Vision-Based Detection, Localization, and Optimized Path Planning for Rebar Intersections in Automated Construction
Abstract
1. Introduction
2. Related Work
3. Overall System
3.1. Visual Recognition System
- Extracting rebar layers from complex grid backgrounds remains a significant challenge;
- Ambient light interference must be minimized to ensure reliable TOF camera imaging and system recognition accuracy;
- The sensor precision must be sufficiently high to guarantee the accurate localization of intersection points.
3.1.1. Image Preprocessing System
3.1.2. Robust Depth Data Augmentation System
3.1.3. Intersection Point Recognition System
- Reduce redundant information: By thinning the image, the lines in the original image are simplified to a one-pixel-wide skeleton, eliminating the thickness and redundant information of the lines. This ensures that no extra detection results are generated due to line width during the Hough Transform, thereby improving computational efficiency.
- Improve line detection accuracy: In the unthinned image, wide lines can lead to multiple similar Hough parameters being generated for different pixels, increasing unnecessary interference. The thinned skeleton retains only the centerline, making the representation of each line in Hough space more consistent, which enhances the accuracy of line detection.
- Enhance the reliability of intersection point detection: After skeletonization, the intersections become clearer, especially in complex structures where overlapping lines do not cause misjudgments due to thickness. This makes the intersection points detected by the Hough Transform more reliable and consistent with the actual structure.
- Reduce computational overhead: The Hough Transform typically calculates every pixel in the image, but the thinned image contains fewer pixels, significantly reducing the computational load. Therefore, skeletonization helps to lower the computational cost of the Hough Transform.
- Parallelism: The direction vectors of the two line segments should be approximately parallel. This is typically determined by calculating the angular difference between the segments or by evaluating the dot product of their direction vectors.
- Proximity: The distance between the endpoints or midpoints of the two line segments should be within a certain threshold, ensuring that they are sufficiently close. A distance threshold can be set to determine whether the proximity condition is met.
3.2. Path Planning System
3.3. Coordinate Transformation System
4. Experiments
4.1. Camera Calibration
4.1.1. Calibration Method
4.1.2. Calibration Results and Reprojection Error Analysis
4.2. Coordinate Transformation Error Analysis
4.3. Rebar Crossing Point Detection and Path Planning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, B.; Chen, C.; Yin, X. Recent advancements of robotics in construction. Autom. Constr. 2022, 144, 104591. [Google Scholar] [CrossRef]
- Asadi, K.; Ramshankar, H.; Pullagurla, H.; Bhandare, A.; Shanbhag, S.; Mehta, P.; Kundu, S.; Han, K.; Lobaton, E.; Wu, T. Building an integrated mobile robotic system for real-time applications in construction. arXiv 2018, arXiv:1803.01745. [Google Scholar]
- Liu, Y.; AH, A.; Haron, N.A.; NA, B.; Wang, H. Robotics in the Construction Sector: Trends, Advances, and Challenges. J. Intell. Robot. Syst. 2024, 110, 72. [Google Scholar] [CrossRef]
- Bock, T.; Linner, T. Robotic Industrialization; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Wang, T.; Mao, C.; Sun, B.; Li, Z. Genealogy of construction robotics. Autom. Constr. 2024, 166, 105607. [Google Scholar] [CrossRef]
- Vi, P. Effects of Rebar Tying Machine on Trunk Flexion and Productivity. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Orlando, FL, USA, 26–30 September 2005; SAGE Publications Sage CA: Los Angeles, CA, USA, 2005; Volume 49, pp. 1349–1353. [Google Scholar]
- Aires, M.M.; Alonso, M.L.; Gago, E.J.; Pacheco-Torres, R. Technological advances in rebar tying jobs: A comparative analysis of the associated yields and illnesses. System 2015, 3, 4. [Google Scholar]
- Xu, K.; Lu, X.; Shen, T.; Zhu, X.; Wang, S.; Wang, X.; Wang, J. Rebar binding point location method based on improved YOLOv5 and thinning algorithm. Measurement 2025, 242, 116029. [Google Scholar] [CrossRef]
- Cardno, C.A. Robotic rebar-tying system uses artificial intelligence. Civ. Eng. Mag. Arch. 2018, 88, 38–39. [Google Scholar] [CrossRef]
- Alijani, S.; Fayyad, J.; Najjaran, H. Vision transformers in domain adaptation and domain generalization: A study of robustness. Neural Comput. Appl. 2024, 36, 17979–18007. [Google Scholar] [CrossRef]
- Anane, W.; Iordanova, I.; Ouellet-Plamondon, C. BIM-driven computational design for robotic manufacturing in off-site construction: An integrated Design-to-Manufacturing (DtM) approach. Autom. Constr. 2023, 150, 104782. [Google Scholar] [CrossRef]
- Lingard, H.; Raj, I.S.; Lythgo, N.; Troynikov, O.; Fitzgerald, C. The impact of tool selection on back and wrist injury risk in tying steel reinforcement bars: A single case experiment. Constr. Econ. Build. 2019, 19, 1–19. [Google Scholar] [CrossRef]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning (still) requires rethinking generalization. Commun. ACM 2021, 64, 107–115. [Google Scholar] [CrossRef]
- Wang, T.L.; Ao, L.; Zheng, J.; Sun, Z.B. Reconstructing depth images for time-of-flight cameras based on second-order correlation functions. Photonics 2023, 10, 1223. [Google Scholar] [CrossRef]
- Alenyà, G.; Foix, S.; Torras, C. ToF cameras for active vision in robotics. Sens. Actuators A Phys. 2014, 218, 10–22. [Google Scholar] [CrossRef]
- Tsai, R.Y.; Lenz, R.K. A new technique for fully autonomous and efficient 3 d robotics hand/eye calibration. IEEE Trans. Robot. Autom. 1989, 5, 345–358. [Google Scholar] [CrossRef]
- Enebuse, I.; Foo, M.; Ibrahim, B.S.K.K.; Ahmed, H.; Supmak, F.; Eyobu, O.S. A comparative review of hand-eye calibration techniques for vision guided robots. IEEE Access 2021, 9, 113143–113155. [Google Scholar] [CrossRef]
- Kim, B.; K.R., S.P.; Natarajan, Y.; Danushkumar, V.; An, J.; Lee, D.E. Real-time assessment of rebar intervals using a computer vision-based DVNet model for improved structural integrity. Case Stud. Constr. Mater. 2024, 21, e03707. [Google Scholar] [CrossRef]
- Robotics, A.C. TyBOT: Autonomous Rebar Tying Robot. 2018. Available online: https://www.constructionrobots.com/tybot (accessed on 8 January 2025).
- Ventures, C. SkyMul, SkyTy Automated Rebar Tying System. 2021. Available online: https://www.cemexventures.com/skymul (accessed on 8 January 2025).
- Nishimura, K.T. Development of the rebar tying robot “T-iROBO Rebar”. Constr. Mach. 2018, 54, 13–18. [Google Scholar]
- Wang, H.; Ye, Z.; Wang, D.; Jiang, H.; Liu, P. Synthetic datasets for rebar instance segmentation using mask r-cnn. Buildings 2023, 13, 585. [Google Scholar] [CrossRef]
- Feng, R.; Jia, Y.; Wang, T.; Gan, H. Research on the System Design and Target Recognition Method of the Rebar-Tying Robot. Buildings 2024, 14, 838. [Google Scholar] [CrossRef]
- Bachiller-Burgos, P.; Manso, L.J.; Bustos, P. A variant of the Hough Transform for the combined detection of corners, segments, and polylines. EURASIP J. Image Video Process. 2017, 2017, 32. [Google Scholar] [CrossRef]
- James, T.O. A Hardware Track-Trigger for CMS: At the High Luminosity LHC; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Hassanein, A.S.; Mohammad, S.; Sameer, M.; Ragab, M.E. A survey on Hough transform, theory, techniques and applications. arXiv 2015, arXiv:1502.02160. [Google Scholar]
- Adatrao, S.; Mittal, M. An analysis of different image preprocessing techniques for determining the centroids of circular marks using hough transform. In Proceedings of the 2016 2nd International Conference on Frontiers of Signal Processing (ICFSP), Warsaw, Poland, 15–17 October 2016; pp. 110–115. [Google Scholar]
- Cheng, B.; Deng, L. Vision detection and path planning of mobile robots for rebar binding. J. Field Robot. 2024, 41, 1864–1886. [Google Scholar] [CrossRef]
- Cao, S.; Duan, H.; Guo, S.; Wu, J.; Ai, T.; Jiang, H. BIM-based task planning method for wheeled-legged rebar binding robot. Archit. Eng. Des. Manag. 2024, 20, 656–672. [Google Scholar] [CrossRef]
- Shen, D.H.; Guo, S.; Duan, H.; Ji, K.; Jiang, H. Movement and binding control strategy based on a new type of rebar-binding robot. Ind. Robot. Int. J. Robot. Res. Appl. 2024, 51, 837–846. [Google Scholar] [CrossRef]
- Karur, K.; Sharma, N.; Dharmatti, C.; Siegel, J.E. A survey of path planning algorithms for mobile robots. Vehicles 2021, 3, 448–468. [Google Scholar] [CrossRef]
- Aryan, A.; Bosché, F.; Tang, P. Planning for terrestrial laser scanning in construction: A review. Autom. Constr. 2021, 125, 103551. [Google Scholar] [CrossRef]
- Yan, Y. Research on the A Star Algorithm for Finding Shortest Path. Highlights Sci. Eng. Technol. 2023, 46, 154–161. [Google Scholar] [CrossRef]
- Horaud, R.; Dornaika, F. Hand-eye calibration. Int. J. Robot. Res. 1995, 14, 195–210. [Google Scholar] [CrossRef]
- Koide, K.; Menegatti, E. General hand–eye calibration based on reprojection error minimization. IEEE Robot. Autom. Lett. 2019, 4, 1021–1028. [Google Scholar] [CrossRef]
- Wu, J.; Liu, M.; Zhu, Y.; Zou, Z.; Dai, M.Z.; Zhang, C.; Jiang, Y.; Li, C. Globally optimal symbolic hand-eye calibration. IEEE/ASME Trans. Mechatron. 2020, 26, 1369–1379. [Google Scholar] [CrossRef]
Parameter | Value ± Std. Dev. |
---|---|
Image Axis | Mean Reprojection Error/Pixels |
---|---|
x | 0.07293 |
y | 0.07531 |
Original Coordinate (mm) | X-Axis Movement 50 mm (mm) | Inaccuracy (mm) | Original Coordinate (mm) | Y-Axis Movement 60 mm (mm) | Inaccuracy (mm) |
---|---|---|---|---|---|
324.411 | 275.142 | 0.731 | 267.476 | 209.153 | 1.677 |
202.619 | 153.094 | 0.475 | 267.402 | 208.618 | 1.216 |
198.508 | 148.855 | 0.347 | 144.848 | 85.973 | 1.125 |
321.635 | 272.374 | 0.739 | 144.015 | 85.160 | 1.145 |
318.071 | 269.090 | 1.019 | 21.230 | −38.932 | 0.162 |
194.379 | 144.795 | 0.416 | 18.750 | −40.853 | 0.397 |
567.562 | 518.825 | 1.263 | 267.852 | 208.366 | 0.514 |
437.910 | 388.973 | 1.063 | 20.590 | −38.924 | 1.076 |
Metric | Value |
---|---|
Detection accuracy | >99% |
Detection time per crossing point | <125 ms |
Maximum coordinate transformation error | <2 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Zhang, W.; Li, F.; Guo, M.; Fan, S. Vision-Based Detection, Localization, and Optimized Path Planning for Rebar Intersections in Automated Construction. Appl. Sci. 2025, 15, 7186. https://doi.org/10.3390/app15137186
Li C, Zhang W, Li F, Guo M, Fan S. Vision-Based Detection, Localization, and Optimized Path Planning for Rebar Intersections in Automated Construction. Applied Sciences. 2025; 15(13):7186. https://doi.org/10.3390/app15137186
Chicago/Turabian StyleLi, Chengxiang, Weimin Zhang, Fangxing Li, Meijun Guo, and Shicheng Fan. 2025. "Vision-Based Detection, Localization, and Optimized Path Planning for Rebar Intersections in Automated Construction" Applied Sciences 15, no. 13: 7186. https://doi.org/10.3390/app15137186
APA StyleLi, C., Zhang, W., Li, F., Guo, M., & Fan, S. (2025). Vision-Based Detection, Localization, and Optimized Path Planning for Rebar Intersections in Automated Construction. Applied Sciences, 15(13), 7186. https://doi.org/10.3390/app15137186