Harnessing Biotechnology for the Remediation of Organic Pollutants in Coastal Marine Ecosystems
Abstract
:1. Introduction
2. Methodology
- Peer-reviewed articles published in English.
- Studies focusing on organic pollutants (e.g., hydrocarbons, pesticides, pharmaceuticals, microplastics) in coastal or marine environments.
- Articles discussing biotechnological approaches, such as bioremediation and phytoremediation.
- Publications from the last 15 years (2010–2025) were prioritized to ensure recent and relevant findings, although seminal works predating this period were also included when foundational to the topic.
- Reference lists of key publications were manually reviewed to identify additional sources.
- Data synthesis was thematic, emphasizing pollutant categories, microbial and phytoremediation mechanisms, limitations, and recent technological advancements.
3. Organic Pollution in Coastal Marine Ecosystems
3.1. Persistent Organic Pollutants (POPs)
3.2. Pharmaceutical and Personal Care Products (PPCPs)
3.3. Pesticides and Herbicides
3.4. Microplastics and Synthetic Polymers
4. Biotechnological Methods for Remediation
4.1. Bioremediation
4.2. Phytoremediation Approaches
- Phytoextraction
- b.
- Phytodegradation (Phytotransformation)
- c.
- Phytostabilization
- d.
- Phytovolatilization
- e.
- Phytofiltration
4.3. Limitations and Challenges of Bioremediation and Phytoremediation in Marine Environments
- Environmental Constraints
- b.
- Limited Bioavailability of Pollutants
- c.
- Potential Formation of Toxic Intermediates
- d.
- Compatibility with Native Species and Ecological Balance
- e.
- Economic and Regulatory Constraints
5. Current Advances in Biotechnological Remediation
5.1. Advances in Bioremediation
- Genetic and Metabolic Engineering: Techniques such as CRISPR-Cas9 and recombinant DNA technology have been used to engineer strains of Pseudomonas, Burkholderia and Alcanivorax with enhanced degradation efficiency and stress tolerance [100,101]. These engineered microbes can degrade persistent compounds like PAHs and PCBs even under harsh marine conditions.
- Synthetic Biology: Engineered microbial consortia now include synthetic operons, quorum-sensing circuits and pollutant-responsive promoters, which enable coordinated and pollutant-triggered degradation [102,103]. Moreover, biosensors developed from synthetic biology tools can monitor contaminant levels and remediation performance in situ [103].
- Nanotechnology: Nanoparticles such as iron oxides, carbon nanotubes and silver nanoparticles are used to improve adsorption and delivery of microbial inocula. These are often embedded in hydrogel matrices made from marine-compatible polymers like alginate and chitosan, which protect microbes from environmental stress while enhancing pollutant interaction [104,105].
- Bioelectrochemical Systems (BESs): BES technologies such as microbial fuel cells (MFCs) combine microbial activity with electron flow mechanisms to enhance the oxidation and reduction of organic pollutants. These systems are especially effective for degrading petroleum hydrocarbons by boosting electron transfer between microbes and electrodes, hence improving reaction rates and system control [106,107].
- Metagenomics and Bioinformatics: High-throughput metagenomic sequencing and bioinformatic analyses allow for the discovery of novel pollutant-degrading genes, the design of custom microbial consortia and the monitoring of microbial succession and pollutant breakdown in real time [99].
5.2. Advances in Phytoremediation
- Microbial Inoculation: Bioaugmentation of plant roots with beneficial microbes such as Bacillus and Rhizobium enhances degradation capacity and stress resilience [108].
- Nanomaterial-Assisted Phytoremediation: Nanomaterials like metal oxide nanoparticles, biochar-based composites and nanoscale zero-valent iron have emerged as powerful tools in phytoremediation. They help in phytoremediation by removing pollutants, improving pollutant uptake, facilitating enzyme activity and stimulating root exudates that attract pollutant-degrading bacteria [109]. For example, nanoparticles can bind to pollutants, making them easier for plants to absorb. They can also deliver pollutants to specific parts of the plant such as the roots or leaves. However, the use of nanotechnology in phytoremediation is still in its early stages but it has the potential to make it more effective and efficient [110].
- Genetic Improvements: Genetic modifications have been used to enhance traits such as heavy metal tolerance, root depth, exudate diversity, and enzymatic degradation capacity [111]. An example is the use of engineered Indian mustard (Brassica juncea) to tolerate lead uptake and clean contaminated soil. However, the release of genetically modified plants into natural environments raises ethical and regulatory concerns [110].
- Development and Enhancement of Hyperaccumulator Plants: Hyperaccumulator plants have the natural ability to absorb and accumulate high levels of heavy metals in their tissues; hence, they are ideal for phytoremediation, and they can be used for the removal of heavy metals from contaminated soil and water bodies. Selective breeding, tissue culture and genetic modification have been employed by researchers to enhance or improve hyperaccumulator plant abilities for practical application. However, their use is only applicable in specific soil or waters and may pose environmental risks including the reintroduction of metals into food chains through plant biomass [110].
- Artificial Intelligence and Smart Monitoring: The application of artificial intelligence (AI) and remote sensing technologies offers a data-driven approach to phytoremediation management. AI algorithms can model contaminant dispersion, forecast plant growth, and optimize species selection, while drones and satellite imagery allow real-time monitoring of pollutant reduction, biomass accumulation, and vegetation health across large-scale remediation sites [110].
Biotechnological Application | Outcome | Challenges | Study |
---|---|---|---|
Bioremediation | The identification of effective bioremediation techniques, including biostimulation, bioaugmentation, and the use of biosurfactants | Environmental factors that affect microorganisms | Rahmati et al. [12] |
The use of genetically engineered microorganisms for bioremediation | The validation of the effectiveness of microorganisms in the remediation of pollutants | The potential negative effects of genetically engineered microorganisms on the environment and human health | Rafeeq et al. [56] |
Bioremediation | The identification of effective remediation techniques and characterization of pollutants in marine ecosystems | Aliko et al. [14] | |
Phytoremediation | The confirmation of the viability of the effectiveness of the use of bacteria inoculants in enhancing plants’ capacity for the remediation of organic pollutants | The potential for causing further damage to the ecosystem | Girolkar, Thawale and Juwarkar [8] |
Phytoremediation | A comprehensive evaluation of phytoremediation approaches | Negligible capacity for some plants to remediate pollutants | Sharma et al. [114] |
6. Critical Analysis of Phytoremediation vs. Microbial Remediation
6.1. Effectiveness
6.2. Limitations
7. Future Directions in Biotechnological Approaches
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hilmi, N.; Chami, R.; Sutherland, M.D.; Hall-Spencer, J.M.; Lebleu, L.; Benitez, M.B.; Levin, L.A. The Role of Blue Carbon in Climate Change Mitigation and Carbon Stock Conservation. Front. Clim. 2021, 3, 710546. [Google Scholar] [CrossRef]
- Piccolo, M.C. Effects of rainfall extreme events on coastal marine ecosystems. In Precipitation: Earth Surface Responses and Processes; Elsevier: Amsterdam, The Netherlands, 2021; pp. 261–285. [Google Scholar] [CrossRef]
- Liu, J.; Failler, P.; Ramrattan, D. Blue carbon accounting to monitor coastal blue carbon ecosystems. J. Environ. Manag. 2024, 352, 120008. [Google Scholar] [CrossRef] [PubMed]
- Bandilla, K.W. Carbon capture and storage. In Future Energy: Improved, Sustainable and Clean Options for Our Planet; Elsevier: Amsterdam, The Netherlands, 2020; pp. 669–692. [Google Scholar] [CrossRef]
- Nayak, N.; Mehrotra, R.; Mehrotra, S. Carbon biosequestration strategies: A review. Carbon Capture Sci. Technol. 2022, 4, 100065. [Google Scholar] [CrossRef]
- Taylor, S.F.W.; Roberts, M.J.; Milligan, B.; Ncwadi, R. Measurement and implications of marine food security in the Western Indian Ocean: An impending crisis? Food Secur. 2019, 11, 1395–1415. [Google Scholar] [CrossRef]
- Guo, W.; Pan, B.; Sakkiah, S.; Yavas, G.; Ge, W.; Zou, W.; Tong, W.; Hong, H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health 2019, 16, 4361. [Google Scholar] [CrossRef]
- Girolkar, S.; Thawale, P.; Juwarkar, A. Bacteria-assisted phytoremediation of heavy metals and organic pollutants: Challenges and future prospects. In Bioremediation for Environmental Sustainability: Approaches to Tackle Pollution for Cleaner and Greener Society; Elsevier: Amsterdam, The Netherlands, 2021; pp. 247–267. [Google Scholar] [CrossRef]
- Ufarté, L.; Laville, É.; Duquesne, S.; Potocki-Veronese, G. Metagenomics for the discovery of pollutant degrading enzymes. Biotechnol. Adv. 2015, 33, 1845–1854. [Google Scholar] [CrossRef]
- Avellan, A.; Duarte, A.; Rocha-Santos, T. Organic contaminants in marine sediments and seawater: A review for drawing environmental diagnostics and searching for informative predictors. Sci. Total Environ. 2022, 808, 152012. [Google Scholar] [CrossRef]
- Bakiu, R.; Roncarati, A.; Kamberi, E. Editorial: Inorganic and organic pollutants in marine and coastal environments. Front. Mar. Sci. 2023, 10, 1245833. [Google Scholar] [CrossRef]
- Rahmati, F.; Lajayer, B.A.; Shadfar, N.; van Bodegom, P.M.; van Hullebusch, E.D. A Review on Biotechnological Approaches Applied for Marine Hydrocarbon Spills Remediation. Microorganisms 2022, 10, 1289. [Google Scholar] [CrossRef]
- Kuppan, N.; Padman, M.; Mahadeva, M.; Srinivasan, S.; Devarajan, R. A comprehensive review of sustainable bioremediation techniques: Eco friendly solutions for waste and pollution management. Waste Manag. Bull. 2024, 2, 154–171. [Google Scholar] [CrossRef]
- Aliko, V.; Multisanti, C.R.; Turani, B.; Faggio, C. Get rid of marine pollution: Bioremediation an innovative, attractive, and successful cleaning strategy. Sustainability 2022, 14, 11784. [Google Scholar] [CrossRef]
- Ezeonu, C.S.; Tagbo, R.; Anike, E.N.; Oje, O.A.; Onwurah, I.N.E. Biotechnological Tools for Environmental Sustainability: Prospects and Challenges for Environments in Nigeria—A Standard Review. Biotechnol. Res. Int. 2012, 2012, 450802. [Google Scholar] [CrossRef] [PubMed]
- Encarnação, T.; Ramos, P.; Mohammed, D.; McDonald, J.; Lizzul, M.; Nicolau, N.; da Graça Campos, M.; Sobral, A.J. Bioremediation using microalgae and cyanobacteria and biomass valorisation. In Marine Organisms: A Solution to Environmental Pollution? Uses in Bioremediation and in Biorefinery; Springer International Publishing: Cham, Switzerland, 2023; pp. 5–28. [Google Scholar]
- Mohammed, D.; Alaoui, H.E.; Ghaffour, N.E. Biodegradation of environmental pollutants by marine yeasts. In Marine Organisms: A Solution to Environmental Pollution? Uses in Bioremediation and in Biorefinery; Springer International Publishing: Cham, Switzerland, 2023; pp. 79–91. [Google Scholar]
- Bala, S.; Garg, D.; Thirumalesh, B.V.; Sharma, M.; Sridhar, K.; Inbaraj, B.S.; Tripathi, M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. Toxics 2022, 10, 484. [Google Scholar] [CrossRef]
- Barone, G.D.; Rodríguez-Seijo, A.; Parati, M.; Johnston, B.; Erdem, E.; Cernava, T.; Zhu, Z.; Liu, X.; Axmann, I.M.; Lindblad, P.; et al. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. Environ. Sci. Ecotechnology 2024, 20, 100407. [Google Scholar] [CrossRef] [PubMed]
- Alkhadher, S.A.A.; Suratman, S.; Zakaria, M.P. Occurrence and assessment of organic pollutants residues in the aquatic environment of the coastal sediments. Sustainability 2023, 15, 8365. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- Camacho-Jiménez, L.; González-Ruiz, R.; Yepiz-Plascencia, G. Persistent organic pollutants (POPs) in marine crustaceans: Bioaccumulation, physiological and cellular responses. Mar. Environ. Res. 2023, 192, 106184. [Google Scholar] [CrossRef]
- D’aGostino, F.; Bellante, A.; Quinci, E.; Gherardi, S.; Placenti, F.; Sabatino, N.; Buffa, G.; Avellone, G.; Di Stefano, V.; Del Core, M. Persistent and emerging organic pollutants in the marine coastal environment of the Gulf of Milazzo (Southern Italy): Human health risk assessment. Front. Environ. Sci. 2020, 8, 117. [Google Scholar] [CrossRef]
- Saidon, N.B.; Szabó, R.; Budai, P.; Lehel, J. Trophic transfer and biomagnification potential of environmental contaminants (heavy metals) in aquatic ecosystems. Environ. Pollut. 2023, 340, 122815. [Google Scholar] [CrossRef]
- Lan, J.; Liu, P.; Hu, X.; Zhu, S. Harmful algal blooms in eutrophic marine environments: Causes, monitoring, and treatment. Water 2024, 16, 2525. [Google Scholar] [CrossRef]
- Ochs, C.; Garrison, K.; Saxena, P.; Romme, K.; Sarkar, A. Contamination of aquatic ecosystems by persistent organic pollutants (POPs) originating from landfills in Canada and the United States: A rapid scoping review. Sci. Total Environ. 2024, 924, 171490. [Google Scholar] [CrossRef]
- Zacharia, J.T. Degradation pathways of persistent organic pollutants (POPs) in the environment. In Persistent Organic Pollutants; IntechOpen: London, UK, 2019; pp. 17–30. [Google Scholar]
- Mudhoo, A.; Thayalan, G.; Muthoora, N.J.; Muthoora, M.N.; Oozeer, B.Z.; Rago, Y.P.; Ramphul, M.P.; Valaydon, A.K.; Kumar, S. Dioxins and furans: Sources, impacts and remediation. In Pollutant Diseases, Remediation and Recycling; Springer: Cham, Switzerland, 2013; pp. 479–541. [Google Scholar]
- Girones, L.; Palacios, P.; Oliva, A.L.; Marcovecchio, J.E.; Arias, A.H. Organochlorine pesticides (OCPs) in coastal marine environments: Levels, fate, behavior, and effects on biota. In Marine Environments: Diversity, Threats and Conservation; Nova Science Publishers: Hauppauge, NY, USA, 2020; pp. 143–198. [Google Scholar]
- Neff, J.M. Bioaccumulation in Marine Organisms: Effect of Contaminants from Oil Well Produced Water; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Patel, A.B.; Shaikh, S.; Jain, K.R.; Desai, C.; Madamwar, D. Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Front. Microbiol. 2020, 11, 562813. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Petrol. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Duran, R.; Cravo-Laureau, C.; Brussaard, C. Role of environmental factors and microorganisms in determining the fate of polycyclic aromatic hydrocarbons in the marine environment. FEMS Microbiol. Rev. 2016, 40, 814–830. [Google Scholar] [CrossRef]
- Cangola, J.; Abagale, F.K.; Cobbina, S.J. A systematic review of pharmaceutical and personal care products as emerging contaminants in waters: The panorama of West Africa. Sci. Total Environ. 2024, 911, 168633. [Google Scholar] [CrossRef] [PubMed]
- Kulik, K.; Lenart-Boroń, A.; Wyrzykowska, K. Impact of antibiotic pollution on the bacterial population within surface water with special focus on mountain rivers. Water 2023, 15, 975. [Google Scholar] [CrossRef]
- An, X.; Tao, Y.; Wu, J.; Li, Z.; Li, H.; Chen, S.; Pang, Y. Occurrence, toxicity, ecological risk, and remediation of diclofenac in surface water environments: A review with a focus on China. Environ. Toxicol. Chem. 2025, vgaf005. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Song, X.; Yang, T.; Wang, H.; Liang, Y.; Huang, L.; Zeng, H. Endocrine disruption of propylparaben in the male mosquitofish (Gambusia affinis): Tissue injuries and abnormal gene expressions of hypothalamic-pituitary-gonadal-liver axis. Int. J. Environ. Res. Public Health 2023, 20, 3557. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Yang, F.; Yan, L.; Lin, C.; Shen, C. Characteristics, source analysis, and risk assessment of organochlorine pesticide contamination in nearshore surface sediments of a tropical tourist island. Front. Mar. Sci. 2025, 11, 1513515. [Google Scholar] [CrossRef]
- Kaushal, J.; Khatri, M.; Arya, S.K. A treatise on Organophosphate pesticide pollution: Current strategies and advancements in their environmental degradation and elimination. Ecotoxicol. Environ. Saf. 2021, 207, 111483. [Google Scholar] [CrossRef]
- Gregoire, C.; Elsaesser, D.; Huguenot, D.; Lange, J.; Lebeau, T.; Merli, A.; Mose, R.; Passeport, E.; Payraudeau, S.; Schütz, T.; et al. Mitigation of agricultural nonpoint-source pesticide pollution in artificial wetland ecosystems. Environ. Chem. Lett. 2009, 7, 205–231. [Google Scholar] [CrossRef]
- Singh, B.A.; Mandal, K.O. Environmental Impact of Pesticides Belonging to Newer Chemistry. Integr. Pest Manag. 2013, 152–190. [Google Scholar]
- Pérez, G.L.; Vera, M.S.; Miranda, L.A. Effects of herbicide glyphosate and glyphosate-based formulations on aquatic ecosystems. In Herbicides and Environment; IntechOpen: London, UK, 2011; pp. 343–368. [Google Scholar]
- Carpenter, S.R. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus. Proc. Natl. Acad. Sci. USA 2005, 102, 10002–10005. [Google Scholar] [CrossRef]
- Horton, A.A.; Dixon, S.J. Microplastics: An introduction to environmental transport processes. WIREs Water 2018, 5, e1268. [Google Scholar] [CrossRef]
- Gateuille, D.; Naffrechoux, E. Transport of persistent organic pollutants: Another effect of microplastic pollution? WIREs Water 2022, 9, e1600. [Google Scholar] [CrossRef]
- Ali, M.; Xu, D.; Yang, X.; Hu, J. Microplastics and PAHs mixed contamination: An in-depth review on the sources, co-occurrence, and fate in marine ecosystems. Water Res. 2024, 257, 121622. [Google Scholar] [CrossRef] [PubMed]
- Ohore, O.E.; Zhang, S. Endocrine disrupting effects of bisphenol A exposure and recent advances on its removal by water treatment systems. A review. Sci. Afr. 2019, 5, e00135. [Google Scholar] [CrossRef]
- Loffredo, E.; Gattullo, C.E.; Traversa, A.; Senesi, N. Potential of various herbaceous species to remove the endocrine disruptor bisphenol A from aqueous media. Chemosphere 2010, 80, 1274–1280. [Google Scholar] [CrossRef]
- Marmara, D.; Brundo, M.V.; Pecoraro, R.; Scalisi, E.M.; Contino, M.; Sica, C.; Ferruggia, G.; Indelicato, S.; Velardita, R.; Tiralongo, F.; et al. Plastic additives in commercial fish of Aegean and Ionian Seas and potential hazard to human health. Front. Mar. Sci. 2024, 11, 1334237. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Zhang, C.-M.; Yuan, Q.-Q.; Wu, K. New insight into the effect of microplastics on antibiotic resistance and bacterial community of biofilm. Chemosphere 2023, 335, 139151. [Google Scholar] [CrossRef]
- Vagi, M.C.; Petsas, A.S.; Kostopoulou, M.N. Potential effects of persistent organic contaminants on marine biota: A review on recent research. Water 2021, 13, 2488. [Google Scholar] [CrossRef]
- Maglione, G.; Zinno, P.; Tropea, A.; Mussagy, C.U.; Dufossé, L.; Giuffrida, D.; Mondello, A. Microbes’ role in environmental pollution and remediation: A bioeconomy focus approach. AIMS Microbiol. 2024, 10, 723–755. [Google Scholar] [CrossRef]
- Hu, F.; Wang, P.; Li, Y.; Ling, J.; Ruan, Y.; Yu, J.; Zhang, L. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges. Environ. Res. 2023, 239, 117211. [Google Scholar] [CrossRef] [PubMed]
- Udume, O.A.; Abu, G.O.; Stanley, H.O.; Vincent-Akpu, I.F.; Momoh, Y.; Eze, M.O. Biostimulation of petroleum-contaminated soil using organic and inorganic amendments. Plants 2023, 12, 431. [Google Scholar] [CrossRef]
- Oro, C.E.D.; Puton, B.M.S.; Venquiaruto, L.D.; Dallago, R.M.; Tres, M.V. Effective microbial strategies to remediate contaminated agricultural soils and conserve functions. Agronomy 2024, 14, 2637. [Google Scholar] [CrossRef]
- Rafeeq, H.; Afsheen, N.; Rafique, S.; Arshad, A.; Intisar, M.; Hussain, A.; Bilal, M.; Iqbal, H.M. Genetically engineered microorganisms for environmental remediation. Chemosphere 2023, 310, 136751. [Google Scholar] [CrossRef]
- Kour, D.; Khan, S.S.; Kour, H.; Kaur, T.; Devi, R.; Judy, C.; Rai, P.K.; McQuestion, C.; Spells, S.; Bianchi, A.; et al. Microbe-mediated bioremediation: Current research and future challenges. J. Appl. Biol. Biotechnol. 2022, 10, 6–24. [Google Scholar] [CrossRef]
- Furukawa, K.; Fujihara, H. Microbial degradation of polychlorinated biphenyls: Biochemical and molecular features. J. Biosci. Bioeng. 2008, 105, 433–449. [Google Scholar] [CrossRef]
- Parnell, J.J.; Denef, V.J.; Park, J.; Tsoi, T.; Tiedje, J.M. Environmentally relevant parameters affecting PCB degradation: Carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Biodegradation 2010, 21, 147–156. [Google Scholar] [CrossRef]
- Alvarez, P.J.; Vogel, T.M. Substrate interactions of benzene, toluene, and para-xylene during microbial degradation by pure cultures and mixed culture aquifer slurries. Appl. Environ. Microbiol. 1991, 57, 2981–2985. [Google Scholar] [CrossRef]
- Tiehm, A.; Fritzsche, C. Utilization of solubilized and crystalline mixtures of polycyclic aromatic hydrocarbons by a Mycobacterium sp. Appl. Microbiol. Biotechnol. 1995, 42, 964–968. [Google Scholar] [CrossRef]
- Hennessee, C.T.; Li, Q.X.; Parales, R.E. Effects of polycyclic aromatic hydrocarbon mixtures on degradation, gene expression, and metabolite production in four mycobacterium species. Appl. Environ. Microbiol. 2016, 82, 3357–3369. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef]
- Awa, S.H.; Hadibarata, T. Removal of heavy metals in contaminated soil by phytoremediation mechanism: A review. Water Air Soil Pollut. 2020, 231, 47. [Google Scholar] [CrossRef]
- Priya, A.K.; Muruganandam, M.; Ali, S.S.; Kornaros, M. Clean-up of heavy metals from contaminated soil by phytoremediation: A multidisciplinary and eco-friendly approach. Toxics 2023, 11, 422. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Wang, Y.; Tan, S.N.; Yusof, M.L.M.; Ghosh, S.; Chen, Z. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef]
- Gong, Y.; Chen, J.; Pu, R. The enhanced removal and phytodegradation of sodium dodecyl sulfate (SDS) in wastewater using controllable water hyacinth. Int. J. Phytoremediat. 2019, 21, 1080–1089. [Google Scholar] [CrossRef]
- de Souza, T.D.; Borges, A.C.; Braga, A.F.; Veloso, R.W.; de Matos, A.T. Phytoremediation of arsenic-contaminated water by Lemna Valdiviana: An optimization study. Chemosphere 2019, 234, 402–408. [Google Scholar] [CrossRef]
- Singh, V.; Pandey, B.; Suthar, S. Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system. Ecotoxicol. Environ. Saf. 2019, 179, 88–95. [Google Scholar] [CrossRef]
- Yanitch, A.; Kadri, H.; Frenette-Dussault, C.; Joly, S.; Pitre, F.E.; Labrecque, M. A four-year phytoremediation trial to decontaminate soil polluted by wood preservatives: Phytoextraction of arsenic, chromium, copper, dioxins and furans. Int. J. Phytoremediat. 2020, 22, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Kafle, A.; Timilsina, A.; Gautam, A.; Adhikari, K.; Bhattarai, A.; Aryal, N. Phytoremediation: Mechanisms, plant selection and enhancement by natural and synthetic agents. Environ. Adv. 2022, 8, 100203. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, Z.; Liu, M.; Liu, H.; Wang, Y.; Wen, X.; Zhang, Y.; Yan, S. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecol. Eng. 2016, 95, 753–762. [Google Scholar] [CrossRef]
- Singh, B.M.; Singh, D.; Dhal, N.K. Enhanced phytoremediation strategy for sustainable management of heavy metals and radionuclides. Case Stud. Chem. Environ. Eng. 2022, 5, 100176. [Google Scholar] [CrossRef]
- Tang, K.H.D. Phytoremediation: Where do we go from here? Biocatal. Agric. Biotechnol. 2023, 50, 102721. [Google Scholar] [CrossRef]
- Borymski, S.; Cycoń, M.; Beckmann, M.; Mur, L.A.; Piotrowska-Seget, Z. Plant species and heavy metals affect biodiversity of microbial communities associated with metal-tolerant plants in metalliferous soils. Front. Microbiol. 2018, 9, 1425. [Google Scholar] [CrossRef]
- Bakshe, P.; Jugade, R. Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. J. Hazard. Mater. Adv. 2023, 10, 100293. [Google Scholar] [CrossRef]
- Koptsik, G.; Spiers, G.; Koptsik, S.; Beckett, P. Use of Organic Amendments in Phytoremediation of Metal-Contaminated Soils: Prospects and Challenges. In Handbook of Assisted and Amendment: Enhanced Sustainable Remediation Technology; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 205–233. [Google Scholar]
- Pintarič, M.; Štuhec, A.; Tratnik, E.; Langerholc, T. Spent mushroom substrate improves microbial quantities and enzymatic activity in soils of different farming systems. Microorganisms 2024, 12, 1521. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Delavar, M.A. Modelling phytoremediation: Concepts, methods, challenges and perspectives. Soil Environ. Health 2024, 2, 100062. [Google Scholar] [CrossRef]
- Kumar, A.; Dadhwal, M.; Mukherjee, G.; Srivastava, A.; Gupta, S.; Ahuja, V.; Iqbal, B. Phytoremediation: Sustainable approach for heavy metal pollution. Scientifica 2024, 2024, 3909400. [Google Scholar] [CrossRef]
- Wang, C.; Yue, L.; Cheng, B.; Chen, F.; Zhao, X.; Wang, Z.; Xing, B. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: Beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environ. Sci. Nano 2022, 9, 302–312. [Google Scholar] [CrossRef]
- Ahmed, M.; Singh, V.K.; Upadhyay, R.S. Brassica rhizosphere-microbe interactions and their role in phytoremediation. In The Plant Family Brassicaceae: Contribution Towards Phytoremediation; Springer: Dordrecht, The Netherlands, 2012; pp. 139–152. [Google Scholar]
- Doty, S.L.; Freeman, J.L.; Cohu, C.M.; Burken, J.G.; Firrincieli, A.; Simon, A.; Khan, Z.; Isebrands, J.G.; Lukas, J.; Blaylock, M.J. Enhanced degradation of TCE on a superfund site using endophyte-assisted poplar tree phytoremediation. Environ. Sci. Technol. 2017, 51, 10050–10058. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, L.; Benavides, L.; Rodriguez, R.; Serrezuela, W.R. Extraction in laboratory of heavy metals through rhizofiltration using the plant Zea mays (maize). Int. J. Appl. Environ. Sci. 2018, 13, 9–26. [Google Scholar]
- Woraharn, S.; Meeinkuirt, W.; Phusantisampan, T.; Chayapan, P. Rhizofiltration of cadmium and zinc in hydroponic systems. Water Air Soil Pollut. 2021, 232, 204. [Google Scholar] [CrossRef]
- Singh, S.; Kaushik, A.; Bendi, A.; Chetal, A.; Ramakrishna, D.S.; Praveen, P.L. Constructed wetlands as bioeconomic solutions: Rhizofiltration with macrophytes for heavy metal removal. Emergent Mater. 2024, 8, 75–83. [Google Scholar] [CrossRef]
- Kristanti, R.A.; Ngu, W.J.; Yuniarto, A.; Hadibarata, T. Rhizofiltration for Removal of Inorganic and Organic Pollutants in Groundwater: A Review. Biointerface Res. Appl. Chem. 2021, 11, 12326–12347. [Google Scholar] [CrossRef]
- Matilda, M.I.; Samuel, H.S. Bioremediation of oil spill: Concept, methods and applications. Discov. Chem. 2024, 1, 1–18. [Google Scholar] [CrossRef]
- Mariano, D.C.; Dias, G.M.; Castro, M.R.; Tschoeke, D.A.; de Oliveira, F.J.; Sérvulo, E.F.C.; Neves, B.C. Exploring the diversity and functional profile of microbial communities of Brazilian soils with high salinity and oil contamination. Heliyon 2024, 10, e34336. [Google Scholar] [CrossRef]
- Robinson, P.K. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015, 59, 1–41. [Google Scholar] [CrossRef]
- Ahmad, N.B.; Jaafaru, M.S.; Isa, Z.; Abdulhamid, Y.; Kakudi, R.A.; Ugya, A.Y.; Meguellati, K. High pollution loads engineer oxygen dynamics, ecological niches, and pathogenicity shifts in freshwater environments. J. Hazard. Mater. Adv. 2024, 14, 100425. [Google Scholar] [CrossRef]
- Gibson, D.T.; Parales, R.E. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr. Opin. Biotechnol. 2000, 11, 236–243. [Google Scholar] [CrossRef]
- Shi, J.; Jiang, J.; Chen, Q.; Wang, L.; Nian, K.; Long, T. Production of higher toxic intermediates of organic pollutants during chemical oxidation processes: A review. Arab. J. Chem. 2023, 16, 104856. [Google Scholar] [CrossRef]
- Garbisu, C.; Garaiyurrebaso, O.; Epelde, L.; Grohmann, E.; Alkorta, I. Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front. Microbiol. 2017, 8, 1966. [Google Scholar] [CrossRef] [PubMed]
- Majeed, L.R.; Sharma, D.; Rautela, K.S.; Kumar, M. Sustainable agriculture, aquaculture and phytoremediation through freshwater macrophytes: A comprehensive review of mineral uptake, soil health, and water quality dynamics. Discov. Water 2025, 5, 1. [Google Scholar] [CrossRef]
- McHughen, A. A critical assessment of regulatory triggers for products of biotechnology: Product vs. process. GM Crops Food 2016, 7, 125–158. [Google Scholar] [CrossRef]
- Davletgildeeva, A.T.; Kuznetsov, N.A. Bioremediation of polycyclic aromatic hydrocarbons by means of bacteria and bacterial enzymes. Microorganisms 2024, 12, 1814. [Google Scholar] [CrossRef]
- Oubohssaine, M.; Dahmani, I. Phytoremediation: Harnessing plant power and innovative technologies for effective soil remediation. Plant Stress 2024, 14, 100578. [Google Scholar] [CrossRef]
- Raklami, A.; Meddich, A.; Oufdou, K.; Baslam, M. Plants-microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses. Int. J. Mol. Sci. 2022, 23, 5031. [Google Scholar] [CrossRef] [PubMed]
- Ayilara, M.S.; Babalola, O.O. Bioremediation of environmental wastes: The role of microorganisms. Front. Agron. 2023, 5, 1183691. [Google Scholar] [CrossRef]
- Duncker, K.E.; Holmes, Z.A.; You, L. Engineered microbial consortia: Strategies and applications. Microb. Cell Factories 2021, 20, 211. [Google Scholar] [CrossRef]
- Chen, B.; He, J.; Tian, K.; Qu, J.; Hong, L.; Lin, Q.; Yang, K.; Ma, L.; Xu, X. Research progress on detection of pathogens in medical wastewater by electrochemical biosensors. Molecules 2024, 29, 3534. [Google Scholar] [CrossRef] [PubMed]
- Perelo, L.W. Review: In situ and bioremediation of organic pollutants in aquatic sediments. J. Hazard. Mater. 2010, 177, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Aleti, G.; Naidu, R.; Puschenreiter, M.; Mahmood, Q.; Rahman, M.M.; Wang, F.; Shaheen, S.; Syed, J.H.; Reichenauer, T.G. Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. Sci. Total Environ. 2018, 628–629, 1582–1599. [Google Scholar] [CrossRef] [PubMed]
- Michalak, I. The application of seaweeds in environmental biotechnology. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2020; Volume 95, pp. 85–111. [Google Scholar] [CrossRef]
- Sharma, P.; Bano, A.; Singh, S.P.; Dubey, N.K.; Chandra, R.; Iqbal, H.M. Recent advancements in microbial-assisted remediation strategies for toxic contaminants. Clean. Chem. Eng. 2022, 2, 100020. [Google Scholar] [CrossRef]
- Mandeep; Shukla, P. Microbial Nanotechnology for Bioremediation of Industrial Wastewater. Front. Microbiol. 2020, 11, 590631. [Google Scholar] [CrossRef]
- Song, B.; Xu, P.; Chen, M.; Tang, W.; Zeng, G.; Gong, J.; Zhang, P.; Ye, S. Using nanomaterials to facilitate the phytoremediation of contaminated soil. Crit. Rev. Environ. Sci. Technol. 2019, 49, 791–824. [Google Scholar] [CrossRef]
- Park, J.K.; Oh, K. Advancements in Phytoremediation Research for Soil and Water Resources: Harnessing Plant Power for Environmental Cleanup. Sustainability 2023, 15, 13901. [Google Scholar] [CrossRef]
- Shams, M.; Nezhad, N.T.; Dehghan, A.; Alidadi, H.; Paydar, M.; Mohammadi, A.A.; Zarei, A. Heavy metals exposure, carcinogenic and non-carcinogenic human health risks assessment of groundwater around mines in Joghatai, Iran. Int. J. Environ. Anal. Chem. 2020, 102, 1884–1899. [Google Scholar] [CrossRef]
- Zheng, T.; Li, J.; Ji, Y.; Zhang, W.; Fang, Y.; Xin, F.; Dong, W.; Wei, P.; Ma, J.; Jiang, M. Progress and Prospects of Bioelectrochemical Systems: Electron Transfer and Its Applications in the Microbial Metabolism. Front. Bioeng. Biotechnol. 2020, 8, 10. [Google Scholar] [CrossRef]
- Fatehbasharzad, P.; Aliasghari, S.; Tabrizi, I.S.; Khan, J.A.; Boczkaj, G. Microbial fuel cell applications for removal of petroleum hydrocarbon pollutants: A review. Water Resour. Ind. 2022, 28, 100178. [Google Scholar] [CrossRef]
- Sharma, J.K.; Kumar, N.; Singh, N.P.; Santal, A.R. Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front. Plant Sci. 2023, 14, 1076876. [Google Scholar] [CrossRef] [PubMed]
- Delgado-González, C.R.; Madariaga-Navarrete, A.; Fernández-Cortés, J.M.; Islas-Pelcastre, M.; Oza, G.; Iqbal, H.M.N.; Sharma, A. Advances and Applications of Water Phytoremediation: A Potential Biotechnological Approach for the Treatment of Heavy Metals from Contaminated Water. Int. J. Environ. Res. Public Health 2021, 18, 5215. [Google Scholar] [CrossRef] [PubMed]
Category | Sources | Effects on Marine Ecosystems | References |
---|---|---|---|
Persistent Organic Pollutants (POPs) | Industrial chemicals (PCBs), combustion byproducts (dioxins, furans), pesticides (OCPs—DDT, aldrin, dieldrin). Incomplete combustion of fossil fuels, petrochemical spills, biomass burning. | Bioaccumulate and biomagnify, causing reproductive disorders, immune suppression, endocrine disruption. Mutagenic and carcinogenic; accumulate in sediments; affect benthic organisms; microbial degradation by Pseudomonas and Alcanivorax. | [22,23,24,25,26,27,28,29,30,31,32,33] |
Pharmaceutical and Personal Care Products (PPCPs) | Wastewater effluents, hospital discharge, improper medication disposal. | Cause antibiotic resistance, physiological dysfunction in aquatic organisms, endocrine disruption leading to reproductive failure. | [34,35,36,37] |
Pesticides and Herbicides | Agricultural runoff, urban landscaping, industrial discharge. | Endocrine disruption in fish and birds, nervous system disorders, disruption of photosynthesis in phytoplankton, leading to hypoxia and biodiversity loss. | [38,39,40,41,42,43] |
Microplastics and Synthetic Polymers | Breakdown of plastic waste, microbeads in personal care products, synthetic fibers from textiles. | Act as carriers for pollutants like PAHs and PCBs; disrupt hormone regulation (e.g., BPA and phthalates); alter microbial community structures. | [44,45,46,47,48,49,50] |
Pollutant | Representative Microorganisms | Peripheral Metabolic Pathways | Central Metabolic Pathways | References |
---|---|---|---|---|
Antibiotics | Pseudomonas spp., Bacillus spp., Acinetobacter spp., Streptomyces spp. | Hydrolysis, oxidation, deamination | Tricarboxylic acid (TCA) cycle | [57] |
Polychlorinated Biphenyls (PCBs) | Burkholderia xenovorans, Pseudomonas putida, Rhodococcus spp. | Biphenyl degradation pathway (dioxygenase-mediated oxidation to chlorobenzoates) | β-ketoadipate pathway, TCA cycle | [58,59] |
Polycyclic Aromatic Hydrocarbons (PAHs) | Mycobacterium vanbaalenii, Sphingomonas spp., Pseudomonas aeruginosa | Dioxygenase-mediated oxidation to catechols and quinones | β-ketoadipate pathway, TCA cycle | [60,61,62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinsemolu, A.A.; Onyeaka, H.N. Harnessing Biotechnology for the Remediation of Organic Pollutants in Coastal Marine Ecosystems. Appl. Sci. 2025, 15, 6921. https://doi.org/10.3390/app15126921
Akinsemolu AA, Onyeaka HN. Harnessing Biotechnology for the Remediation of Organic Pollutants in Coastal Marine Ecosystems. Applied Sciences. 2025; 15(12):6921. https://doi.org/10.3390/app15126921
Chicago/Turabian StyleAkinsemolu, Adenike A., and Helen N. Onyeaka. 2025. "Harnessing Biotechnology for the Remediation of Organic Pollutants in Coastal Marine Ecosystems" Applied Sciences 15, no. 12: 6921. https://doi.org/10.3390/app15126921
APA StyleAkinsemolu, A. A., & Onyeaka, H. N. (2025). Harnessing Biotechnology for the Remediation of Organic Pollutants in Coastal Marine Ecosystems. Applied Sciences, 15(12), 6921. https://doi.org/10.3390/app15126921