Review of Structural Modal Tracking in Operational Modal Analysis: Methods and Applications
Abstract
1. Introduction
2. Method of Automatic Modal Parameter Estimation
3. Method of Automatic Modal Tracking
3.1. Development of Modal Tracking Methods
3.2. Comparison of Two Representative Tracking Methods
4. Application of Modal Tracking
4.1. Application of Modal Tracking in Various Structures
4.2. Analysis of Modal Tracking Results
5. Discussion and Recommendations
5.1. Automatic Modal Estimation and Modal Tracking Method
- The determination of reference modes remains plagued by threshold sensitivity in clustering-based methods, making it challenging to achieve full automation. If modes in some orders are omitted from the reference mode list, their contributions will be disregarded in continuous modal tracking, resulting in the mode-missing phenomenon. Additionally, determining reference modes in situations with closely spaced modes presents another challenge.
- During the modal linking stage, it is necessary to define thresholds or similarity metrics to assess whether the modes estimated at different times share the same physical characteristics, which is difficult for non-experts. Specifically, small and large tolerances are suitable for tracking modes from monitoring data with high and low signal-to-noise ratios, respectively. Furthermore, changing environmental and operational conditions affect the dynamic behavior of structures, which may lead to a loss of critical information and erroneous linking, disrupting the modal tracking process.
- The criteria used to describe modal similarity must be determined carefully. Generally, the MAC, which is widely adopted in most studies, is appropriate when numerous sensors are installed at key locations on a structure but not in cases where only a few sensors are utilized.
5.2. Modal Tracking Application
6. Conclusions
- The study of automatic modal estimation has been common, particularly focusing on automatic interpretation of stabilization diagrams via clustering algorithms. Future research should emphasize the development of adaptive clustering thresholds and the establishment of universal estimation frameworks adaptable to diverse structural typologies.
- The primary objective of modal tracking lies in extracting long-term modal evolution and keeping consistent modal orders. Established modal tracking methods predominantly employ clustering algorithms for reference mode determination, with mode linking typically implemented through defined criteria that integrate the MAC and relative frequency differences. This demonstrates significant research potential for automatic modal tracking in the future.
- Building upon adaptive updating for both reference modes and modal linking criteria, a pivotal challenge for modal tracking methods is balancing the capacity between the removal of spurious modes and the tracking of rapidly changing physical modes.
- While structural long-term modal evolution analysis has gained engineering interest, particularly in investigating temperature–frequency coupling models, the current immaturity of modal tracking methods constrains their popularization in various scenarios. Future research should prioritize enhanced automation in two modal tracking stages and complexity reduction in operational procedures to facilitate broader implementation across diverse structural systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMPE | automatic modal parameter estimation |
AOMA | automatic operational modal analysis |
SHM | structural health monitoring |
PSD | power spectral density |
FDD | frequency domain decomposition |
SSI | stochastic subspace identification |
ERA | eigensystem realization algorithm |
MPC | modal phase collinearity |
MAC | modal assurance criterion |
GMM | Gaussian mixture model |
LSCF | least-squares complex frequency domain |
FCM | fuzzy c-means |
MPD | mean phase deviation |
MCI | modal coherence indicator |
MTN | modal transfer norm |
MSF | modal scale factor |
OPTICS | ordering points to identify the clustering structure |
DBSCAN | density-based spatial clustering of applications with noise |
FDPC | fast density peak clustering |
SSI-COV | stochastic subspace identification driven by covariance |
p-LSCF | poly-reference least-squares complex frequency |
SSI-Data | stochastic subspace identification driven by data |
References
- Peeters, B.; De Roeck, G. One-year monitoring of the Z24-Bridge: Environmental effects versus damage events. Earthq. Eng. Struct. Dyn. 2001, 30, 149–171. [Google Scholar] [CrossRef]
- Cheng, J.; Xiao, R.C. Probabilistic free vibration and flutter analyses of suspension bridges. Eng. Struct. 2005, 27, 1509–1518. [Google Scholar] [CrossRef]
- Shan, D.S.; Li, Q.; Khan, I.; Zhou, X.H. A novel finite element model updating method based on substructure and response surface model. Eng. Struct. 2015, 103, 147–156. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.Q.; Xiang, Z.H. Damage detection by mode shape squares extracted from a passing vehicle. J. Sound Vib. 2012, 331, 291–307. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, L. Structural damage identification based on the modal data change. Int. J. Eng. Manuf. 2012, 4, 59–66. [Google Scholar] [CrossRef]
- Capecchi, D.; Ciambella, J.; Pau, A.; Vestroni, F. Damage identification in a parabolic arch by means of natural frequencies, modal shapes and curvatures. Meccanica 2016, 51, 2847–2859. [Google Scholar] [CrossRef]
- Su, J.Z.; Xia, Y.; Weng, S. Review on field monitoring of high-rise structures. Struct. Control Health Monit. 2020, 27, e2629. [Google Scholar] [CrossRef]
- Shan, J.Z.; Zhang, H.Q.; Shi, W.X.; Lu, X.L. Health monitoring and field-testing of high-rise buildings: A review. Struct. Concr. 2020, 21, 1272–1285. [Google Scholar] [CrossRef]
- Bas, S.; Apaydin, N.M.; Ilki, A.; Catbas, F.N. Structural health monitoring system of the long-span bridges in Turkey. Struct. Infrastruct. Eng. 2018, 14, 425–444. [Google Scholar] [CrossRef]
- Yu, E.B.; Xu, G.J.; Han, Y.; Hu, P.; Townsend, J.F.; Li, Y.L. Bridge vibration under complex wind field and corresponding measurements: A review. J. Traffic Transp. Eng. (Engl. Ed.) 2022, 9, 339–362. [Google Scholar] [CrossRef]
- Battista, R.C.; Pfeil, M.S. Reduction of vortex-induced oscillations of Rio-Niterói bridge by dynamic control devices. J. Wind Eng. Ind. Aerodyn. 2000, 84, 273–288. [Google Scholar] [CrossRef]
- Fenerci, A.; Kvåle, K.A.; Petersen, O.W.; Ronnquist, A.; Oiseth, O. Data set from long-term wind and acceleration monitoring of the Hardanger Bridge. J. Struct. Eng. 2021, 147, 04721003. [Google Scholar] [CrossRef]
- Wu, Y.R.; Kang, F.; Wan, G.; Li, H.J. Automatic operational modal analysis for concrete arch dams integrating improved stabilization diagram with hybrid clustering algorithm. Mech. Syst. Signal Process. 2025, 224, 112011. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Roque, J.C.A.; Ramos, L.F.; Lourenço, P.B. A multidisciplinary approach to assess the health state of heritage structures: The case study of the Church of Monastery of Jerónimos in Lisbon. Constr. Build. Mater. 2016, 116, 169–187. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Ramos, L.F.; Lourenço, P.B. The importance of structural monitoring as a diagnosis and control tool in the restoration process of heritage structures: A case study in Portugal. J. Cult. Herit. 2017, 27, 36–47. [Google Scholar] [CrossRef]
- Magalhães, F.; Cunha, Á.; Caetano, E. Online automatic identification of the modal parameters of a long span arch bridge. Mech. Syst. Signal Process. 2009, 23, 316–329. [Google Scholar] [CrossRef]
- Reynders, E.; Houbrechts, J.; De Roeck, G. Fully automated (operational) modal analysis. Mech. Syst. Signal Process. 2012, 29, 228–250. [Google Scholar] [CrossRef]
- Chen, Z.W.; Liu, K.M.; Yan, W.J.; Zhang, J.L.; Ren, W.X. Two-stage automated operational modal analysis based on power spectrum density transmissibility and support-vector machines. Int. J. Struct. Stab. Dyn. 2021, 21, 2150068. [Google Scholar] [CrossRef]
- Rainieri, C.; Fabbrocino, G. Automated output-only dynamic identification of civil engineering structures. Mech. Syst. Signal Process. 2010, 24, 678–695. [Google Scholar] [CrossRef]
- Brincker, R.; Andersen, P.; Jacobsen, N.J.; Niels, J. Automated frequency domain decomposition for operational modal analysis. In Proceedings of the 25th International Modal Analysis Conference, Orlando, FL, USA, 19–22 February 2007. [Google Scholar]
- Vanlanduit, S.; Verboven, P.; Guillaume, P.; Schoukens, J. An automatic frequency domain modal parameter estimation algorithm. J. Sound Vib. 2003, 265, 647–661. [Google Scholar] [CrossRef]
- Peeters, B.; Van der Auweraer, H.; Vanhollebeke, F.; Guillaume, P. Operational modal analysis for estimating the dynamic properties of a stadium structure during a football game. Shock Vib. 2007, 14, 283–303. [Google Scholar] [CrossRef]
- Rainieri, C.; Fabbrocino, G. Operational Modal Analysis of Civil Engineering Structures: An Introduction and Guide for Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Peeters, B.; Roeck, G.D. Reference-based stochastic subspace identification for output-only modal analysis. Mech. Syst. Signal Process. 1999, 13, 855–878. [Google Scholar] [CrossRef]
- Moncayo, H.; Marulanda, J.; Thomson, P. Identification and monitoring of modal parameters in aircraft structures using the natural excitation technique (NExT) combined with the eigensystem realization algorithm (ERA). J. Aerosp. Eng. 2010, 23, 99–104. [Google Scholar] [CrossRef]
- Yang, X.M.; Yi, T.H.; Qu, C.X.; Li, H.N.; Liu, H. Automated eigensystem realization algorithm for operational modal identification of bridge structures. J. Aerosp. Eng. 2019, 32, 4018148. [Google Scholar] [CrossRef]
- Van der Auweraer, H.; Peeters, B. Discriminating physical poles from mathematical poles in high order systems: Use and automation of the stabilization diagram. In Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference, Como, Italy, 18–20 May 2024. [Google Scholar]
- Carden, E.P.; Brownjohn, J.M.W. Fuzzy clustering of stability diagrams for vibration-based structural health monitoring. Comput.-Aided Civ. Infrastruct. Eng. 2008, 23, 360–372. [Google Scholar] [CrossRef]
- Ye, X.J.; Huang, P.L.; Pan, C.D.; Mei, L. Innovative stabilization diagram for automated structural modal identification based on ERA and hierarchical cluster analysis. J. Civ. Struct. Health Monit. 2021, 11, 1355–1373. [Google Scholar] [CrossRef]
- Bakir, P.G. Automation of the stabilization diagrams for subspace based system identification. Expert Syst. Appl. 2011, 38, 14390–14397. [Google Scholar] [CrossRef]
- Fu, S.H.; Wu, J.; Zhang, Q.L.; Xie, B. Automated identification and long-term tracking of modal parameters for a super high-rise building. J. Build. Eng. 2024, 95, 110141. [Google Scholar] [CrossRef]
- Mellinger, P.; Döhler, M.; Mevel, L. Variance estimation of modal parameters from output-only and input/output subspace-based system identification. J. Sound Vib. 2016, 379, 1–27. [Google Scholar] [CrossRef]
- Tondreau, G.; Deraemaeker, A. Numerical and experimental analysis of uncertainty on modal parameters estimated with the stochastic subspace method. J. Sound Vib. 2014, 333, 4376–4401. [Google Scholar] [CrossRef]
- Cunha, Á.; Caetano, E.; Magalhães, F.; Moutinho, C. Recent perspectives in dynamic testing and monitoring of bridges. Struct. Control Health Monit. 2013, 20, 853–877. [Google Scholar] [CrossRef]
- Kita, A.; Cavalagli, N.; Ubertini, F. Temperature effects on static and dynamic behavior of Consoli Palace in Gubbio, Italy. Mech. Syst. Signal Process. 2019, 120, 180–202. [Google Scholar] [CrossRef]
- Huang, T.L.; Chen, H.P. Mode identifiability of a cable-stayed bridge using modal contribution index. Smart Struct. Syst. 2017, 20, 115–126. [Google Scholar] [CrossRef]
- Cabboi, A.; Magalhães, F.; Gentile, C.; Cunha, Á. Automated modal identification and tracking: Application to an iron arch bridge. Struct. Control Health Monit. 2017, 24, e1854. [Google Scholar] [CrossRef]
- Magalhães, F.; Cunha, A.; Caetano, E. Vibration based structural health monitoring of an arch bridge: From automated OMA to damage detection. Mech. Syst. Signal Process. 2012, 28, 212–228. [Google Scholar] [CrossRef]
- Giordano, P.F.; Ubertini, F.; Cavalagli, N.; Kita, A.; Masciotta, M.G. Four years of structural health monitoring of the San Pietro bell tower in Perugia, Italy: Two years before the earthquake versus two years after. Int. J. Mason. Res. Innov. 2020, 5, 445–467. [Google Scholar] [CrossRef]
- Oliveira, G.; Magalhães, F.; Cunha, Á.; Caetano, E. Vibration-based damage detection in a wind turbine using 1 year of data. Struct. Control Health Monit. 2018, 25, e2238. [Google Scholar] [CrossRef]
- Busatta, F.; Gentile, C.; Saisi, A. Structural health monitoring of a centenary iron arch bridge. In Proceedings of the 3rd International Symposium on Life-Cycle Civil Engineering, Vienna, Austria, 3–6 October 2012. [Google Scholar]
- Bao, Y.Q.; Chen, Z.C.; Wei, S.Y.; Xu, Y.; Tang, Z.Y.; Li, H. The state of the art of data science and engineering in structural health monitoring. Engineering 2019, 5, 234–242. [Google Scholar] [CrossRef]
- Yang, X.M.; Yi, T.H.; Qu, C.X.; Li, H.N.; Liu, H. Continuous tracking of bridge modal parameters based on subspace correlations. Struct. Control Health Monit. 2020, 27, e2615. [Google Scholar] [CrossRef]
- Nicoletti, V.; Quarchioni, S.; Amico, L.; Gara, F. Assessment of different optimal sensor placement methods for dynamic monitoring of civil structures and infrastructures. Struct. Infrastruct. Eng. 2024, 1–16. [Google Scholar] [CrossRef]
- Chai, W.H.; Yang, Y.X.; Yu, H.B. Optimal sensor placement of bridge structure based on sensitivity-effective independence method. IET Circuits Devices Syst. 2022, 16, 125–135. [Google Scholar] [CrossRef]
- Shi, Q.H.; Wang, X.J.; Chen, W.P.; Hu, K.J. Optimal sensor placement method considering the importance of structural performance degradation for the allowable loadings for damage identification. Appl. Math. Model. 2020, 86, 384–403. [Google Scholar] [CrossRef]
- Silva, M.; Santos, A.; Figueiredo, E.; Santos, R.; Sales, C.; Costa, J.C.W.A. A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges. Eng. Appl. Artif. Intell. 2018, 58, 2099–2118. [Google Scholar] [CrossRef]
- Moazenzadeh, R.; Mohammadi, B.; Shamshirband, S.; Chau, K.W. Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran. Eng. Appl. Comput. Fluid Mech. 2018, 12, 584–597. [Google Scholar] [CrossRef]
- Ou, J.P.; Li, H. Structural health monitoring in mainland China: Review and future trends. Struct. Health Monit.-Int. J. 2010, 9, 219–231. [Google Scholar] [CrossRef]
- Soyoz, S.; Feng, M.Q. Long-term monitoring and identification of bridge structural parameters. Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 82–92. [Google Scholar] [CrossRef]
- Zonno, G.; Aguilar, R.; Boroschek, R.; Lourenço, P.B. Environmental and ambient vibration monitoring of historical adobe buildings: Applications in emblematic Andean churches. Int. J. Archit. Herit. 2019, 15, 1113–1129. [Google Scholar] [CrossRef]
- Ramos, L.F.; Marques, L.; Lourenço, P.B.; De Roeck, G.; Campos-Costa, A.; Roque, J. Monitoring historical masonry structures with operational modal analysis: Two case studies. Mech. Syst. Signal Process. 2010, 24, 1291–1305. [Google Scholar] [CrossRef]
- Xiong, H.B.; Cao, J.X.; Zhang, F.L.; Ou, X.; Chen, C.J. Investigation of the SHM-oriented model and dynamic characteristics of a super-tall building. Smart Struct. Syst. 2019, 23, 295–306. [Google Scholar] [CrossRef]
- Su, J.Z.; Xia, Y.; Chen, L.; Zhao, X.; Zhang, Q.L.; Xu, Y.L.; Ding, J.M.; Xiong, H.B.; Ma, R.J.; Lv, X.L.; et al. Long-term structural performance monitoring system for the Shanghai Tower. J. Civ. Struct. Health Monit. 2013, 3, 49–61. [Google Scholar] [CrossRef]
- Devriendt, C.; Magalhães, F.; Weijtjens, W.; De Sitter, G.; Cunha, Á.; Guillaume, P. Structural health monitoring of offshore wind turbines using automated operational modal analysis. Struct. Health Monit.-Int. J. 2014, 13, 644–659. [Google Scholar] [CrossRef]
- Oliveira, G.; Magalhães, F.; Cunha, Á.; Caetano, E. Development and implementation of a continuous dynamic monitoring system in a wind turbine. J. Civ. Struct. Health 2016, 6, 343–353. [Google Scholar] [CrossRef]
- Hu, W.H.; Tang, D.H.; Wang, M.; Liu, J.L.; Li, Z.H.; Lu, W.; Teng, J.; Said, S.; Rohrmann, R.G. Resonance monitoring of a horizontal wind turbine by strain-based automated operational modal analysis. Energies 2020, 13, 579. [Google Scholar] [CrossRef]
- Martins, N.; Caetano, E.; Diord, S.; Magalhães, F.; Cunha, Á. Dynamic monitoring of a stadium suspension roof: Wind and temperature influence on modal parameters and structural response. Eng. Struct. 2014, 59, 80–94. [Google Scholar] [CrossRef]
- Darbre, G.R.; Proulx, J. Continuous ambient-vibration monitoring of the arch dam of Mauvoisin. Earthq. Eng. Struct. Dyn. 2002, 31, 475–480. [Google Scholar] [CrossRef]
- Pereira, S.; Magalhães, F.; Gomes, J.P.; Cunha, Á.; Lemos, J.V. Dynamic monitoring of a concrete arch dam during the first filling of the reservoir. Eng. Struct. 2018, 174, 548–560. [Google Scholar] [CrossRef]
- Mao, J.X.; Wang, H.; Spencer, B.F. Gaussian mixture model for automated tracking of modal parameters of long-span bridge. Smart Struct. Syst. 2019, 24, 243–256. [Google Scholar] [CrossRef]
- Ubertini, F.; Comanducci, G.; Cavalagli, N.; Pisello, A.L.; Materazzi, A.L.; Cotana, F. Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mech. Syst. Signal Process. 2017, 82, 307–322. [Google Scholar] [CrossRef]
- Saisi, A.; Gentile, C.; Ruccolo, A. Continuous monitoring of a challenging heritage tower in Monza, Italy. J. Civ. Struct. Health Monit. 2018, 8, 77–90. [Google Scholar] [CrossRef]
- Van der Auweraer, H.; Guillaume, P.; Verboven, P.; Vanlanduit, S. Application of a fast-stabilizing frequency domain parameter estimation method. J. Dyn. Syst. Meas. Control 2001, 123, 651658. [Google Scholar] [CrossRef]
- Faurre, P.L. Stochastic realization algorithms. Math. Sci. Eng. 1976, 126, 1–25. [Google Scholar] [CrossRef]
- Juang, J.N.; Pappa, R.S. An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. 1985, 8, 620–627. [Google Scholar] [CrossRef]
- Tronci, E.M.; De Angelis, M.; Betti, R.; Altomare, V. Multi-stage semi-automated methodology for modal parameters estimation adopting parametric system identification algorithms. Mech. Syst. Signal Process. 2022, 165, 108317. [Google Scholar] [CrossRef]
- Wu, W.H.; Wang, S.W.; Chen, C.C.; Lai, G. Application of stochastic subspace identification for stay cables with an alternative stabilization diagram and hierarchical sifting process. Struct. Control Health Monit. 2016, 23, 1194–1213. [Google Scholar] [CrossRef]
- Fan, G.; Li, J.; Hao, H. Improved automated operational modal identification of structures based on clustering. Struct. Control Health Monit. 2019, 26, e2450. [Google Scholar] [CrossRef]
- Ubertini, F.; Gentile, C.; Materazzi, A.L. Automated modal identification in operational conditions and its application to bridges. Eng. Struct. 2013, 46, 264–278. [Google Scholar] [CrossRef]
- Scionti, M.; Lanslots, J.P. Stabilisation diagrams: Pole identification using fuzzy clustering techniques. Adv. Eng. Softw. 2005, 36, 768–779. [Google Scholar] [CrossRef]
- He, M.; Liang, P.; Liu, J.X.; Liang, Z.Q. Review and comparison of methods and benchmarks for automatic modal identification based on stabilization diagram. J. Traffic Transp. Eng. (Engl. Ed.) 2024, 11, 209–224. [Google Scholar] [CrossRef]
- Neu, E.; Janser, F.; Khatibi, A.A.; Orifici, A.C. Fully automated operational modal analysis using multi-stage clustering. Mech. Syst. Signal Process. 2017, 84, 308–323. [Google Scholar] [CrossRef]
- Charbonnel, P.É. Fuzzy-driven strategy for fully automated modal analysis: Application to the SMART2013 shaking-table test campaign. Mech. Syst. Signal Process. 2021, 152, 107388. [Google Scholar] [CrossRef]
- Pappa, R.S.; Elliott, K.B.; Schenk, A. Consistent-mode indicator for the eigensystem realization algorithm. J. Guid. Control Dyn. 1993, 16, 852–858. [Google Scholar] [CrossRef]
- Heylen, W.; Lammens, S.; Sas, P. Modal Analysis Theory and Testing; Katholieke Universteit Leuven, Departement Werktuigkunde: Leuven, Belgium, 1997; Available online: https://lirias.kuleuven.be/handle/123456789/155116 (accessed on 20 November 2024).
- Allemang, R.J.; Brown, D.L. A correlation coefficient for modal vector analysis. In Proceedings of the 1st International Modal Analysis Conference, Orlando, FL, USA, 8–10 November 1982; pp. 110–116. [Google Scholar]
- Lardies, J.; Ta, M.N. Modal parameter identification of stay cables from output-only measurements. Mech. Syst. Signal Process. 2011, 25, 133–150. [Google Scholar] [CrossRef]
- Reynders, E.; De Roeck, G. Reference-based combined deterministic-stochastic subspace identification for experimental and operational modal analysis. Mech. Syst. Signal Process. 2008, 22, 617–637. [Google Scholar] [CrossRef]
- Pecorelli, M.L.; Ceravolo, R.; Epicoco, R. An automatic modal identification procedure for the permanent dynamic monitoring of the Sanctuary of Vicoforte. Int. J. Archit. Herit. 2020, 14, 630–644. [Google Scholar] [CrossRef]
- Mao, J.X.; Wang, H.; Fu, Y.G.; Spencer, B.F. Automated modal identification using principal component and cluster analysis: Application to a long-span cable-stayed bridge. Struct. Control Health Monit. 2019, 26, e2430. [Google Scholar] [CrossRef]
- Zini, G.; Betti, M.; Bartoli, G. A quality-based automated procedure for operational modal analysis. Mech. Syst. Signal Process. 2022, 164, 108173. [Google Scholar] [CrossRef]
- He, M.; Liang, P.; Li, J.; Zhang, Y.; Liu, Y.J. Fully automated precise operational modal identification. Eng. Struct. 2021, 234, 111988. [Google Scholar] [CrossRef]
- Qin, X.R.; Liu, J.H.; Yu, C.Q.; Wang, Y.L.; Zhang, Q.; Sun, Y.T. Automatic identification of modal parameters based on interval perturbation and double-layer fuzzy clustering. J. Vib. Shock 2020, 39, 122–127. [Google Scholar]
- Sun, M.; Makki Alamdari, M.; Kalhori, H. Automated operational modal analysis of a cable-stayed bridge. J. Bridge Eng. 2017, 22, 05017012. [Google Scholar] [CrossRef]
- Boroschek, R.L.; Bilbao, J.A. Interpretation of stabilization diagrams using density-based clustering algorithm. Eng. Struct. 2019, 178, 245–257. [Google Scholar] [CrossRef]
- Li, S.; Pan, J.W.; Luo, G.H.; Wang, J.T. Automatic modal parameter identification of high arch dams: Feasibility verification. Earthq. Eng. Eng. Vib. 2020, 19, 953–965. [Google Scholar] [CrossRef]
- Teng, J.; Tang, D.H.; Zhang, X.; Hu, W.H.; Said, S.; Rohrmann, R.G. Automated modal analysis for tracking structural change during construction and operation phases. Sensors 2019, 19, 927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Zhou, W.S.; Huang, Y.; Li, H. Automatic identification of structural modal parameters based on density peaks clustering algorithm. Struct. Control Health Monit. 2022, 29, e3138. [Google Scholar] [CrossRef]
- Pan, H.R.; Li, Y.; Deng, T.; Fu, J.Y. An improved stochastic subspace identification approach for automated operational modal analysis of high-rise buildings. J. Build. Eng. 2024, 89, 109267. [Google Scholar] [CrossRef]
- Xia, Y.; Chen, B.; Weng, S.; Ni, Y.Q.; Xu, Y.L. Temperature effect on vibration properties of civil structures: A literature review and case studies. J. Civ. Struct. Health Monit. 2012, 2, 29–46. [Google Scholar] [CrossRef]
- Wu, J.; Xu, H.J.; Zhang, Q.L. Dynamic performance evaluation of Shanghai Tower under winds based on full-scale data. Struct. Des. Tall Spec. Build. 2019, 28, e1611. [Google Scholar] [CrossRef]
- Yang, B.; Pan, L.C.; Zhu, H.T.; Sun, S.Y.; Zhang, Q.L. Spatiotemporal correlation analysis of the dynamic response of supertall buildings under ambient wind conditions. Struct. Des. Tall Spec. Build. 2022, 31, e1914. [Google Scholar] [CrossRef]
- Wu, J.; Hu, N.T.; Dong, Y.; Zhang, Q.L. Monitoring dynamic characteristics of 600 m+ Shanghai Tower during two consecutive typhoons. Struct. Control Health Monit. 2021, 28, e2666. [Google Scholar] [CrossRef]
- He, Y.C.; Li, Q.S. Dynamic responses of a 492-m-high tall building with active tuned mass damping system during a typhoon. Struct. Control Health Monit. 2013, 21, 705–720. [Google Scholar] [CrossRef]
- Zhang, Q.L.; Luo, X.Q.; Ding, J.M.; Xie, B.; Gao, X.Z. Dynamic response evaluation on TMD and main tower of Shanghai Tower subjected to Typhoon In-Fa. Struct. Des. Tall Spec. Build. 2022, 31, e1929. [Google Scholar] [CrossRef]
- Zhou, K.; Li, Q.S. Vibration mitigation performance of active tuned mass damper in a super high-rise building during multiple tropical storms. Eng. Struct. 2022, 269, 114840. [Google Scholar] [CrossRef]
- Au, S.K.; Brownjohn, J.M.W.; Li, B.B.; Raby, A. Understanding and managing identification uncertainty of close modes in operational modal analysis. Mech. Syst. Signal Process. 2021, 147, 107018. [Google Scholar] [CrossRef]
- He, M.; Liang, P.; Obrien, E.; Sun, X.; Zhang, Y. Continuous modal identification and tracking of a long-span suspension bridge using a robust mixed-clustering method. J. Bridge Eng. 2022, 27, 05022001. [Google Scholar] [CrossRef]
- Dederichs, A.C.; Øiseth, O. A novel and near-automatic mode tracking algorithm for civil infrastructure. J. Sound Vib. 2024, 573, 118217. [Google Scholar] [CrossRef]
- Pereira, S.; Pacheco, J.; Pimenta, F.; Moutinho, C.; Cunha, Á.; Magalhães, F. Contributions for enhanced tracking of (onshore) wind turbines modal parameters. Eng. Struct. 2023, 274, 115120. [Google Scholar] [CrossRef]
- Peeters, B.; Van der Auweraer, H.; Guillaume, P.; Leuridan, J. The PolyMAX frequency domain method: A new standard for modal parameter estimation. Shock Vib. 2004, 11, 523692. [Google Scholar] [CrossRef]
- Pereira, S.; Reynders, E.; Magalhães, F.; Cunha, Á.; Gomes, J.P. The role of modal parameters uncertainty estimation in automated modal identification, modal tracking and data normalization. Eng. Struct. 2020, 224, 111208. [Google Scholar] [CrossRef]
- Sun, S.Y.; Yang, B.; Zhang, Q.L.; Wüchner, R.; Pan, L.C.; Zhu, H.T. Long-term continuous automatic modal tracking algorithm based on Bayesian inference. Struct. Health Monit.-Int. J. 2023, 23, 1530–1546. [Google Scholar] [CrossRef]
- Tronci, E.M.; De Angelis, M.; Betti, R.; Altomare, V. Vibration-based structural health monitoring of a RC-masonry tower equipped with non-conventional TMD. Eng. Struct. 2020, 224, 111212. [Google Scholar] [CrossRef]
- Tronci, E.M.; De Angelis, M.; Betti, R.; Altomare, V. Semi-automated operational modal analysis methodology to optimize modal parameter estimation. J. Optim. Theory Appl. 2020, 187, 842–854. [Google Scholar] [CrossRef]
- Ubertini, F.; Comanducci, G.; Cavalagli, N. Vibration-based structural health monitoring of a historic bell-tower using output-only measurements and multivariate statistical analysis. Struct. Health Monit.-Int. J. 2016, 15, 438–457. [Google Scholar] [CrossRef]
- Zonno, G.; Aguilar, R.; Boroschek, R.; Lourenço, P.B. Automated long-term dynamic monitoring using hierarchical clustering and adaptive modal tracking: Validation and applications. J. Civ. Struct. Health Monit. 2018, 8, 791–808. [Google Scholar] [CrossRef]
- Diord, S.; Magalhães, F.; Cunha, Á.; Caetano, E.; Martins, N. Automated modal tracking in a football stadium suspension roof for detection of structural changes. Struct. Control Health Monit. 2017, 24, e2006. [Google Scholar] [CrossRef]
- El-Kafafy, M.; Gioia, N.; Guillaume, P.; Helsen, J. Long-term automatic tracking of the modal parameters of an offshore wind turbine drivetrain system in standstill condition. In Rotating Machinery, Vibro-Acoustics & Laser Vibrometry; Springer International Publishing: Cham, Switzerland, 2019; Volume 7, pp. 91–99. [Google Scholar] [CrossRef]
- He, M.; Liang, P.; Zhang, Y.; Yang, F.; Liu, J.X. Unified method for fully automated modal identification and tracking with consideration of sensor deployment. Eng. Struct. 2022, 260, 114223. [Google Scholar] [CrossRef]
- Yang, X.M.; Li, H.N.; Yi, T.H.; Qu, C.X.; Liu, H. Fully automated modal tracking for long-span high-speed railway bridges. Adv. Struct. Eng. 2022, 25, 3475–3491. [Google Scholar] [CrossRef]
- Yazdani-Shavakand, M.; Ahmadi-Shokouh, J.; Dashti, H. A fast multi-structural tracking method for characteristic modes with the ability to identify and amend errors. IET Microw. Antennas Propag. 2023, 17, 62–74. [Google Scholar] [CrossRef]
- Pereira, S.; Magalhães, F.; Gomes, J.P.; Cunha, Á. Modal tracking under large environmental influence. J. Civ. Struct. Health Monit. 2022, 12, 179–190. [Google Scholar] [CrossRef]
- Rainieri, C.; Fabbrocino, G.; Cosenza, E. Near real-time tracking of dynamic properties for standalone structural health monitoring systems. Mech. Syst. Signal Process. 2011, 25, 3010–3026. [Google Scholar] [CrossRef]
- Magalhães, F.; Cunha, Á.; Caetano, E. Dynamic monitoring of a long span arch bridge. Eng. Struct. 2008, 30, 3034–3044. [Google Scholar] [CrossRef]
- Yu, X.W.; Dan, D.H. Online frequency and amplitude tracking in structural vibrations under environment using APES spectrum postprocessing and Kalman filtering. Eng. Struct. 2022, 259, 114175. [Google Scholar] [CrossRef]
- Li, J.; Stoica, P. An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Trans. Signal Process. 1996, 44, 1469–1484. [Google Scholar] [CrossRef]
- Zhong, K.; Chang, C.C. Tracking dynamic characteristics of structures using output-only recursive combined subspace identification technique. J. Eng. Mech. 2020, 146, 04020035. [Google Scholar] [CrossRef]
- Mao, J.X.; Wang, H.; Feng, D.M.; Tao, T.Y.; Zheng, W.Z. Investigation of dynamic properties of long-span cable-stayed bridges based on one-year monitoring data under normal operating condition. Struct. Control Health Monit. 2018, 25, e2146. [Google Scholar] [CrossRef]
- Gentile, C.; Ruccolo, A.; Canali, F. Continuous monitoring of the Milan Cathedral: Dynamic characteristics and vibration-based SHM. J. Civ. Struct. Health Monit. 2019, 9, 671–688. [Google Scholar] [CrossRef]
- Fu, S.H.; Wu, J.; Zhang, Q.L.; Xie, B. Robust and efficient synchronization for structural health monitoring data with arbitrary time lags. Eng. Struct. 2025, 322, 119183. [Google Scholar] [CrossRef]
- Yang, M.X.; Wu, J.; Zhang, Q.L. Inclination and acceleration data fusion for two-dimensional dynamic displacements and mode shapes identification of super high-rise buildings considering time delay. Mech. Syst. Signal Process. 2025, 223, 111938. [Google Scholar] [CrossRef]
- Yu, L.; Yin, T. Damage identification in frame structures based on FE model updating. J. Vib. Acoust. 2010, 132, 051007. [Google Scholar] [CrossRef]
- Ye, X.J.; Chen, B.C. Model updating and variability analysis of modal parameters for super high-rise structure. Concurr. Comput. Pract. Exp. 2019, 31, e4712. [Google Scholar] [CrossRef]
- Fu, G.Q.; Quan, Y.; Gu, M.; Huang, Z.F.; Feng, C.D. Dynamic performance evaluation of a 492 m super high-rise building with active tuned mass dampers during four consecutive landfall typhoons within a month. J. Build. Eng. 2022, 61, 105259. [Google Scholar] [CrossRef]
- Zhou, K.; Li, Q.S.; Zhi, L.H.; Han, X.L.; Xu, K. Investigation of modal parameters of a 600-m-tall skyscraper based on two-year-long structural health monitoring data and five typhoons measurements. Eng. Struct. 2023, 274, 115162. [Google Scholar] [CrossRef]
- Langone, R.; Reynders, E.; Mehrkanoon, S.; Suykens, J.A.K. Automated structural health monitoring based on adaptive kernel spectral clustering. Mech. Syst. Signal Process. 2017, 90, 64–78. [Google Scholar] [CrossRef]
- Zhang, G.; Moutinho, C.; Magalhães, F. Continuous dynamic monitoring of a large-span arch bridge with wireless nodes based on MEMS accelerometers. Struct. Control Health Monit. 2022, 29, e2963. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, L.M. Effects of environmental and operational actions on the modal frequency variations of a sea-crossing bridge: A periodicity perspective. Mech. Syst. Signal Process. 2019, 131, 505–523. [Google Scholar] [CrossRef]
- Dong, Y.F.; Tian, H.; Zhang, M.; Wei, L.J. Long-term monitoring of dynamic characteristics of high-rise and super high-rise buildings using strong motion records. Adv. Mech. Eng. 2021, 13, 168781402110672. [Google Scholar] [CrossRef]
- Oliveira, G.; Magalhães, F.; Cunha, Á.; Caetano, E. Automated modal tracking and fatigue assessment of a wind turbine based on continuous dynamic monitoring. MATEC Web Conf. 2015, 24, 04005. [Google Scholar] [CrossRef]
- Elyamani, A.; Caselles, O.; Roca, P.; Clapes, J. Dynamic investigation of a large historical cathedral. Struct. Control Health Monit. 2017, 24, e1885. [Google Scholar] [CrossRef]
- Xia, Y.; Hao, H.; Zanardo, G.; Deeks, A. Long term vibration monitoring of an RC slab: Temperature and humidity effect. Eng. Struct. 2006, 28, 441–452. [Google Scholar] [CrossRef]
- Li, H.; Li, S.L.; Ou, J.P.; Li, H.W. Modal identification of bridges under varying environmental conditions: Temperature and wind effects. Struct. Control Health Monit. 2010, 17, 495–512. [Google Scholar] [CrossRef]
- Reynders, E.; Wursten, G.; De Roeck, G. Output-only structural health monitoring in changing environmental conditions by means of nonlinear system identification. Struct. Health Monit.-Int. J. 2014, 13, 82–93. [Google Scholar] [CrossRef]
- Behmanesh, I.; Moaveni, B. Accounting for environmental variability, modeling errors, and parameter estimation uncertainties in structural identification. J. Sound Vib. 2016, 374, 92–110. [Google Scholar] [CrossRef]
- Wah, W.S.L.; Chen, Y.T.; Roberts, G.W.; Elamin, A. Separating damage from environmental effects affecting civil structures for near real-time damage detection. Struct. Health Monit.-Int. J. 2018, 17, 850–868. [Google Scholar] [CrossRef]
- Adams, R.D.; Cawley, P.; Pye, C.J.; Stone, B.J. A vibration technique for non-destructively assessing the integrity of structures. J. Mech. Eng. Sci. 1978, 20, 93–100. [Google Scholar] [CrossRef]
- Ni, Y.Q.; Hua, X.G.; Fan, K.Q.; Ko, J.M. Correlating modal properties with temperature using long-term monitoring data and support vector machine technique. Eng. Struct. 2005, 27, 1762–1773. [Google Scholar] [CrossRef]
- Hu, W.H.; Cunha, Á.; Caetano, E.; Rohrmann, R.G.; Said, S.; Teng, J. Comparison of different statistical approaches for removing environmental/operational effects for massive data continuously collected from footbridges. Struct. Control Health Monit. 2017, 24, e1955. [Google Scholar] [CrossRef]
- Moser, P.; Moaveni, B. Environmental effects on the identified natural frequencies of the Dowling Hall Footbridge. Mech. Syst. Signal Process. 2011, 25, 2336–2357. [Google Scholar] [CrossRef]
- Hu, W.H.; Moutinho, C.; Caetano, E.; Magalhães, F.; Cunha, Á. Continuous dynamic monitoring of a lively footbridge for serviceability assessment and damage detection. Mech. Syst. Signal Process. 2012, 33, 38–55. [Google Scholar] [CrossRef]
- Zhou, X.T.; Ni, Y.Q.; Zhang, F.L. Damage localization of cable-supported bridges using modal frequency data and probabilistic neural network. Math. Probl. Eng. 2014, 2014, 837963. [Google Scholar] [CrossRef]
- Deraemaeker, A.; Worden, K. A comparison of linear approaches to filter out environmental effects in structural health monitoring. Mech. Syst. Signal Process. 2018, 105, 1–15. [Google Scholar] [CrossRef]
- Ding, Z.H.; Li, J.; Hao, H. Structural damage identification using improved Jaya algorithm based on sparse regularization and Bayesian inference. Mech. Syst. Signal Process. 2019, 132, 211–231. [Google Scholar] [CrossRef]
- Sarmadi, H.; Entezami, A.; Salar, M.; De Michele, C. Bridge health monitoring in environmental variability by new clustering and threshold estimation methods. J. Civ. Struct. Health Monit. 2021, 11, 629–644. [Google Scholar] [CrossRef]
- Hu, W.H.; Caetano, E.; Cunha, Á. Structural health monitoring of a stress-ribbon footbridge. Eng. Struct. 2013, 57, 578–593. [Google Scholar] [CrossRef]
- Sohn, H. Effects of environmental and operational variability on structural health monitoring. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2007, 365, 539–560. [Google Scholar] [CrossRef] [PubMed]
- He, X.F. Vibration-Based Damage Identification and Health Monitoring of Civil Structures. Ph.D. Thesis, University of California, San Diego, CA, USA, 2008. Available online: https://escholarship.org/uc/item/9dk7q06h (accessed on 28 October 2024).
- Li, X.; Li, Q.S. Monitoring structural performance of a supertall building during 14 tropical cyclones. J. Struct. Eng. 2018, 144, 04018176. [Google Scholar] [CrossRef]
- Yi, J.; Zhang, J.W.; Li, Q.S. Dynamic characteristics and wind-induced responses of a super-tall building during typhoons. J. Wind Eng. Ind. Aerodyn. 2013, 121, 116–130. [Google Scholar] [CrossRef]
- Kijewski-Correa, T.; Pirnia, J.D. Dynamic behavior of tall buildings under wind: Insights from full-scale monitoring. Struct. Des. Tall Spec. Build. 2007, 16, 471–486. [Google Scholar] [CrossRef]
- Fu, J.Y.; Wu, J.R.; Xu, A.; Li, Q.S.; Xiao, Y.Q. Full-scale measurements of wind effects on Guangzhou West Tower. Eng. Struct. 2012, 35, 120–139. [Google Scholar] [CrossRef]
- Yang, M.X.; Wu, J.; Zhang, Q.L. GNSS and accelerometer data fusion by variational Bayesian adaptive multi-rate Kalman filtering for dynamic displacement estimation of super high-rise buildings. Eng. Struct. 2025, 325, 119396. [Google Scholar] [CrossRef]
- Sun, M.M.; Li, Q.S.; Han, X.L. Investigation of long-term modal properties of a supertall building under environmental and operational variations. J. Build. Eng. 2022, 62, 105439. [Google Scholar] [CrossRef]
- Cabboi, A.; Gentile, C.; Saisi, A. Frequency tracking and FE model identification of a masonry tower. In Proceedings of the 5th International Operational Modal Analysis Conferences, Guimarães, Portugal, 13–15 May 2013. [Google Scholar]
- Saisi, A.; Gentile, C.; Guidobaldi, M. Post-earthquake continuous dynamic monitoring of the Gabbia Tower in Mantua, Italy. Constr. Build. Mater. 2015, 81, 101–112. [Google Scholar] [CrossRef]
- Gentile, C.; Guidobaldi, M.; Saisi, A. One-year dynamic monitoring of a historic tower: Damage detection under changing environment. Meccanica 2016, 51, 2873–2889. [Google Scholar] [CrossRef]
- Cabboi, A.; Gentile, C.; Saisi, A. From continuous vibration monitoring to FEM-based damage assessment: Application on a stone-masonry tower. Constr. Build. Mater. 2017, 156, 252–265. [Google Scholar] [CrossRef]
- Azzara, R.M.; De Roeck, G.; Girardi, M.; Padovani, C.; Pellegrini, D.; Reynders, E. The influence of environmental parameters on the dynamic behaviour of the San Frediano bell tower in Lucca. Eng. Struct. 2018, 156, 175–187. [Google Scholar] [CrossRef]
- Ubertini, F.; Cavalagli, N.; Kita, A.; Comanducci, G. Assessment of a monumental masonry bell-tower after 2016 Central Italy seismic sequence by long-term SHM. Bull. Earthq. Eng. 2018, 16, 775–801. [Google Scholar] [CrossRef]
- Lorenzoni, F.; Caldon, M.; da Porto, F.; Modena, C.; Aokiet, T. Post-earthquake controls and damage detection through structural health monitoring: Applications in l’Aquila. J. Civ. Struct. Health Monit. 2018, 8, 217–236. [Google Scholar] [CrossRef]
Criterion | Symbol | Reference | Ideal Physical Mode | Ideal Spurious Mode | AMPE | Modal Tracking |
---|---|---|---|---|---|---|
Relative frequency difference | [17] | 0 | 1 | √ | √ | |
Relative damping ratio difference | [17] | 0 | 1 | √ | ||
Modal distance | [17] | 0 | 1 | √ | √ | |
Modal phase collinearity | [75] | 1 | 0 | √ | - | |
Mean phase deviation | [76] | 0 | 1 | √ | - | |
Modal assurance criterion | [77] | 1 | 0 | √ | √ | |
Modal coherence indicator | MC | [78] | 1 | 0 | √ | - |
Modal transfer norm | [79] | Large | 0 | √ | - | |
difference | [17] | 0 | 1 | √ | - | |
difference | [17] | 0 | 1 | √ | - | |
Modal scale factor | [77] | ±1 | 0 | - | - |
Reference | AMPE Method | Modal Tracking Method | Characteristic | ||
---|---|---|---|---|---|
Reference Mode Determination | Mode-Linking Criterion | Threshold | |||
Magalhães et al. [16] | Automatic SSI-COV | Multiple mode sets (hierarchical clustering) | MAC and relative frequency difference | 0.8 and 15% | Establishes a modal tracking framework |
He et al. [99] | Automatic SSI-COV | Multiple mode sets | MAC and relative frequency difference | Minimum value | Simplifies the tracking process |
Dederichs and Øiseth [100] | Automatic SSI-COV | Multiple mode sets (hierarchical clustering) | MAC and frequency distribution | Uncertain | Applies to significantly changed modes |
Pereira et al. [101] | SSI-COV [24] or p-LSCF [102] | Multiple mode sets (clustering) | Extended MAC | 0.7 | Determines reference modal properties automatically |
Pereira et al. [103] | SSI-COV | Multiple mode sets (hierarchical clustering) | MAC and relative frequency difference | 0.55 and 5% | Considers the uncertainty |
Sun et al. [104] | Automatic SSI-COV | Multiple mode sets | Bayesian inference | Probability density threshold (95%) | Considers the most recent mode and multiple previous modes |
Tronci et al. [105] | SSI-Data and unsupervised tools [106] | Multiple mode sets (modified k-means clustering) [107] | Values of frequencies, damping ratios, and MAC | 0.01, 0.03–0.04, and 0.01–0.05 | Automatic operation |
Mao et al. [61] | Automatic SSI-COV | Multiple mode sets (GMM and Bayesian information criteria) | MAC and relative frequency difference | Minimum value | Updates the reference modes |
Zonno et al. [108] | Automatic SSI-Data | Multiple mode sets (filter, clustering) | Relative differences in frequency and damping, MAC | 1%, 80%, and 0.95 | Proposes an adaptive time window |
Diord et al. [109] | SSI and p-LSCF | Single mode set | Uncertainty intervals | - | Develop a GUI Toolbox |
El-Kafafy et al. [110] | p-LSCF | Single mode set | MAC, frequency, and damping ratio | - | Automatic operation |
He et al. [111] | Automatic SSI-COV | Single mode set | Similarity matrix | Maximum value | Updates the reference modes |
Yang et al. [112] | Automatic ERA [26] | Single mode set | Similarity of observability vector | - | Adaptive modal matching and reference mode updating |
Yazdani-Shavakand et al. [113] | - | Single mode set (characteristic mode) | Modified eigenvector correlation | Higher than 0.9 | Automatic operation |
Pereira et al. [114] | Automatic SSI-COV | Monitoring tests | Extended MAC and frequency reference vector | Tighter limits | Deals with extreme and sudden modal variability |
Cabboi et al. [37] | Automatic SSI-COV | Monitoring test | MAC and relative frequency difference | 10% (initial) | Introduces adaptable dynamic thresholds |
Rainieri et al. [115] | Automated FDD [116] | Finite element model | MAC and frequency plot | User-defined | Implemented in a software package |
Yu and Dan [117] | Spectral analysis [118] | Appointed in advance | Kalman filtering, frequency alignment | - | High robustness |
Zhong and Chang [119] | Recursive combined subspace identification | - | Recursive combined subspace identification | - | Estimates unknown nonstationary inputs |
Reference | Application Field | Structure Name | Location | Tracked Modal Parameter | Tracking Duration | Tracking Result |
---|---|---|---|---|---|---|
Magalhães et al. [16] | Long-span arch bridge | Infante D. Henrique Bridge | Portugal | Frequency and damping ratio | 2 months | Frequency fluctuated slightly |
Cabboi et al. [37] | Iron arch bridge | San Michele Bridge | Italy | Frequency | About 1 month | Frequency fluctuated slightly |
Fu et al. [31] | Super high-rise building | Shanghai Tower | China | Frequency | About 5.5 years | Frequency decreased |
Mao et al. [61] | Long-span bridge | Sutong Bridge | China | Frequency | 1 year | Frequency varied with temperature |
Teng et al. [88] | Arch bridge | Rainbow Bridge | China | Frequency | 320 days | Frequency fluctuated with temperature |
He et al. [99] | Long-span suspension bridge | Fourth Nanjing Yangtze Bridge | China | Frequency | More than 5 weeks | Frequency varied in limited range |
Dederichs et al. [100] | Suspension bridge, floating pontoon bridge | Hardanger Bridge, Bergs øysund floating pontoon bridge | Norway | Frequency | 1850 datasets | Frequency fluctuated slightly |
Sun et al. [104] | Concrete box-girder bridge | Z24 bridge | Switzerland | Frequency | 10 months | Temporary but significant frequency increase and recovery |
He et al. [111] | Footbridge | Dowling Hall footbridge | America | Frequency | 2 weeks | Frequency fluctuated slightly |
Yang et al. [112] | Long-span high-speed railway bridge | - | - | Frequency and damping ratio | 1 year | Frequency related to train loading had greatest fluctuation |
Yu and Dan [117] | Cable of a cable-stayed bridge and so on | - | - | Frequency | 24 h | Frequency fluctuated with amplitude |
Langone et al. [128] | Concrete box-girder bridge | Z24 bridge | Switzerland | Frequency | Several months | Damaged |
Zhang et al. [129] | Long-span arch bridge | Infante D. Henrique Bridge | Portugal | Frequency and damping ratio | About 1.5 years | Frequency was higher in winter and lower during summer |
Zhou and Sun [130] | Sea-crossing bridge | Donghai Bridge | China | Frequency | 6 years | Frequency varied over time periods |
Fu et al. [126] | Super high-rise building | Shanghai World Financial Center | China | Frequency and damping ratio | During 4 typhoons | Frequency decreased as amplitude increased |
Zhou et al. [127] | Super high-rise building | Ping-An Finance Center | China | Frequency and damping ratio | 2 years | Temperature had limited effects on modal parameters |
Dong et al. [131] | High-rise building | Buildings A, B, C, D, E, F | Japan | Frequency and damping ratio | Long-term (years) | Decrease in frequency was related to damping ratio |
Oliveira et al. [132] | Wind turbine | 2.0 MW wind turbine | Portugal | Frequency and damping ratio | 1 year | Frequency varied with increase in rotor speed |
El-Kafafy et al. [110] | Wind turbine | Offshore wind turbine | Belgium | Frequency and damping ratio | 13.67 h | Frequency fluctuated slightly |
Pereira et al. [101] | Wind turbine | Wind turbine at Tocha wind farm | Portugal | Frequency and damping ratio | 18 months | A strong relation between wind speed and damping |
Diord et al. [109] | Sports stadium | Braga Municipal Sports Stadium | Portugal | Frequency and damping ratio | 4 years | Mean frequency reduction |
Pereira et al. [114] | Arch dam | Double-curvature concrete arch dam | Portugal | Frequency | 3 years | Fifth mode changed significantly |
Pereira et al. [103] | Arch dam | Baixo Sabor arch dam | Portugal | Frequency and damping ratio | 2 years | Frequency varied with reservoir water level |
Rainieri et al. [115] | Public building | Main School of Engineering building in Naples | Italy | Frequency | 2 seasons | First three frequencies in summer were lower than those in winter |
Gentile et al. [121] | Historical heritage construction | Milan Cathedral | Italy | Frequency | About 4 months | Frequency fluctuated with temperature |
Tronci et al. [105] | Historical heritage construction | Civic Tower | Italy | Frequency and damping ratio | 3 years | Frequency decreased after seismic events |
Ubertini et al. [62] | Historical heritage construction | San Pietro bell tower | Italy | Frequency | 9 months | Temperature produced significant changes in frequencies |
Zonno et al. [108] | Historical heritage construction | Monastery of Jeronimos church | Portugal | Frequency | 3230 datasets | Frequency fluctuated slightly |
Zonno et al. [108] | Historical heritage construction | San Pedro Apostol Church | Peru | Frequency and damping ratio | 6 months | Frequency and damping coefficient varied in range of 1–3% |
Elyamani et al. [133] | Historical heritage construction | Mallorca Cathedral | Spain | Frequency | 15 months | Earthquakes caused decreases in natural frequencies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, S.; Wu, J. Review of Structural Modal Tracking in Operational Modal Analysis: Methods and Applications. Appl. Sci. 2025, 15, 7201. https://doi.org/10.3390/app15137201
Fu S, Wu J. Review of Structural Modal Tracking in Operational Modal Analysis: Methods and Applications. Applied Sciences. 2025; 15(13):7201. https://doi.org/10.3390/app15137201
Chicago/Turabian StyleFu, Shenghui, and Jie Wu. 2025. "Review of Structural Modal Tracking in Operational Modal Analysis: Methods and Applications" Applied Sciences 15, no. 13: 7201. https://doi.org/10.3390/app15137201
APA StyleFu, S., & Wu, J. (2025). Review of Structural Modal Tracking in Operational Modal Analysis: Methods and Applications. Applied Sciences, 15(13), 7201. https://doi.org/10.3390/app15137201