Ulcerative Severity Estimation Based on Advanced CNN–Transformer Hybrid Models
Abstract
1. Introduction
- This study evaluates the classification performance of the CoAtNet model on the LIMUC dataset, benchmarking it against cutting-edge architectures, including pure convolutional and transformer-based models. Through this comparative analysis, the distinct strengths and potential advantages of CoAtNet emerge, positioning it as a notable advancement within the field.
- Through the combination of the CDW-CE loss function, we achieve further improvements in both QWK and classification accuracy.
- To enhance model interpretability and validate practical usability, we visualize the decision-making process using class activation maps (CAMs), offering intuitive insights into how predictions are made.
Related Work
2. Materials and Methods
2.1. LIMUC Dataset
2.2. CoAtNet Models
2.3. Loss Function
2.4. Evaluation Indicators
2.5. Data Augmentation
2.6. Training Parameters and Processes
2.7. Selection of CDW-CE Penalty Factors
3. Results
3.1. Key Findings
3.2. Statistical Result Analysis
3.3. Comparison and Ablation Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanojia, N.; Thapa, K.; Verma, N.; Rani, L.; Sood, P.; Kaur, G.; Dua, K.; Kumar, J. Update on mucoadhesive approaches to target drug delivery in colorectal cancer. J. Drug Deliv. Sci. Technol. 2023, 87, 104831. [Google Scholar] [CrossRef]
- Turner, N.D.; Lupton, J.R. Dietary fiber. Adv. Nutr. 2011, 2, 151–152. [Google Scholar] [CrossRef]
- Chauhan, S.; Harwansh, R.K. Recent advances in nanocarrier systems for ulcerative colitis: A new era of targeted therapy and biomarker integration. J. Drug Deliv. Sci. Technol. 2024, 93, 105466. [Google Scholar] [CrossRef]
- Villanacci, V.; Reggiani-Bonetti, L.; Salviato, T.; Leoncini, G.; Cadei, M.; Albarello, L.; Caputo, A.; Aquilano, M.C.; Battista, S.; Parente, P. Histopathology of IBD Colitis. A practical approach from the pathologists of the Italian Group for the study of the gastrointestinal tract (GIPAD). Pathologica 2021, 113, 39. [Google Scholar] [CrossRef]
- Kumar, R.; Kumbharkar, P.; Vanam, S.; Sharma, S. Medical images classification using deep learning: A survey. Multimed. Tools Appl. 2024, 83, 19683–19728. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, H.; Le, Q.V.; Tan, M. Coatnet: Marrying convolution and attention for all data sizes. Adv. Neural Inf. Process. Syst. 2021, 34, 3965–3977. [Google Scholar]
- Nie, Z.; Xu, M.; Wang, Z.; Lu, X.; Song, W. A Review of Application of Deep Learning in Endoscopic Image Processing. J. Imaging 2024, 10, 275. [Google Scholar] [CrossRef]
- Li, M.; Jiang, Y.; Zhang, Y.; Zhu, H. Medical image analysis using deep learning algorithms. Front. Public Health 2023, 11, 1273253. [Google Scholar] [CrossRef] [PubMed]
- Ismail, W.N.; Hassan, M.M.; Alsalamah, H.A.; Fortino, G. CNN-based health model for regular health factors analysis in internet-of-medical things environment. IEEE Access 2020, 8, 52541–52549. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Sui, X.; Chen, C.; Tjio, G.; Ting, D.S.W.; Goh, R.S.M. Multi-instance multi-scale CNN for medical image classification. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, 13–17 October 2019; Proceedings, Part IV 22. pp. 531–539. [Google Scholar]
- Muruganantham, P.; Balakrishnan, S.M. A survey on deep learning models for wireless capsule endoscopy image analysis. Int. J. Cogn. Comput. Eng. 2021, 2, 83–92. [Google Scholar] [CrossRef]
- Rustam, F.; Siddique, M.A.; Siddiqui, H.U.R.; Ullah, S.; Mehmood, A.; Ashraf, I.; Choi, G.S. Wireless capsule endoscopy bleeding images classification using CNN based model. IEEE Access 2021, 9, 33675–33688. [Google Scholar] [CrossRef]
- Sharif, M.; Attique Khan, M.; Rashid, M.; Yasmin, M.; Afza, F.; Tanik, U.J. Deep CNN and geometric features-based gastrointestinal tract diseases detection and classification from wireless capsule endoscopy images. J. Exp. Theor. Artif. Intell. 2021, 33, 577–599. [Google Scholar] [CrossRef]
- Islam, K. Recent advances in vision transformer: A survey and outlook of recent work. arXiv 2022, arXiv:2203.01536. [Google Scholar]
- Xiao, H.; Li, L.; Liu, Q.; Zhu, X.; Zhang, Q. Transformers in medical image segmentation: A review. Biomed. Signal Process. Control 2023, 84, 104791. [Google Scholar] [CrossRef]
- Almalik, F.; Yaqub, M.; Nandakumar, K. Self-ensembling vision transformer (sevit) for robust medical image classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Singapore, 18–22 September 2022; pp. 376–386. [Google Scholar]
- Hatamizadeh, A.; Tang, Y.; Nath, V.; Yang, D.; Myronenko, A.; Landman, B.; Roth, H.R.; Xu, D. Unetr: Transformers for 3d medical image segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4–8 January 2022; pp. 574–584. [Google Scholar]
- Wang, W.; Yang, X.; Tang, J. Vision transformer with hybrid shifted windows for gastrointestinal endoscopy image classification. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 4452–4461. [Google Scholar] [CrossRef]
- Rashid, A.B.; Kausik, A.K. AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications. Hybrid Adv. 2024, 7, 100277. [Google Scholar] [CrossRef]
- Manzari, O.N.; Ahmadabadi, H.; Kashiani, H.; Shokouhi, S.B.; Ayatollahi, A. MedViT: A robust vision transformer for generalized medical image classification. Comput. Biol. Med. 2023, 157, 106791. [Google Scholar] [CrossRef]
- Turan, M.; Durmus, F. UC-NfNet: Deep learning-enabled assessment of ulcerative colitis from colonoscopy images. Med. Image Anal. 2022, 82, 102587. [Google Scholar] [CrossRef]
- Polat, G.; Kani, H.T.; Ergenc, I.; Ozen Alahdab, Y.; Temizel, A.; Atug, O. Improving the computer-aided estimation of ulcerative colitis severity according to mayo endoscopic score by using regression-based deep learning. Inflamm. Bowel Dis. 2023, 29, 1431–1439. [Google Scholar] [CrossRef]
- Polat, G.; Ergenc, I.; Kani, H.T.; Alahdab, Y.O.; Atug, O.; Temizel, A. Class distance weighted cross-entropy loss for ulcerative colitis severity estimation. In Annual Conference on Medical Image Understanding and Analysis; Springer: Berlin/Heidelberg, Germany, 2022; pp. 157–171. [Google Scholar]
- Lou, M.; Yu, Y. OverLoCK: An Overview-first-Look-Closely-next ConvNet with Context-Mixing Dynamic Kernels. arXiv 2025, arXiv:2502.20087. [Google Scholar]
- Tu, Z.; Talebi, H.; Zhang, H.; Yang, F.; Milanfar, P.; Bovik, A.; Li, Y. Maxvit: Multi-axis vision transformer. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2022; pp. 459–479. [Google Scholar]
- Polat, G.; Kani, H.T.; Ergenc, I.; Alahdab, Y.O.; Temizel, A.; Atug, O. Labeled Images for Ulcerative Colitis (LIMUC) Dataset (Version 1); Zenodo: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, T.; Ding, C.; Dai, X.; Li, Y.; Guo, Z.; Wei, Y.; Gong, J.; Zhu, W.; Li, J. Ulcerative Colitis Endoscopic Index of Severity (UCEIS) versus Mayo Endoscopic Score (MES) in guiding the need for colectomy in patients with acute severe colitis. Gastroenterol. Rep. 2018, 6, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, K.; Kobayashi, T.; Ueno, F.; Matsui, T.; Hirai, F.; Inoue, N.; Kato, J.; Kobayashi, K.; Kobayashi, K.; Koganei, K. Evidence-based clinical practice guidelines for inflammatory bowel disease. J. Gastroenterol. 2018, 53, 305–353. [Google Scholar] [CrossRef] [PubMed]
- Vuitton, L.; Peyrin-Biroulet, L.; Colombel, J.; Pariente, B.; Pineton de Chambrun, G.; Walsh, A.; Panes, J.; Travis, S.; Mary, J.; Marteau, P. Defining endoscopic response and remission in ulcerative colitis clinical trials: An international consensus. Aliment. Pharmacol. Ther. 2017, 45, 801–813. [Google Scholar] [CrossRef]
- McHugh, M.L. Interrater reliability: The kappa statistic. Biochem. Medica 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Banerjee, M.; Capozzoli, M.; McSweeney, L.; Sinha, D. Beyond kappa: A review of interrater agreement measures. Can. J. Stat. 1999, 27, 3–23. [Google Scholar] [CrossRef]
- Cohen, J. Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychol. Bull. 1968, 70, 213. [Google Scholar] [CrossRef]
- Cohen, J. A cofficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Woolson, R.F. Wilcoxon signed-rank test. Encycl. Biostat. 2005, 8. [Google Scholar] [CrossRef]
- Cao, K.; Wei, C.; Gaidon, A.; Arechiga, N.; Ma, T. Learning imbalanced datasets with label-distribution-aware margin loss. Adv. Neural Inf. Process. Syst. 2019, 32, 1567–1578. [Google Scholar]
- Sadi, A.A.; Chowdhury, L.; Jahan, N.; Rafi, M.N.S.; Chowdhury, R.; Khan, F.A.; Mohammed, N. LMFLOSS: A hybrid loss for imbalanced medical image classification. arXiv 2022, arXiv:2212.12741. [Google Scholar]
4-Score | Remission | |||||
---|---|---|---|---|---|---|
Model | Accuracy | -Score | Accuracy | -Score | ||
CoAtNet_0 | ||||||
CoAtNet_1 | ||||||
CoAtNet_2 | ||||||
CoAtNet_3 |
4-Score | Remission | |||||
---|---|---|---|---|---|---|
Model | Accuracy | -Score | Accuracy | -Score | ||
CoAtNet_2 | ||||||
Inception_v3 * | ||||||
ResNet18 * | ||||||
MobileNet * | ||||||
Overlock_b |
4-Score | Remission | |||||
---|---|---|---|---|---|---|
Model | Accuracy | -Score | Accuracy | -Score | ||
CoAtNet_2 | ||||||
DeiT | ||||||
MaxViT |
Models | Inception * | ResNet18 | MobileNet * | OverLock_b | DeiT | MaxViT |
---|---|---|---|---|---|---|
accuracy | ||||||
QWK | ||||||
F1-score |
Loss Function | Cross-Entropy | CDW-CE | Focal Loss | LMF * |
---|---|---|---|---|
accuracy | ||||
QWK | ||||
F1-score |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, B.; Zhang, G. Ulcerative Severity Estimation Based on Advanced CNN–Transformer Hybrid Models. Appl. Sci. 2025, 15, 7484. https://doi.org/10.3390/app15137484
Nie B, Zhang G. Ulcerative Severity Estimation Based on Advanced CNN–Transformer Hybrid Models. Applied Sciences. 2025; 15(13):7484. https://doi.org/10.3390/app15137484
Chicago/Turabian StyleNie, Boying, and Gaofeng Zhang. 2025. "Ulcerative Severity Estimation Based on Advanced CNN–Transformer Hybrid Models" Applied Sciences 15, no. 13: 7484. https://doi.org/10.3390/app15137484
APA StyleNie, B., & Zhang, G. (2025). Ulcerative Severity Estimation Based on Advanced CNN–Transformer Hybrid Models. Applied Sciences, 15(13), 7484. https://doi.org/10.3390/app15137484