bed Fusion Based on SA-TransUNet. Appl. Sci. 2025, 15, 2602. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Sun, G. Squeeze—and—Excitation networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. arXiv 2018, arXiv:1807.06521. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
Index | Formula |
---|---|
OA | |
P | |
R | |
F1-score | |
IoU |
Method | OA | P | R | F1 | IoU |
---|---|---|---|---|---|
Unet | 95.70 | 95.81 | 90.84 | 93.51 | 87.52 |
Deeplabv3+ | 95.05 | 92.06 | 93.24 | 93.08 | 86.54 |
TransUNet | 95.57 | 91.57 | 92.14 | 92.82 | 86.53 |
SwinUnet | 94.22 | 91.64 | 90.02 | 91.29 | 84.57 |
MU-Net | 95.72 | 94.48 | 94.88 | 93.64 | 89.94 |
QTU-Net | 95.87 | 93.61 | 94.56 | 93.85 | 88.31 |
DMLU-Net | 96.21 | 94.29 | 95.19 | 94.50 | 90.46 |
Method | OA | P | R | F1 | IoU |
---|---|---|---|---|---|
Unet | 94.5 | 88.76 | 79.02 | 82.99 | 72.19 |
Deeplabv3+ | 95.97 | 89.5 | 81.24 | 84.56 | 74.53 |
TransUNet | 94.6 | 89.36 | 82.67 | 85.88 | 75.26 |
SwinUnet | 93.53 | 86.35 | 80.09 | 83.1 | 71.09 |
MU-Net | 94.79 | 87.88 | 85.56 | 86.7 | 76.52 |
QTU-Net | 96.07 | 89.13 | 82.83 | 85.3 | 75.46 |
DMLU-Net | 96.42 | 89.59 | 85.31 | 86.86 | 77.44 |
Method | OA | P | R | F1 | IoU |
---|---|---|---|---|---|
Baseline + SSAM + D-up | 96.62 | 93.74 | 91.33 | 92.53 | 87.86 |
Baseline + DMLKA + D-up | 95.18 | 94.37 | 93.32 | 93.88 | 88.54 |
Baseline + DMLKA + SSAM | 95.62 | 94.48 | 94.46 | 94.44 | 89.61 |
Baseline + DMLKA + SSAM + D-up | 96.21 | 94.29 | 95.19 | 94.50 | 90.46 |
Method | OA | P | R | F1 | IoU |
---|---|---|---|---|---|
SE | 95.53 | 92.40 | 94.84 | 93.53 | 88.05 |
ASPP | 95.46 | 93.14 | 93.91 | 93.45 | 87.89 |
CBAM | 95.86 | 92.53 | 95.79 | 94.08 | 88.98 |
DMLKA | 96.21 | 94.29 | 95.19 | 94.50 | 90.46 |
Parameters | OA | P | R | F1 | IoU |
---|---|---|---|---|---|
= 1.0, = 1.0 | 96.01 | 94.53 | 94.63 | 94.86 | 90.22 |
= 1.0, = 0.5 | 95.92 | 94.38 | 94.68 | 94.83 | 90.16 |
= 1.0, = 0.7 | 96.21 | 94.29 | 95.19 | 94.50 | 90.46 |
= 0.5, = 1.0 | 96.66 | 94.81 | 94.79 | 94.75 | 90.03 |
= 0.7, = 1.0 | 96.35 | 94.83 | 94.81 | 94.82 | 90.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Li, M.; Guo, H. DMLU-Net: A Hybrid Neural Network for Water Body Extraction from Remote Sensing Images. Appl. Sci. 2025, 15, 7733. https://doi.org/10.3390/app15147733
Xu Z, Li M, Guo H. DMLU-Net: A Hybrid Neural Network for Water Body Extraction from Remote Sensing Images. Applied Sciences. 2025; 15(14):7733. https://doi.org/10.3390/app15147733
Chicago/Turabian StyleXu, Ziqiang, Mingfeng Li, and Haixiang Guo. 2025. "DMLU-Net: A Hybrid Neural Network for Water Body Extraction from Remote Sensing Images" Applied Sciences 15, no. 14: 7733. https://doi.org/10.3390/app15147733
APA StyleXu, Z., Li, M., & Guo, H. (2025). DMLU-Net: A Hybrid Neural Network for Water Body Extraction from Remote Sensing Images. Applied Sciences, 15(14), 7733. https://doi.org/10.3390/app15147733