Beyond Static Estimates: Dynamic Simulation of Fire–Evacuation Interaction in Historical Districts
Abstract
1. Introduction
2. Methods
2.1. Study Area
2.2. Framework
2.3. Fire Simulation and Parameters
2.3.1. Fire Development Model
2.3.2. Simulation Verification
2.4. Multi-Case Fire Development
2.4.1. Fire Development Conditions
2.4.2. Selection of Worst Fire Development Cases
2.5. Evacuation Simulation
2.5.1. Fire Dynamics Input
2.5.2. Evacuation Parameters
2.5.3. Evacuation Shelter Parameters
2.5.4. Worst Evacuation Selection
2.6. Indicators in Analysis
2.6.1. Built Environmental Indicators
2.6.2. Evacuation Indicators
2.6.3. Dynamic Indicators
3. Results
3.1. Fire Simulation and Validation
3.2. The Worst Fire and Evacuation Scenarios
3.3. Built Environmental Changes
3.3.1. Fire Spread Evolution
3.3.2. Impact on the Built Environment
3.3.3. Impact on Evacuation Conditions
3.4. Evacuations in Historical District
3.4.1. Evacuation Distance and Duration
3.4.2. Congestions
3.4.3. Detours
3.4.4. Exit Usage Patterns
3.4.5. Dynamic vs. Static
3.5. Evacuations out of Historical District
4. Discussions
4.1. Bridging Dynamic Interactions Between Evacuation and Building Environment Changes in Disasters
4.2. Optimizing Building Environments for Historical Districts Considering Dynamic Diversity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, T.; Hu, K.; Zhai, H. Rethinking the authenticity of the restoration and reconstruction of cultural relics buildings—Taking the post-disaster reconstruction of Xiaju Gangda Old House in Dukezong Ancient City as an example. J. Hum. Settl. West China 2017, 32, 27–32. [Google Scholar] [CrossRef]
- Yin, L. The restoration and reconstruction of Dukezong Ancient City in Shangri-La from the perspective of comprehensive disaster risk research. J. Catastrophology 2016, 31, 139–144. [Google Scholar]
- Wenting, Y.; He, Z.; Shuying, Z. Sustainable Development and Tourists’ Satisfaction in Historical Districts: Influencing Factors and Features. J. Resour. Ecol. 2021, 12, 669–681. [Google Scholar] [CrossRef]
- D’Orazio, M.; Canafoglia, M.; Bernardini, G.; Quagliarini, E. Towards Using Digital Technologies to Balance Conservation and Fire Mitigation in Building Heritage Hosting Vulnerable Occupants: Rapid Evacuation Simulator Verification for the “Omero Museum” (Ancona, Italy). Heritage 2024, 7, 3734–3755. [Google Scholar] [CrossRef]
- Menegazzi, C. Disaster Risk Management of Cultural Heritage. Doctoral Thesis, Università degli Studi della Tuscia-Viterbo, Viterbo, Italy, 2010. [Google Scholar]
- Esposito, D.; Cantatore, E.; Sonnessa, A. A Multi Risk Analysis for the Planning, Management and Retrofit of Cultural Heritage in Historic Urban Districts; La Rosa, D., Privitera, R., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; Volume 146, pp. 571–580. [Google Scholar]
- Giannuzzi, V.; Fatiguso, F. Historic Built Environment Assessment and Management by Deep Learning Techniques: A Scoping Review. Appl. Sci. 2024, 14, 7116. [Google Scholar] [CrossRef]
- Zhong, G.; Zhai, G.; Ge, Y. Research progress of population evacuation under emergency disaster situation. J. Catastrophology 2021, 36, 221–227. [Google Scholar]
- Huang, G.; Ge, Y.; Lu, Q. Underground mine CA particle system fire spread simulation. Comput. Eng. Appl. 2010, 46, 206–212. [Google Scholar]
- Zhong, J.; Wang, Q.; Lin, X. Study on fire spread model after urban earthquake. World Earthq. Eng. 2024, 40, 49–57. [Google Scholar] [CrossRef]
- Himoto, K. Comparative Analysis of Post-Earthquake Fires in Japan from 1995 to 2017. Fire Technol. 2019, 55, 935–961. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, H. An Integrated Approach for the Simulation Modeling and Risk Assessment of Coastal Flooding. Water 2020, 12, 2076. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, Z.; Lai, C. Simulation Performance Evaluation and Uncertainty Analysis on a Coupled Inundation Model Combining SWMM and WCA2D. Int. J. Disaster Risk Sci. 2022, 13, 448–464. [Google Scholar] [CrossRef]
- Hu, X.; Jiang, Y.; Ning, P.; Liang, H.; Fan, X.; Liu, W.; Xia, X.; Zhu, Y. A Hydrodynamic-Based Physical Unified Modeling for Simulating Shallow Landslide Local Failures, Mass Release and Debris Flow Run-Out Extent Behavior. Water Resour. Res. 2024, 60, e2023WR036289. [Google Scholar] [CrossRef]
- Ren, C.; Yang, C.; Jin, S. Agent-Based Modeling and Simulation on Emergency Evacuation. In Complex Sciences; Zhou, J., Ed.; Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5, pp. 1451–1461. ISBN 978-3-642-02468-9. [Google Scholar]
- Zuo, J.; Shi, J. Research on emergency evacuation of high-density traditional blocks based on Anylogic simulation—A case study of Tianjin Xiaobai Building No.5. South Archit. 2019, 191, 82–88. [Google Scholar]
- Cheng, Y.; Liu, X. Simulation research on emergency evacuation of cultural relic scenic spot personnel based on social force model. Saf. Environ. Eng. 2023, 30, 100–109. [Google Scholar] [CrossRef]
- Liu, C.; Liu, S.; Zhang, J.; Wang, L.; Guo, X.; Li, G.; Wang, W. An Optimal Design Method of Emergency Evacuation Space in the High-Density Community after Earthquake Based on Evacuation Simulation. Nat. Hazards 2023, 116, 2889–2915. [Google Scholar] [CrossRef]
- Peng, L.; He, L.; Zhang, Y.; Zhou, Y.; Xiao, H.; Wang, R. Planning Urban Underground Space from Urban Emergency Evacuation: A Digital Layout Planning Method. Tunn. Undergr. Space Technol. 2023, 140, 105271. [Google Scholar] [CrossRef]
- Zhong, G.; Zhai, G.; Chen, W. Optimization of Shelter Location Based on a Combined Static/Dynamic Two-Stage Optimization Methodology: A Case Study in the Central Urban Area of Xinyi City, China. ISPRS Int. J. Geo-Inf. 2022, 11, 262. [Google Scholar] [CrossRef]
- Yang, K.; Shekhar, A.; Rehman, F.; Lahza, H.; Basalamah, S.; Ahmed, I.; Ghafoor, A. Intelligent Shelter Allotment for Emergency Evacuation Planning: A Case Study of Makkah. IEEE Intell. Syst. 2015, 30, 66–76. [Google Scholar] [CrossRef]
- Jiao, H.; Feng, S. Towards Resilient Cities: Optimizing Shelter Site Selection and Disaster Prevention Life Circle Construction Using GIS and Supply-Demand Considerations. Sustainability 2024, 16, 2345. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, Y.; Wang, C.; Li, Y. Evaluation and Optimization of Refuge Green Space in the Central Area of Tianjin for Geological Disasters. Sustainability 2022, 14, 15507. [Google Scholar] [CrossRef]
- Liang, Y.; Xie, Z.; Chen, S.; Xu, Y.; Xin, Z.; Yang, S.; Jian, H.; Wang, Q. Spatial Accessibility of Urban Emergency Shelters Based on Ga2SFCA and Its Improved Method: A Case Study of Kunming, China. J. Urban Plan. Dev. 2023, 149, 05023013. [Google Scholar] [CrossRef]
- Bernardini, G.; Ferreira, T.M. Combining Structural and Non-Structural Risk-Reduction Measures to Improve Evacuation Safety in Historical Built Environments. In Sustainability, Risks and Resilience of Vernacular Heritage; Routledge: London, UK, 2024; ISBN 978-1-003-47573-6. [Google Scholar]
- Chen, X.; Zhan, F.B. Agent-Based Modelling and Simulation of Urban Evacuation: Relative Effectiveness of Simultaneous and Staged Evacuation Strategies. J. Oper. Res. Soc. 2008, 59, 25–33. [Google Scholar] [CrossRef]
- Coşkun, Ş. Human Behavior Modeling for Simulating Evacuation of Buildings during Emergencies. Phys. A Stat. Mech. Appl. 2019, 528, 121432. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Chang, H.-W. Contribution of Accessibility to Urban Resilience and Evacuation Planning Using Spatial Analysis. Int. J. Environ. Res. Public Health 2023, 20, 2913. [Google Scholar] [CrossRef]
- Haghpanah, F. Multi-Scale Evacuation Models to Support Emergency and Disaster Response; Johns Hopkins University: Baltimore, MD, USA, 2020. [Google Scholar]
- Hu, J.-J.; Wu, H.-Y.; Chou, C.-C. Evacuation Simulation in a Cultural Asset Fire: Impact of Fire Emergency Evacuation Facilities for People with Disabilities on Evacuation Time. Fire 2023, 6, 10. [Google Scholar] [CrossRef]
- Lijiang Emergency Management Bureau Lijiang City Housing and Urban-Rural Development Bureau on “Lijiang City Center Urban Green Space Disaster Prevention and Risk Avoidance Planning (2022–2035)” (Draft) to the Community for Public Consultation Announcement. Available online: https://lijiang.gov.cn/ljsrmzf/c101846/202306/404d2f70939440c2b3b98a63402c6e13.shtml (accessed on 4 October 2024).
- Office of the Seventh National Census Leading Group of the State Council. China Census by County—2020; China Statistics Press: Beijing, China, 2022; ISBN 978-7-5037-9772-9. [Google Scholar]
- Chen, J.; Li, J.; Xin, C.; Huang, Y. Analysis of focal mechanism and regional characteristics of small and medium earthquakes in Yunnan region. J. Yunnan Univ. (Nat. Sci. Ed.) 2023, 45, 316–323. [Google Scholar]
- Ministry of Emergency Management of the People’s Republic of China. The Fire Rescue Detachment of Deqing Prefecture in Yunnan Province Has Comprehensively Improved the Fire Prevention Level of the Cultural and Tourism Industry. Available online: https://www.mem.gov.cn/xw/jyll/202501/t20250102_516547.shtml (accessed on 14 February 2025).
- Ewing, R.; Cervero, R. Travel and the Built Environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Tangheroni, E. Building Safe Spaces for the Community A Practical Guide for Constructing Disaster-Resilient Community Evacuation Centres in the Philippines. Available online: https://www.humanitarianlibrary.org/resource/building-safe-spaces-community-practical-guide-constructing-disaster-resilient-community (accessed on 18 April 2025).
- Cervero, R.; Sarmiento, O.L.; Jacoby, E.; Gomez, L.F.; Neiman, A. Influences of Built Environments on Walking and Cycling: Lessons from Bogotá. Int. J. Sustain. Transp. 2009, 3, 203–226. [Google Scholar] [CrossRef]
- Dong, X. A Study on Simulation of Forest Fire Spread Based on a Multi-Agent Model. Anhui Agric. Sci. Bull. 2010, 16, 202–208. [Google Scholar] [CrossRef]
- Tomaskova, M.; Pokorny, J.; Kucera, P.; Balazikova, M.; Marasova, D. Fire Models as a Tool for Evaluation of Energy Balance in Burning Space Relating to Building Structures. Appl. Sci. 2022, 12, 2505. [Google Scholar] [CrossRef]
- Xiao, M.; Zhou, X.; Pan, X.; Wang, Y.; Wang, J.; Li, X.; Sun, Y.; Wang, Y. Simulation of Emergency Evacuation from Construction Site of Prefabricated Buildings. Sci. Rep. 2022, 12, 2732. [Google Scholar] [CrossRef] [PubMed]
- AnyLogic Help|AnyLogic Help. Available online: https://anylogic.help/anylogic/index.html (accessed on 18 April 2025).
- Zhang, C.; Wu, X.; Chen, J.; Shen, H. Research on Escalators Used as Evacuation Stairs under Fire Scenarios. Sci. Rep. 2023, 13, 16933. [Google Scholar] [CrossRef] [PubMed]
- Ohgai, A.; Gohnai, Y.; Watanabe, K. Cellular Automata Modeling of Fire Spread in Built-up Areas—A Tool to Aid Community-Based Planning for Disaster Mitigation. Comput. Environ. Urban Syst. 2007, 31, 441–460. [Google Scholar] [CrossRef]
- Tang, Y.; Zhong, C.; Zhang, X.; Yang, W.; Jiang, J. Simulation Study on the Intelligent Evolution of Fire State in Chemical Parks. J. Chongqing Technol. Bus. Univ. (Nat. Sci. Ed.) 2023, 1–7. Available online: http://kns.cnki.net/kcms/detail/50.1155.n.20231130.1550.004.html (accessed on 19 April 2025).
- Vitorino, H.; Khiali, V.; Rodrigues, H. Post-Earthquake Fire Risk and Loss Assessment in Urban Areas. Innov. Infrastruct. Solut. 2024, 9, 26. [Google Scholar] [CrossRef]
- Himoto, K.; Tanaka, T. A Physically-Based Model for Urban Fire Spread. Fire Saf. Sci. 2003, 7, 129–140. Available online: https://publications.iafss.org/publications/fss/7/129/view/fss_7-129.pdf (accessed on 19 April 2025). [CrossRef]
- Zeng, X.; Yang, Z.; Xu, Z.; Lu, X. Simulation and case study of fire spread in village buildings. J. Tsinghua Univ. (Sci. Technol.) 2017, 57, 1331–1337. [Google Scholar] [CrossRef]
- Kodur, V.; Kumar, P.; Rafi, M.M. Fire Hazard in Buildings: Review, Assessment and Strategies for Improving Fire Safety. PSU Res. Rev. 2020, 4, 1–23. [Google Scholar] [CrossRef]
- Silva, D.; Rodrigues, H.; Ferreira, T.M. Assessment and Mitigation of the Fire Vulnerability and Risk in the Historic City Centre of Aveiro, Portugal. Fire 2022, 5, 173. [Google Scholar] [CrossRef]
- Department of Emergency Management of Yunnan Province Diqing Shangri-La County Dukezong Ancient City “1.11” Major Fire Accident Investigation Report of Yunnan Emergency Management Department. Available online: https://yjglt.yn.gov.cn/html/2014/gpdb_0619/19463.html (accessed on 4 October 2024).
- Tianqihoubao Weather Conditions in Shangri-La in January 2014. Available online: http://www.tianqihoubao.com/lishi/xianggelila/month/201401.html (accessed on 4 October 2024).
- Sun, D. Evaluation of urban concurrent fire hazard severity based on factor and analytic hierarchy process. J. China People’s Police Univ. 2016, 32, 38–58. [Google Scholar]
- The AnyLogic Company. AnyLogic, Version 8.9.3; The AnyLogic Company: Chicago, IL, USA, 2024. Available online: https://www.anylogic.com (accessed on 19 April 2025).
- Zhou, X. Study on optimization of evacuation efficiency of primary school building based on Anylogic. Sichuan Build. Mater. 2023, 49, 237–239. [Google Scholar]
- Dong, N.; Shi, H.; Zhang, Y. Study on the exit track of small performances in urban parks—A case study of Shanghai City Lawn Concert. Mod. Urban Res. 2019, 11, 76–82. [Google Scholar]
- Yarmolenko, P.S.; Moon, E.J.; Landon, C.; Manzoor, A.; Hochman, D.W.; Viglianti, B.L.; Dewhirst, M.W. Thresholds for Thermal Damage to Normal Tissues: An Update. Int. J. Hyperth. 2011, 27, 320–343. [Google Scholar] [CrossRef] [PubMed]
- Sapareto, S.A.; Dewey, W.C. Thermal Dose Determination in Cancer Therapy. Int. J. Radiat. Oncol. Biol. Phys. 1984, 10, 787–800. [Google Scholar] [CrossRef]
- Chen, R.; Dong, L. The actual measurement and preliminary analysis of pedestrian traffic characteristics in Chinese metropolises. J. Shanghai Univ. (Nat. Sci. Ed.) 2005, 11, 93–97. [Google Scholar]
- GB50016-2014; Code for Fire Protection Design of Buildings. Ministry of Housing and Urban-Rural Development of the People’s Republic of China China Planning Press; China Plans Publishing House: Beijing, China, 2014.
- Wang, Z.; Liu, M. Dynamic characteristics of crowd evacuation and restoration of evacuation channel blockage. Prog. Nat. Sci. 2008, 18, 179–185. [Google Scholar]
- GB51143-2015; Code for Design of Disasters Mitigation Emergency Congregate Shelter. Ministry of Housing and Urban-Rural Development of the People’s Republic of China China Architecture & Building Press: Beijing, China, 2021.
- Ma, Y.; Zang, E.; Liu, Y.; Wei, J.; Lu, Y.; Krumholz, H.M.; Bell, M.L.; Chen, K. Long-Term Exposure to Wildland Fire Smoke PM2.5 and Mortality in the Contiguous United States. Proc. Natl. Acad. Sci. USA 2024, 121, e2403960121. [Google Scholar] [CrossRef]
- Chen, G.; Guo, Y.; Yue, X.; Tong, S.; Gasparrini, A.; Bell, M.L.; Armstrong, B.; Schwartz, J.; Jaakkola, J.J.K.; Zanobetti, A.; et al. Mortality Risk Attributable to Wildfire-Related PM2·5 Pollution: A Global Time Series Study in 749 Locations. Lancet Planet Health 2021, 5, e579–e587. [Google Scholar] [CrossRef]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical Review of Health Impacts of Wildfire Smoke Exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef]
- Yu, Q. Simulation Study on Emergency Evacuation of Commercial Historic District Based on Pedestrian Behavior Characteristics. Master’s Thesis, Chongqing University, Chongqing, China, 2023. [Google Scholar]
Built-Environment Indicators | Indicator Value |
---|---|
Average Building Height 3 | 3.34 m |
Floor Area Ratio 1,2,3 | 0.85 |
Timber Building Percentage 3 | 96.15% |
Average Plot Area 2,3 | 7545.67 m2 |
Road Density 3 | 2.16% |
Max Street Width 4 | 5 m |
Min Street Width 4 | 2 m |
Median Street Width 4 | 3 m |
Dead-end Road Proportion 3 | 28.07% |
Max Dead-end Road Length 5 | 104 m |
Min Dead-end Road Length 5 | 19 m |
Average Dead-end Road Length 5 | 57.2 m |
T-junction Proportion 3 | 42.11% |
Four-way Intersection Proportion 1,3 | 29.82% |
Number of Open Spaces > 100 m2 3 | 6 |
Validation Indicators | Previous Simulations Results | Threshold | |
---|---|---|---|
Wenquan Village, Guizhou | Dukezong Ancient Town | ||
MaxAD 1 | 44.50% | 63.10% | 44.50% |
MinAD 1 | 40.40% | 60.80% | 40.40% |
CD 2 | 8.80% | 7.47% | 7.47% |
ASD 3 | 107.041° | 19.579° | 19.579° |
Evaluation Metric | Actual | Simulated | Difference | Difference Ratio | Threshold |
---|---|---|---|---|---|
Fitted Ellipse Major Axis (Burn Area) | 331 m | 449 m | 118 m | 35.60% | 44.50% |
Fitted Ellipse Minor Axis (Burn Area) | 246 m | 305 m | 59 m | 24.00% | 40.40% |
Centroid Point (Coordinates) | 99.71, 27.81 | 99.71, 27.81 | 22 m | 2.29% | 7.47% |
Fire Spread Direction | SW17.882° | SW22.199° | 4.317° | - | 19.579° |
Case | Ignition Point | Burned Area (m2) | Burned Area Proportion | Burning Area (m2) | Burning Area Proportion | Wind Direction | Ambient Temperature (°C) |
---|---|---|---|---|---|---|---|
2 | A | 133,410 | 54.01% | 95,149 | 38.52% | Southwest | 15 |
16 | D | 129,894 | 52.59% | 91,521 | 37.05% | East | 15 |
Average | - | 92,188 | 37.32% | 65,389 | 26.47% | - | - |
Criteria | Scenarios | ||||
---|---|---|---|---|---|
2-600 1 | Average of Case 2 2 | 16-600 1 | Average of Case 16 | Static | |
Minimum Evacuation Distance (m) | 1.01 | 5.08 | 5.29 | 6.97 | 3.59 |
Maximum Evacuation Distance (m) | 685.16 | 743.62 | 539.19 | 613.63 | - |
Average Evacuation Distance (m) | 254.36 | 249.04 | 260.2 | 252.34 | 209.4 |
Minimum Evacuation Duration (s) | 9 | 7.5 | 7 | 9.25 | - |
Maximum Evacuation Duration (s) | 2088 | 1752.25 | 1729 | 1822.25 | - |
Average Evacuation Duration (s) | 586.52 | 426.95 | 638.76 | 525.23 | 447 |
Congestion quantity | 14 | 7 | 14 | 6.25 | - |
Average Distance between zones over 50 °C to Congestions (m) | 169.05 | 108 | 308.48 | 268 | - |
Criteria | Inside Historical District | Outside Historical District | |||||
---|---|---|---|---|---|---|---|
2-600 | 16-600 | Static | 2-600 | 16-600 | Static | ||
Minimum Evacuation Distance (m) | 1.01 | 5.36 | 3.59 | 296.41 | 299.93 | 290.39 | |
Maximum Evacuation Distance (m) | 685.16 | 556.98 | 551.69 | 702.58 | 891.32 | 687.15 | |
Average Evacuation Distance (m) | 264.36 | 260.2 | 209.4 | 469.51 | 446.16 | 443.96 | |
Evacuation Distance Percentage (%) | ≤100 m | 18.33 | 12.16 | 12.36 | 0.00 | 0.00 | 0.00 |
100–300 m | 39.90 | 39.69 | 40.15 | 33.96 | 33.22 | 33.14 | |
300–500 m | 40.86 | 47.50 | 46.82 | 44.36 | 43.54 | 44.05 | |
>500 m | 0.91 | 0.65 | 0.67 | 21.68 | 23.25 | 22.81 | |
Minimum Evacuation Duration (s) | 9 | 7 | 4 | 241.94 | 241.94 | 241.94 | |
Maximum Evacuation Duration (s) | 2088 | 1729 | 628 | 1928 | 1875 | 715.79 | |
Average Evacuation Duration (s) | 586.52 | 638.7 | 250 | 692.78 | 641.29 | 359.46 | |
Evacuation Duration Percentage (%) | ≤200 s | 21.40 | 14.51 | 42.30 | 0.00 | 0.00 | 0.00 |
200–400 s | 18.93 | 20.10 | 56.31 | 8.73 | 8.83 | 68.74 | |
400–600 s | 15.79 | 17.47 | 1.59 | 19.07 | 20.60 | 30.68 | |
600–800 s | 15.42 | 15.32 | 0.00 | 20.30 | 21.46 | 0.57 | |
>800 s | 28.46 | 32.60 | 0.00 | 51.90 | 49.11 | 0.00 | |
Congestion quantity | 14 | 14 | - | - | - | - | |
Average Distance between zones over 50 °C to Congestions (m) | 169.05 | 308.48 | - | - | - | - | |
Total evacuees of western exits | 7629 | 7881 | 7765 | - | - | - | |
Total evacuees of eastern exits | 2171 | 2189 | 2137 | - | - | - | |
Time of maximum capacity | - | - | - | 16 m 45 s | 13 m 48 s | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, Z.; Ma, Z.; Yao, D.; He, Y.; Gu, L.; Jing, S. Beyond Static Estimates: Dynamic Simulation of Fire–Evacuation Interaction in Historical Districts. Appl. Sci. 2025, 15, 6813. https://doi.org/10.3390/app15126813
Yue Z, Ma Z, Yao D, He Y, Gu L, Jing S. Beyond Static Estimates: Dynamic Simulation of Fire–Evacuation Interaction in Historical Districts. Applied Sciences. 2025; 15(12):6813. https://doi.org/10.3390/app15126813
Chicago/Turabian StyleYue, Zhi, Zhe Ma, Di Yao, Yue He, Linglong Gu, and Shizhong Jing. 2025. "Beyond Static Estimates: Dynamic Simulation of Fire–Evacuation Interaction in Historical Districts" Applied Sciences 15, no. 12: 6813. https://doi.org/10.3390/app15126813
APA StyleYue, Z., Ma, Z., Yao, D., He, Y., Gu, L., & Jing, S. (2025). Beyond Static Estimates: Dynamic Simulation of Fire–Evacuation Interaction in Historical Districts. Applied Sciences, 15(12), 6813. https://doi.org/10.3390/app15126813