Point-of-Care Testing (POCT) for Cancer and Chronic Disease Management in the Workplace: Opportunities and Challenges in the Era of Digital Health Passports
Abstract
1. Introduction
2. Technological Advances in Point-of-Care Testing (POCT)
2.1. Principles of POCT
2.2. POCT for Cancer Detection
2.3. POCT for Chronic Disease Monitoring
3. Integration of POCT into Workplace Health Screening
4. Internet of Things (IoT) in Healthcare
4.1. Overview of IoT and Its Applications in Healthcare
4.2. Integration of IoT with Point-of-Care Testing in the Workplace
5. Digital Health Passports: Enablers of Workplace POCT
6. Regulatory, Ethical and Privacy Considerations
7. Challenges and Barriers to Implementation
8. Future Directions and Innovations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
CDC | Centers for Disease Control and Prevention |
COVID-19 | Coronavirus Disease 2019 |
ECDC | European Centre for Disease Prevention and Control |
FDA | Food and Drug Administration |
GDPR | General Data Protection Regulation |
HIPAA | Health Insurance Portability and Accountability Act |
IoT | Internet of Things |
LMICs | Low- and Middle-Income Countries |
mHealth | Mobile Health |
POCT | Point-of-Care Testing |
WHO | World Health Organization |
References
- World Health Organization (WHO). COVID-19 Strategic Preparedness and Response Plan: 2021 Update; World Health Organization: Geneva, Switzerland, 2021; Available online: https://www.who.int/publications/i/item/WHO-WHE-2021.02 (accessed on 20 April 2025).
- Dennerlein, J.T.; Burke, L.; Sabbath, E.L.; Williams, J.A.; Peters, S.E.; Wallace, L.; Sorensen, G. An Integrative Total Worker Health Framework for Keeping Workers Safe and Healthy During the COVID-19 Pandemic. Hum. Factors 2020, 62, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, P.; Goli, S. Informal Employment and High Burden of Out-of-Pocket Healthcare Payments among Older Workers: Evidence from Longitudinal Ageing Study in India. Health Policy Plan. 2024, 40, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Price, C.P. Point of Care Testing. BMJ 2001, 322, 1285–1288. [Google Scholar] [CrossRef] [PubMed]
- Luppa, P.B.; Müller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-Care Testing (POCT): Current Techniques and Future Perspectives. TrAC Trends Anal. Chem. 2011, 30, 887–898. [Google Scholar] [CrossRef]
- Kosack, C.S.; Page, A.L.; Klatser, P.R. A Guide to Aid the Selection of Diagnostic Tests. Bull. World Health Organ. 2017, 95, 639–645. [Google Scholar] [CrossRef]
- Drain, P.K.; Hyle, E.P.; Noubary, F.; Freedberg, K.A.; Wilson, D.; Bishai, W.R.; Rodriguez, W.; Bassett, I.V. Diagnostic Point-of-Care Tests in Resource-Limited Settings. Lancet Infect. Dis. 2014, 14, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Golfinopoulou, R.; Kintzios, S. Biosensing for Autoimmune Chronic Disease—A Review. Chemosensors 2023, 11, 366. [Google Scholar] [CrossRef]
- Wolf, M.S.; Serper, M.; Opsasnick, L.; O’Conor, R.M.; Curtis, L.; Benavente, J.Y.; Wismer, G.; Batio, S.; Eifler, M.; Zheng, P.; et al. Awareness, Attitudes and Actions Related to COVID-19 Among Adults with Chronic Conditions at the Onset of the U.S. Outbreak: A Cross-Sectional Survey. Ann. Intern. Med. 2020, 173, 100–109. [Google Scholar] [CrossRef]
- Peñalvo, J.L.; Sagastume, D.; Mertens, E.; Uzhova, I.; Smith, J.; Wu, J.H.; Bishop, E.; Onopa, J.; Shi, P.; Micha, R.; et al. Effectiveness of Workplace Wellness Programmes for Dietary Habits, Overweight and Cardiometabolic Health: A Systematic Review and Meta-Analysis. Lancet Public Health 2021, 6, e648–e660. [Google Scholar] [CrossRef]
- Vodovotz, Y.; Barnard, N.; Hu, F.B.; Jakicic, J.; Lianov, L.; Loveland, D.; Buysse, D.; Szigethy, E.; Finkel, T.; Sowa, G.; et al. Prioritized Research for the Prevention, Treatment and Reversal of Chronic Disease: Recommendations From the Lifestyle Medicine Research Summit. Front. Med. 2020, 7, 585744. [Google Scholar] [CrossRef]
- Ignoffo, S.; Margellos-Anast, H.; Banks, M.; Morris, R.; Jay, K. Clinical Integration of Community Health Workers to Reduce Health Inequities in Overburdened and Under-Resourced Populations. Popul. Health Manag. 2022, 25, 280–283. [Google Scholar] [CrossRef] [PubMed]
- Foundation for Innovative New Diagnostics (FIND). SARS-CoV-2 Diagnostic Pipeline. 2021. Available online: https://www.finddx.org/covid-19/ (accessed on 20 April 2025).
- Allam, Z.; Jones, D.S. On the Coronavirus (COVID-19) Outbreak and the Smart City Network: Universal Data Sharing Standards Coupled with Artificial Intelligence (AI) to Benefit Urban Health Monitoring and Management. Healthcare 2020, 8, 46. [Google Scholar] [CrossRef]
- Yammouri, G.; Ait Lahcen, A. AI-Reinforced Wearable Sensors and Intelligent Point-of-Care Tests. J. Pers. Med. 2024, 14, 1088. [Google Scholar] [CrossRef]
- IBM. Digital Health Pass. 2021. Available online: https://www.ibm.com/products/digital-health-pass (accessed on 20 April 2025).
- Thwala, L.N.; Ndlovu, S.C.; Mpofu, K.T.; Lugongolo, M.Y.; Mthunzi-Kufa, P. Nanotechnology-Based Diagnostics for Diseases Prevalent in Developing Countries: Current Advances in Point-of-Care Tests. Nanomaterials 2023, 13, 1247. [Google Scholar] [CrossRef]
- Markandan, K.; Tiong, Y.W.; Sankaran, R.; Subramanian, S.; Markandan, U.D.; Chaudhary, V.; Walvekar, R. Emergence of Infectious Diseases and Role of Advanced Nanomaterials in Point-of-Care Diagnostics: A Review. Biotechnol. Genet. Eng. Rev. 2022, 40, 3438–3526. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, X.; Li, N. Smartphone-based mobile biosensors for the point-of-care testing of human metabolites. Mater. Today Bio. 2022, 14, 100254. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.M.; Lee, H.; Menon, N.V.; Lim, C.T.; Lee, L.P.; Ong, C.W.M. Point-of-care diagnostic tests for tuberculosis disease. Sci. Transl. Med. 2022, 14, eabj4124. [Google Scholar] [CrossRef] [PubMed]
- Padhi, A.; Gupta, E.; Singh, G.K.; Agarwal, R.; Sharma, M.K.; Sarin, S.K. Evaluation of the Point of Care Molecular Diagnostic Genedrive HCV ID Kit for the detection of HCV RNA in clinical samples. Epidemiol. Infect. 2020, 18, 1–23. [Google Scholar] [CrossRef]
- Karuppaiah, G.; Vashist, A.; Nair, M.; Veerapandian, M.; Manickam, P. Emerging trends in point-of-care biosensing strategies for molecular architectures and antibodies of SARS-CoV-2. Biosens. Bioelectron. 2023, 13, 100324. [Google Scholar] [CrossRef]
- King, K.; Grazette, L.P.; Paltoo, D.N.; McDevitt, J.T.; Sia, S.K.; Barrett, P.M.; Apple, F.S.; Gurbel, P.A.; Weissleder, R.; Leeds, H.; et al. Point-of-Care Technologies for Precision Cardiovascular Care and Clinical Research: National Heart, Lung and Blood Institute Working Group. JACC Basic Transl. Sci. 2016, 1, 73–86. [Google Scholar] [CrossRef]
- Wilson, M.L.; Fleming, K.A.; Kuti, M.; Looi, L.M.; Lago, N.; Ru, K.; Kalyango, I.N. Access to Pathology and Laboratory Medicine Services: A Crucial Gap. Lancet 2018, 391, 1927–1938. [Google Scholar] [CrossRef] [PubMed]
- Heidt, B.; Siqueira, W.F.; Eersels, K.; Diliën, H.; van Grinsven, B.; Fujiwara, R.T.; Cleij, T.J. Point of Care Diagnostics in Resource-Limited Settings: A Review of the Present and Future of PoC in Its Most Needed Environment. Biosensors 2020, 10, 133. [Google Scholar] [CrossRef] [PubMed]
- Shephard, M.; Shephard, A.; Matthews, S.; Andrewartha, K. The Benefits and Challenges of Point-of-Care Testing in Rural and Remote Primary Care Settings in Australia. Arch. Pathol. Lab. Med. 2020, 144, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Harpaldas, H.; Arumugam, S.; Rodriguez, C.C.; Kumar, B.A.; Shi, V.; Sia, S.K. Point-of-Care Diagnostics: Recent Developments in a Pandemic Age. Lab Chip 2021, 21, 4517–4548. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wen, Y. Point-of-care testing for early-stage liver cancer diagnosis and personalized medicine: Biomarkers, current technologies and perspectives. Heliyon 2024, 10, e38444. [Google Scholar] [CrossRef]
- Negahdary, M.; Angnes, L. Recent advances in electrochemical nanomaterial-based aptasensors for the detection of cancer biomarkers. Talanta 2023, 259, 124548. [Google Scholar] [CrossRef]
- Mavrikou, S.; Moschopoulou, G.; Zafeirakis, A.; Kalogeropoulou, K.; Giannakos, G.; Skevis, A.; Kintzios, S. An Ultra-Rapid Biosensory Point-of-Care (POC) Assay for Prostate-Specific Antigen (PSA) Detection in Human Serum. Sensors 2018, 18, 3834. [Google Scholar] [CrossRef]
- Ji, S.; Lee, M.; Kim, D. Detection of Early Stage Prostate Cancer by Using a Simple Carbon Nanotube@Paper Biosensor. Biosens. Bioelectron. 2018, 102, 345–350. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, R.; Li, J.; Zhang, R. Novel Perspectives in Fetal Biomarker Implementation for the Noninvasive Prenatal Testing. Crit. Rev. Clin. Lab. Sci. 2019, 56, 374–392. [Google Scholar] [CrossRef]
- Lin, J.S.; Piper, M.A.; Perdue, L.A.; Rutter, C.; Webber, E.M.; O’Connor, E.; Smith, N.; Whitlock, E.P.C. Screening for Colorectal Cancer: A Systematic Review for the U.S. Preventive Services Task Force. Rockv. (MD) Agency Healthc. Res. Qual. (US) 2016, 14, 05203-EF-1. [Google Scholar]
- Golfinopoulou, R.; Hatziagapiou, K.; Mavrikou, S.; Kintzios, S. Unveiling Colorectal Cancer Biomarkers: Harnessing Biosensor Technology for Volatile Organic Compound Detection. Sensors 2024, 24, 4712. [Google Scholar] [CrossRef] [PubMed]
- Syedmoradi, L.; Norton, M.L.; Omidfar, K. Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta 2021, 225, 122002. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Kumar, S.; Kaushik, B.K. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 2022, 197, 113805. [Google Scholar] [CrossRef]
- Conrad, N.; Misra, S.; Verbakel, J.Y.; Verbeke, G.; Molenberghs, G.; Taylor, P.N.; Mason, J.; Sattar, N.; McMurray, J.J.V.; McInnes, I.B.; et al. Incidence, prevalence and co-occurrence of autoimmune disorders over time and by age, sex and socioeconomic status: A population-based cohort study of 22 million individuals in the UK. Lancet 2023, 401, 1878–1890. [Google Scholar] [CrossRef] [PubMed]
- Dubach, I.L.; Christ, E.R.; Diem, P. HbA1c-Testing: Evaluation of Two Point-of-Care Analysers. Prim. Care Diabetes 2019, 13, 583–587. [Google Scholar] [CrossRef]
- Barboza, T.; Beaufrère, H. Comparison of a Point-of-Care Cholesterol Meter with a Reference Laboratory Analyzer in Companion Psittaciformes. J. Avian Med. Surg. 2019, 33, 7–14. [Google Scholar] [CrossRef]
- Füzéry, A.K.; Elian, F.A.; Kost, G.J. A Review of Temperature-Related Challenges and Solutions for the Abbott i-STAT and Siemens Healthineers epoc Devices. Clin. Biochem. 2023, 115, 49–66. [Google Scholar] [CrossRef]
- Baicker, K.; Cutler, D.; Song, Z. Workplace Wellness Programs Can Generate Savings. Health Aff. 2010, 29, 304–311. [Google Scholar] [CrossRef]
- Calixte, R.; Islam, S.; Osakwe, Z.T.; Rivera, A.; Camacho-Rivera, M. Pattern of Use of Electronic Health Record (EHR) among the Chronically Ill: A Health Information National Trend Survey (HINTS) Analysis. Int. J. Environ. Res. Public Health 2021, 18, 7254. [Google Scholar] [CrossRef]
- Ghahramani, F.; Wang, J. Intention to Adopt mHealth Apps Among Informal Caregivers: Cross-Sectional Study. JMIR Mhealth Uhealth 2021, 9, e24755. [Google Scholar] [CrossRef]
- Dash, S.P. The Impact of IoT in Healthcare: Global Technological Change & The Roadmap to a Networked Architecture in India. J. Indian Inst. Sci. 2020, 100, 773–785. [Google Scholar]
- Kelly, J.T.; Campbell, K.L.; Gong, E.; Scuffham, P. The Internet of Things: Impact and Implications for Health Care Delivery. J. Med. Internet Res. 2020, 22, e20135. [Google Scholar] [CrossRef] [PubMed]
- Bhuiyan, M.N.; Rahman, M.M.; Billah, M.M.; Saha, D. Internet of Things (IoT): A Review of Its Enabling Technologies in Healthcare Applications, Standards Protocols, Security and Market Opportunities. IEEE Internet Things J. 2021, 8, 10474–10498. [Google Scholar] [CrossRef]
- Usak, M.; Kubiatko, M.; Shabbir, M.S.; Viktorovna Dudnik, O.; Jermsittiparsert, K.; Rajabion, L. Health Care Service Delivery Based on the Internet of Things: A Systematic and Comprehensive Study. Int. J. Commun. Sys. 2019, 33, e4179. [Google Scholar] [CrossRef]
- Pradhan, B.; Bhattacharyya, S.; Pal, K. IoT-Based Applications in Healthcare Devices. J. Healthc. Eng. 2021, 2021, 6632599. [Google Scholar] [CrossRef] [PubMed]
- Senbekov, M.; Saliev, T.; Bukeyeva, Z.; Almabayeva, A.; Zhanaliyeva, M.; Aitenova, N.; Toishibekov, Y.; Fakhradiyev, I. The Recent Progress and Applications of Digital Technologies in Healthcare: A Review. Int. J. Telemed. Appl. 2020, 2020, 8830200. [Google Scholar] [CrossRef] [PubMed]
- Ahad, A.; Tahir, M.; Aman Sheikh, M.; Ahmed, K.I.; Mughees, A.; Numani, A. Technologies Trend towards 5G Network for Smart Health-Care Using IoT: A Review. Sensors 2020, 20, 4047. [Google Scholar] [CrossRef]
- Ratta, P.; Kaur, A.; Sharma, S.; Shabaz, M.; Dhiman, G. Application of Blockchain and Internet of Things in Healthcare and Medical Sector: Applications, Challenges and Future Perspectives. J. Food Qual. 2021, 2021, 7608296. [Google Scholar] [CrossRef]
- Albahri, A.S.; Alwan, J.K.; Taha, Z.K.; Ismail, S.F.; Hamid, R.A.; Zaidan, A.A.; Albahri, O.S.; Zaidan, B.B.; Alamoodi, A.H.; Alsalem, M.A. IoT-Based Telemedicine for Disease Prevention and Health Promotion: State-of-the-Art. J. Netw. Comput. Appl. 2021, 173, 102873. [Google Scholar] [CrossRef]
- Kadhim, K.T.; Alsahlany, A.M.; Wadi, S.M.; Kadhum, H.T. An Overview of Patient’s Health Status Monitoring System Based on Internet of Things (IoT). Wirel. Pers. Commun. 2020, 114, 2235–2262. [Google Scholar] [CrossRef]
- Al Bassam, N.; Hussain, S.A.; Al Qaraghuli, A.; Khan, J.; Sumesh, E.P.; Lavanya, V. IoT-Based Wearable Device to Monitor the Signs of Quarantined Remote Patients of COVID-19. Inform. Med. Unlocked 2021, 24, 100588. [Google Scholar] [CrossRef] [PubMed]
- Alshamrani, M. IoT and Artificial Intelligence Implementations for Remote Healthcare Monitoring Systems: A Survey. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 4687–4701. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare—A Review. Nanomaterials 2022, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Shehata, A.; Salem, M.; Ahad, M.A.R. Image Processing in Health Informatics. In Signal Processing Techniques for Computational Health Informatics; Springer: Cham, Switzerland, 2021; pp. 145–170. [Google Scholar]
- Kumar, V.; Paul, K. Fundus Imaging-Based Healthcare: Present and Future. ACM Trans. Comput. Healthc. 2023, 4, 1–34. [Google Scholar] [CrossRef]
- Mehra, P.S.; Mehra, Y.B.; Dagur, A.; Dwivedi, A.K.; Doja, M.N.; Jamshed, A. COVID-19 Suspected Person Detection and Identification Using Thermal Imaging-Based Closed Circuit Television Camera and Tracking Using Drone in Internet of Things. Int. J. Comput. Appl. Technol. 2021, 66, 340–349. [Google Scholar] [CrossRef]
- Patel, P.; Ramoliya, D.; Thumaar, M.; Nayak, A. Advancements in Cloud-Based Solution for Medical Imaging: A Survey. In Proceedings of the 2021 5th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 2–4 December 2021; pp. 811–816. [Google Scholar]
- Lie, W.; Jiang, B.; Zhao, W. Obstetric Imaging Diagnostic Platform Based on Cloud Computing Technology under the Background of Smart Medical Big Data and Deep Learning. IEEE Access 2020, 8, 214681–214693. [Google Scholar] [CrossRef]
- Sadiq, M.S.; Singh, I.P.; Ahmad, M.M. Internet of Medical Things in Curbing Pandemics. In Deep Learning in Personalized Healthcare and Decision Support; Garg, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 357–371. [Google Scholar]
- Mondal, S.; Doan, V.H.M.; Truong, T.T.; Choi, J.; Tak, S.; Lee, B.; Oh, J. Recent Advances in Plasmonic Biosensors for Digital Healthcare Applications. In Biosensors: Developments, Challenges and Perspectives; Springer: Singapore, 2024; pp. 191–212. [Google Scholar]
- Saroğlu, H.E.; Shayea, I.; Saoud, B.; Azmi, M.H.; El-Saleh, A.A.; Saad, S.A.; Alnakhli, M. Machine Learning, IoT and 5G Technologies for Breast Cancer Studies: A Review. Alex. Eng. J. 2024, 89, 210–223. [Google Scholar] [CrossRef]
- ISO 13485:2016; Medical devices — Quality management systems — Requirements for regulatory purposes. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- Javaid, S.; Zeadally, S.; Fahim, H.; He, B. Medical Sensors and Their Integration in Wireless Body Area Networks for Pervasive Healthcare Delivery: A Review. IEEE Sens. J. 2022, 22, 3860–3877. [Google Scholar] [CrossRef]
- Salam, A. Internet of Things for Sustainable Human Health. In Internet of Things for Sustainable Community Development: Wireless Communications, Sensing and Systems; Springer International Publishing: Cham, Switzerland, 2020; pp. 217–242. [Google Scholar]
- Raeis, H.; Kazemi, M.; Shirmohammadi, S. Human Activity Recognition with Device-Free Sensors for Well-Being Assessment in Smart Homes. IEEE Instr. Measur. Mag. 2021, 24, 46–57. [Google Scholar] [CrossRef]
- Anikwe, C.V.; Nweke, H.F.; Ikegwu, A.C.; Egwuonwu, C.A.; Onu, F.U.; Alo, U.R.; Teh, Y.W. Mobile and Wearable Sensors for Data-Driven Health Monitoring System: State-of-the-Art and Future Prospect. Expert Syst. Appl. 2022, 202, 117362. [Google Scholar] [CrossRef]
- Ming, D.; Rawson, T.; Sangkaew, S.; Rodriguez-Manzano, J.; Georgiou, P.; Holmes, A. Connectivity of Rapid-Testing Diagnostics and Surveillance of Infectious Diseases. Bull. WHO 2019, 97, 242–244. [Google Scholar] [CrossRef] [PubMed]
- Wenhua, Z.; Qamar, F.; Abdali, T.-A.N.; Hassan, R.; Jafri, S.T.A.; Nguyen, Q.N. Blockchain Technology: Security Issues, Healthcare Applications, Challenges and Future Trends. Electronics 2023, 12, 546. [Google Scholar] [CrossRef]
- Shen, Y.; Yu, J.; Zhou, J.; Hu, G. Twenty-Five Years of Evolution and Hurdles in Electronic Health Records and Interoperability in Medical Research: Comprehensive Review. J. Med. Internet Res. 2025, 27, e59024. [Google Scholar] [CrossRef]
- Ferrara, P.; Albano, L. COVID-19 and healthcare systems: What should we do next? Public Health 2020, 185, 1–2. [Google Scholar] [CrossRef]
- Zhang, Y.; Milinovich, A.; Xu, Z.; Bambrick, H.; Mengersen, K.; Tong, S.; Hu, W. Monitoring respiratory infections using point-of-care data. Environ. Res. 2022, 214, 113758. [Google Scholar]
- Stockwell, M.S.; Fiks, A.G. Utilizing health information technology to improve vaccine communication and coverage. Hum. Vaccin. Immunother. 2013, 9, 1802–1811. [Google Scholar] [CrossRef]
- Berke, E.M.; Vernez-Moudon, A. Built environment change: A framework to support health-promoting community design. Am. J. Prev. Med. 2022, 62, 94–102. [Google Scholar]
- ISO 15189; Medical laboratories — Requirements for quality and competence. International Organization for Standardization (ISO): Geneva, Switzerland, 2022.
- Upadrista, V.; Nazir, S.; Tianfield, H. Secure data sharing with blockchain for remote health monitoring applications: A review. J. Reliab. Intell. Environ. 2023, 9, 1–20. [Google Scholar] [CrossRef]
- Beauchamp, T.L.; Childress, J.F. Principles of Biomedical Ethics, 8th ed.; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Fonsêca, A.L.A.; Barbalho, I.M.P.; Fernandes, F.; Arrais Júnior, E.; Nagem, D.A.P.; Cardoso, P.H.; Veras, N.V.R.; Farias, F.L.d.O.; Lindquist, A.R.; dos Santos, J.P.Q.; et al. Blockchain in Health Information Systems: A Systematic Review. Int. J. Environ. Res. Public Health 2024, 21, 1512. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, Y.H. AI in healthcare: Navigating opportunities and challenges in digital communication. Front. Digit. Health 2023, 5, 1291132. [Google Scholar] [CrossRef]
- Rumbold, B.; Wenham, C.; Wilson, J. Self-tests for influenza: An empirical ethics investigation. BMC Med. Ethics. 2017, 18, 36. [Google Scholar] [CrossRef] [PubMed]
- Kalokairinou, L.; Zettler, P.J.; Nagappan, A.; Kyweluk, M.A.; Wexler, A. The promise of direct-to-consumer COVID-19 testing: Ethical and regulatory issues. J. Law Biosci. 2020, 7, lsaa069. [Google Scholar] [CrossRef]
- Gaitens, J.; Condon, M.; Fernandes, E.; McDiarmid, M. COVID-19 and essential workers: A narrative review of health outcomes and moral injury. Int. J. Environ. Res. Public Health 2021, 18, 1446. [Google Scholar] [CrossRef]
- Tamers, S.L.; Streit, J.; Pana-Cryan, R.; Ray, T.; Syron, L.; Flynn, M.A.; Howard, J. Envisioning the future of work to safeguard the safety, health and well-being of the workforce: A perspective from the CDC’s National Institute for Occupational Safety and Health. Am. J. Ind. Med. 2020, 63, 1065–1084. [Google Scholar] [CrossRef] [PubMed]
- Bardosh, K.; De Figueiredo, A.; Gur-Arie, R.; Jamrozik, E.; Doidge, J.; Lemmens, T.; Baral, S. The unintended consequences of COVID-19 vaccine policy: Why mandates, passports and restrictions may cause more harm than good. BMJ Glob. Health 2022, 7, e008684. [Google Scholar] [CrossRef]
- ISO 22870:2016; Point-of-Care Testing (POCT)—Requirements for Quality and Competence; International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- Westgard, J.O.; Westgard, S.A. Quality control review: Implementing a scientifically based quality control system. Ann. Clin. Biochem. 2016, 53, 32–50. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.A.; Singha Roy, N.; Pradeep, D. Has India’s Employment Guarantee Program Achieved Intended Targets? SAGE Open 2021, 11, 21582440211052281. [Google Scholar] [CrossRef]
- Razavi, S. Making the right to social security a reality for all workers. Indian J. Labour Econ. 2022, 65, 269–294. [Google Scholar] [CrossRef]
- Apostolakis, A.; Barmpakos, D.; Mavrikou, S.; Papaioannou, G.M.; Tsekouras, V.; Hatziagapiou, K.; Koniari, E.; Tritzali, M.; Michos, A.; Chrousos, G.P.; et al. System for classifying antibody concentration against severe acute respiratory syndrome coronavirus 2 S1 spike antigen with automatic quick response generation for integration with health passports. Explor. Digit. Health Technol. 2024, 2, 20–29. [Google Scholar] [CrossRef]
- Mavrikou, S.; Papaioannou, G.M.; Tsekouras, V.; Hatziagapiou, K.; Tatsi, E.B.; Filippatos, F.; Kanaka-Gantenbein, C.; Michos, A.; Kintzios, S. Ultra-Fast and Sensitive Screening for Antibodies against the SARS-CoV-2 S1 Spike Antigen with a Portable Bioelectric Biosensor. Chemosensors 2022, 10, 254. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges and prospects. Lab Chip 2018, 18, 217–248. [Google Scholar] [CrossRef] [PubMed]
- Bandodkar, A.J.; Gutruf, P.; Choi, J.; Lee, K.; Sekine, Y.; Reeder, J.T.; Jeang, W.J.; Aranyosi, A.J.; Lee, S.P.; Model, J.B.; et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric and volumetric analysis of sweat. Sci. Adv. 2019, 5, eaav3294. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Yang, S.M.; Lv, S.; Zhang, W.; Cui, Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. Sensors 2022, 22, 1290. [Google Scholar] [CrossRef] [PubMed]
- Dyan, B.; Seele, P.P.; Skepu, A.; Mdluli, P.S.; Mosebi, S.; Sibuyi, N.R.S. A Review of the Nucleic Acid-Based Lateral Flow Assay for Detection of Breast Cancer from Circulating Biomarkers at a Point-of-Care in Low-Income Countries. Diagnostics 2022, 12, 1973. [Google Scholar] [CrossRef]
- Ranjan, P.; Singhal, A.; Sadique, M.A.; Yadav, S.; Parihar, A.; Khan, R. Scope of Biosensors, Commercial Aspects and Miniaturized Devices for Point-of-Care Testing from Lab to Clinics Applications. In Biosensor Based Advanced Cancer Diagnostics; Academic Press: Cambridge, MA, USA, 2022; pp. 395–410. [Google Scholar]
- Bian, S.; Zhu, B.; Rong, G.; Sawan, M. Towards Wearable and Implantable Continuous Drug Monitoring: A Review. J. Pharm. Anal. 2021, 11, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Barhoum, A.; Sadak, O.; Ramirez, I.A.; Iverson, N. Stimuli-Bioresponsive Hydrogels as New Generation Materials for Implantable, Wearable and Disposable Biosensors for Medical Diagnostics: Principles, Opportunities and Challenges. Adv. Colloid Interface Sci. 2023, 317, 102920. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, C.; Shum, H.C.; Du, X. Shape-Adaptable Biodevices for Wearable and Implantable Applications. Lab Chip 2020, 20, 3347–3363. [Google Scholar] [CrossRef]
- Flynn, C.D.; Chang, D.; Mahmud, A.; Yousefi, H.; Das, J.; Riordan, K.T.; Kelley, S.O. Biomolecular Sensors for Advanced Physiological Monitoring. Nat. Rev. Bioeng. 2023, 1, 560–575. [Google Scholar] [CrossRef]
- Dima, K. Point of Care Testing (POCT) Present and Future. EJIFCC 2021, 32, 146–155. [Google Scholar]
- Khondakar, K.R.; Anwar, M.S.; Mazumdar, H.; Kaushik, A. Perspective of Point-of-Care Sensing System in Cancer Management. Mater. Adv. 2023, 4, 4690–4709. [Google Scholar] [CrossRef]
- Khan, A.R.; Hussain, W.L.; Shum, H.C.; Hassan, S.U. Point-of-Care Testing: A Critical Analysis of the Market and Future Trends. Front. Lab Chip Technol. 2024, 3, 1394752. [Google Scholar] [CrossRef]
- Rasheed, S.; Kanwal, T.; Ahmad, N.; Fatima, B.; Najam-ul-Haq, M.; Hussain, D. Advances and Challenges in Portable Optical Biosensors for Onsite Detection and Point-of-Care Diagnostics. TrAC Trends Anal. Chem. 2024, 167, 117640. [Google Scholar] [CrossRef]
- Haghayegh, F.; Norouziazad, A.; Haghani, E.; Feygin, A.A.; Rahimi, R.H.; Ghavamabadi, H.A.; Salahandish, R. Revolutionary Point-of-Care Wearable Diagnostics for Early Disease Detection and Biomarker Discovery Through Intelligent Technologies. Adv. Sci. 2024, 11, 2400595. [Google Scholar] [CrossRef] [PubMed]
- St John, A.; Price, C.P. Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 2014, 35, 155–167. [Google Scholar]
- Keesara, S.; Jonas, A.; Schulman, K. Covid-19 and health care’s digital revolution. N. Engl. J. Med. 2020, 382, e82. [Google Scholar] [CrossRef]
Cancer Type | Biomarker(s) | POCT Technology | Sample Type | Detection Time | Reference |
---|---|---|---|---|---|
Prostate Cancer | PSA (Prostate Specific Antigen) | Lateral flow immunoassays, Electrochemical biosensors | Serum, Urine | ~10–15 min | [28] |
Colorectal Cancer | CEA (Carcinoembryonic Antigen) | Microfluidic chips, Electrochemical assays | Serum, Stool | ~20–30 min | [28,29] |
Colorectal Cancer | Volatile organic compound (VOC) pattering | Electrochemical, gas chromatography/mass spectrometry | Breath | >30 min | [34] |
Breast Cancer | HER2, CA 15-3 | Aptamer-based lateral flow devices, Fluorescent immunosensors | Serum, Saliva | ~15–20 min | [35,36] |
Ovarian Cancer | CA-125 | Gold nanoparticle-based colorimetric tests, Electrochemical sensors | Blood, Urine | ~15 min | [29,36] |
Lung Cancer | CYFRA 21-1, NSE | Quantum dot-based biosensors, Immunochromatographic assays | Blood, Exhaled breath condensate | ~20 min | [28,34] |
Disease | Biomarker Assayed | POCT System | Speed of Assay (min) |
---|---|---|---|
Diabetes melitus | HbA1c | DCA vantage analyzer | 6 |
Cardiovascular | Lipid panel | CardiCheck PA | 2 |
Kidney | Creatinine | Abbott i-STAT Analyzed | 10 |
Employees | Employers | |
---|---|---|
Advantages | Privacy and ownership of personal health data. | Streamlined occupational health recordkeeping. |
Convenience of carrying verified health records. | Risk mitigation against outbreaks or health emergencies. | |
Empowerment through health status awareness and real-time updates. | Reduced absenteeism through proactive health monitoring. | |
Onsite testing removes logistical barriers like travel time and scheduling conflicts, which is particularly beneficial for underserved employee populations. | Early disease detection and management reduce healthcare utilization and insurance claims over time. | |
Aggregate, anonymized POCT data can inform company-wide wellness initiatives, enhancing strategic planning for human resources and occupational health departments. | ||
Challenges | Employees may fear misuse of their health data, discrimination or breaches of confidentiality. | Ensuring consistent, reliable POCT results across decentralized settings remains a major challenge. |
Navigating legal requirements like HIPAA (USA), GDPR (EU) and local labor laws is complex but critical. | ||
Not all workplaces may have the necessary infrastructure (e.g., internet connectivity, device compatibility) to deploy POCT and digital health passport solutions effectively. |
Framework | Description |
---|---|
Health Insurance Portability and Accountability Act (HIPAA) | In the United States, HIPAA establishes standards for the protection of sensitive health information. Employers offering workplace health services must ensure that POCT results and digital passport data are securely managed and not disclosed without employee consent. |
General Data Protection Regulation (GDPR) | In Europe, the GDPR classifies health data as “special category” personal data, requiring explicit consent for its processing and strict compliance with data minimization and purpose limitation principles. |
Occupational Safety and Health Administration (OSHA) | Employers must balance the benefits of health surveillance with OSHA regulations, ensuring that health screening programs are voluntary unless mandated by specific workplace hazards. |
Food and Drug Administration (FDA) Oversight | In the US, POCT devices must often be approved under the Clinical Laboratory Improvement Amendments (CLIA) as “waived” devices for simplicity and low risk or to meet Emergency Use Authorization (EUA) standards during public health emergencies. |
International Standards | Global frameworks such as ISO 15189 (quality and competence for medical laboratories) [77] and WHO guidelines on decentralized diagnostics provide guidance on POCT quality management. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daoutakou, M.; Kintzios, S. Point-of-Care Testing (POCT) for Cancer and Chronic Disease Management in the Workplace: Opportunities and Challenges in the Era of Digital Health Passports. Appl. Sci. 2025, 15, 6906. https://doi.org/10.3390/app15126906
Daoutakou M, Kintzios S. Point-of-Care Testing (POCT) for Cancer and Chronic Disease Management in the Workplace: Opportunities and Challenges in the Era of Digital Health Passports. Applied Sciences. 2025; 15(12):6906. https://doi.org/10.3390/app15126906
Chicago/Turabian StyleDaoutakou, Maria, and Spyridon Kintzios. 2025. "Point-of-Care Testing (POCT) for Cancer and Chronic Disease Management in the Workplace: Opportunities and Challenges in the Era of Digital Health Passports" Applied Sciences 15, no. 12: 6906. https://doi.org/10.3390/app15126906
APA StyleDaoutakou, M., & Kintzios, S. (2025). Point-of-Care Testing (POCT) for Cancer and Chronic Disease Management in the Workplace: Opportunities and Challenges in the Era of Digital Health Passports. Applied Sciences, 15(12), 6906. https://doi.org/10.3390/app15126906