Sowing in Plastic Contaminated Soils: How (Micro)plastics Impact Seed Germination and Growth of White Mustard (Sinapis alba L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Petri Dish Experiment
Germination Percentage (G%) and Germination Speed Index (GSI)
2.2. Pot Experiment
2.3. ImageJ Analysis
2.4. Statistical Analysis
3. Results
3.1. Petri Dish Experiment
3.1.1. Germination Percentage (G%) and Germination Speed Index (GSI) Calculations
3.1.2. Sprout Length Analysis
3.2. Pot Experiment
3.2.1. Germination Percentage (G%) and Germination Speed Index (GSI)
3.2.2. Sprout Length
3.2.3. Root Length
4. Discussion
4.1. Sinapis Alba L. Response to LDPE Microplastic: Petri Dish Experiment
4.2. Sinapis Alba L. Response to LDPE Microplastic: Pot Experiment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MP | Microplastic |
LDPE | Low density polyethylene |
CI | Confidence interval |
ANOVA | Analysis of variance |
GSI | Germination speed index |
References
- Lamichhane, G.; Acharya, A.; Marahatha, R.; Modi, B.; Paudel, R.; Adhikari, A.; Raut, B.K.; Aryal, S.; Parajuli, N. Microplastics in Environment: Global Concern, Challenges, and Controlling Measures. Int. J. Environ. Sci. Technol. 2023, 20, 4673–4694. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.I.; Hosny, M.; Eltaweil, A.S.; Omar, S.; Elgarahy, A.M.; Farghali, M.; Yap, P.-S.; Wu, Y.-S.; Nagandran, S.; Batumalaie, K.; et al. Microplastic Sources, Formation, Toxicity and Remediation: A Review. Environ. Chem. Lett. 2023, 21, 2129–2169. [Google Scholar] [CrossRef] [PubMed]
- Maddela, N.R.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M. Additives of Plastics: Entry into the Environment and Potential Risks to Human and Ecological Health. J. Environ. Manag. 2023, 348, 119364. [Google Scholar] [CrossRef]
- Jia, L.; Liu, L.; Zhang, Y.; Fu, W.; Liu, X.; Wang, Q.; Tanveer, M.; Huang, L. Microplastic Stress in Plants: Effects on Plant Growth and Their Remediations. Front. Plant Sci. 2023, 14, 1226484. [Google Scholar] [CrossRef] [PubMed]
- Bosker, T.; Bouwman, L.J.; Brun, N.R.; Behrens, P.; Vijver, M.G. Microplastics Accumulate on Pores in Seed Capsule and Delay Germination and Root Growth of the Terrestrial Vascular Plant Lepidium sativum. Chemosphere 2019, 226, 774–781. [Google Scholar] [CrossRef]
- Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50, 10777–10779. [Google Scholar] [CrossRef]
- Hurley, R.R.; Nizzetto, L. Fate and Occurrence of Micro(Nano)Plastics in Soils: Knowledge Gaps and Possible Risks. Curr. Opin. Environ. Sci. Health 2018, 1, 6–11. [Google Scholar] [CrossRef]
- Scheurer, M.; Bigalke, M. Microplastics in Swiss Floodplain Soils. Environ. Sci. Technol. 2018, 52, 3591–3598. [Google Scholar] [CrossRef] [PubMed]
- Bansal, O.P.; Singh, A. A Review on Microplastic in the Soils and Their Impact on Soil Microbes, Crops and Humans. Int. J. Res.-Granthaalayah 2022, 10, 245–273. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Sintim, H.Y.; De Bruyn, J.M. Effects of Biodegradable Plastic Film Mulching on Soil Microbial Communities in Two Agroecosystems. PeerJ 2020, 8, e9015. [Google Scholar] [CrossRef]
- Špela, Ž.; Matic, N.; Vesna, Z.; Esperanza, H.L.; Damjana, D.; Marina, P. Impact of Conventional and Biobased Microplastics from Mulch Films on Soil Bulk Density, Hydraulic Conductivity and Water Retention in Two Different Soil Types under Wetting–drying Cycles. Results Eng. 2025, 25, 104455. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of Microplastics on the Soil Biophysical Environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef]
- Hanif, M.N.; Aijaz, N.; Azam, K.; Akhtar, M.; Laftah, W.A.; Babur, M.; Abbood, N.K.; Benitez, I.B. Impact of Microplastics on Soil (Physical and Chemical) Properties, Soil Biological Properties/Soil Biota, and Response of Plants to It: A Review. Int. J. Environ. Sci. Technol. 2024, 21, 10277–10318. [Google Scholar] [CrossRef]
- Harrison, E.G.; Reiling, K.; Halfpenny, R.K.; Gwinnett, C. The Effects of Polyester Microfibres on the Development and Seed Yield of White Mustard (Sinapis alba L.). Front. Environ. Sci. 2024, 12, 1310310. [Google Scholar] [CrossRef]
- Lian, J.; Wu, J.; Xiong, H.; Zeb, A.; Yang, T.; Su, X.; Su, L.; Liu, W. Impact of Polystyrene Nanoplastics (PSNPs) on Seed Germination and Seedling Growth of Wheat (Triticum aestivum L.). J. Hazard. Mater. 2020, 385, 121620. [Google Scholar] [CrossRef]
- Yu, J.; Adingo, S.; Liu, X.; Li, X.; Sun, J.; Zhang, X. Micro Plastics in Soil Ecosystem—A Review of Sources, Fate, and Ecological Impact. Plant Soil Environ. 2022, 68, 1–17. [Google Scholar] [CrossRef]
- Terekhova, V.A. Biotesting of Soil Ecotoxicity in Case of Chemical Contamination: Modern Approaches to Integration for Environmental Assessment (a Review). Eurasian Soil Sci. 2022, 55, 601–612. [Google Scholar] [CrossRef]
- Test No. 208: Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. Available online: https://www.oecd.org/en/publications/test-no-208-terrestrial-plant-test-seedling-emergence-and-seedling-growth-test_9789264070066-en.html (accessed on 21 March 2025).
- ISO 11269-2:2012(En); Soil Quality—Determination of the Effects of Pollutants on Soil Flora—Part 2: Effects of Contaminated Soil on the Emergence and Early Growth of Higher Plants. ISO: Geneva, Switzerland, 2012. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:11269:-2:ed-3:v1:en (accessed on 21 March 2025).
- Nikolaeva, O.V.; Terekhova, V.A. Improvement of Laboratory Phytotest for the Ecological Evaluation of Soils. Eurasian Soil Sci. 2017, 50, 1105–1114. [Google Scholar] [CrossRef]
- WHO. Guidelines for Assessing Quality of Herbal Medicines with Reference to Contaminants and Residues. Available online: https://www.who.int/publications/i/item/9789241594448 (accessed on 21 March 2025).
- Vasile, G.-G.; Tenea, A.-G.; Dinu, C.; Iordache, A.M.M.; Gheorghe, S.; Mureseanu, M.; Pascu, L.F. Bioavailability, Accumulation and Distribution of Toxic Metals (As, Cd, Ni and Pb) and Their Impact on Sinapis Alba Plant Nutrient Metabolism. Int. J. Environ. Res. Public Health 2021, 18, 12947. [Google Scholar] [CrossRef]
- Holubík, O.; Vaněk, A.; Mihaljevič, M.; Vejvodová, K. Higher Tl Bioaccessibility in White Mustard (Hyper-Accumulator) Grown under the Soil than Hydroponic Conditions: A Key Factor for the Phytoextraction Use. J. Environ. Manag. 2020, 255, 109880. [Google Scholar] [CrossRef]
- Krasnodębska-Ostręga, B.; Asztemborska, M.; Golimowski, J.; Strusińska, K. Determination of Thallium Forms in Plant Extracts by Anion Exchange Chromatography with Inductively Coupled Plasma Mass Spectrometry Detection (IC-ICP-MS). J. Anal. At. Spectrom. 2008, 23, 1632–1635. [Google Scholar] [CrossRef]
- Fargašová, A. Plants as Models for Chromium and Nickel Risk Assessment. Ecotoxicology 2012, 21, 1476–1483. [Google Scholar] [CrossRef]
- Molnárová, M.; Fargašová, A. Relationship between Various Physiological and Biochemical Parameters Activated by Cadmium in Sinapis alba L. and Hordeum vulgare L. Ecol. Eng. 2012, 49, 65–72. [Google Scholar] [CrossRef]
- Fargašová, A. Phytotoxic Effects of Cd, Zn, Pb, Cu and Fe on Sinapis alba L. Seedlings and Their Accumulation in Roots and Shoots. Biol. Plant. 2001, 44, 471–473. [Google Scholar] [CrossRef]
- Šourková, M.; Adamcová, D.; Winkler, J.; Vaverková, M.D. Phytotoxicity of Tires Evaluated in Simulated Conditions. Environments 2021, 8, 49. [Google Scholar] [CrossRef]
- Timmerer, U.; Lehmann, L.; Schnug, E.; Bloem, E. Toxic Effects of Single Antibiotics and Antibiotics in Combination on Germination and Growth of Sinapis alba L. Plants 2020, 9, 107. Plants 2020, 9, 107. [Google Scholar] [CrossRef]
- Palm, E.R.; Nissim, W.G.; Adamcová, D.; Podlasek, A.; Jakimiuk, A.; Vaverková, M.D. Sinapis alba L. and Triticum aestivum L. as Biotest Model Species for Evaluating Municipal Solid Waste Leachate Toxicity. J. Environ. Manag. 2022, 302, 114012. [Google Scholar] [CrossRef]
- Meng, F.; Yang, X.; Riksen, M.; Xu, M.; Geissen, V. Response of Common Bean (Phaseolus vulgaris L.) Growth to Soil Contaminated with Microplastics. Sci. Total Environ. 2021, 755, 142516. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Zhang, S.; Zhang, S.; Sun, Y. Interactions of Microplastics and Cadmium on Plant Growth and Arbuscular Mycorrhizal Fungal Communities in an Agricultural Soil. Chemosphere 2020, 254, 126791. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Lau, C.W.; Kloas, W.; Bergmann, J.; Bachelier, J.B.; Faltin, E.; Becker, R.; Görlich, A.S.; Rillig, M.C. Microplastics Can Change Soil Properties and Affect Plant Performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef]
- Qi, Y.; Ossowicki, A.; Yang, X.; Lwanga, E.H.; Dini-Andreote, F.; Geissen, V.; Garbeva, P. Effects of Plastic Mulch Film Residues on Wheat Rhizosphere and Soil Properties. J. Hazard. Mater. 2020, 387, 121711. [Google Scholar] [CrossRef] [PubMed]
- van Weert, S.; Redondo-Hasselerharm, P.E.; Diepens, N.J.; Koelmans, A.A. Effects of Nanoplastics and Microplastics on the Growth of Sediment-Rooted Macrophytes. Sci. Total Environ. 2019, 654, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Liu, W.; Lian, Y.; Wang, Q.; Zeb, A.; Tang, J. Phytotoxicity of Polystyrene, Polyethylene and Polypropylene Microplastics on Tomato (Lycopersicon esculentum L.). J. Environ. Manag. 2022, 317, 115441. [Google Scholar] [CrossRef]
- Pignattelli, S.; Broccoli, A.; Renzi, M. Physiological Responses of Garden Cress (L. sativum) to Different Types of Microplastics. Sci. Total Environ. 2020, 727, 138609. [Google Scholar] [CrossRef]
- Colzi, I.; Renna, L.; Bianchi, E.; Castellani, M.B.; Coppi, A.; Pignattelli, S.; Loppi, S.; Gonnelli, C. Impact of Microplastics on Growth, Photosynthesis and Essential Elements in Cucurbita pepo L. J. Hazard. Mater. 2022, 423, 127238. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Aguilar-Trigueros, C.A.; Onandia, G.; Maass, S.; Zhao, T.; Rillig, M.C. Effects of Microplastics and Drought on Soil Ecosystem Functions and Multifunctionality. J. Appl. Ecol. 2021, 58, 988–996. [Google Scholar] [CrossRef]
- Shorobi, F.M.; Vyavahare, G.D.; Seok, Y.J.; Park, J.H. Effect of Polypropylene Microplastics on Seed Germination and Nutrient Uptake of Tomato and Cherry Tomato Plants. Chemosphere 2023, 329, 138679. [Google Scholar] [CrossRef]
- Serrano Ruiz, H.; Eras, J.; Martín-Closas, L.; Pelacho, A.M. Compounds Released from Unused Biodegradable Mulch Materials after Contact with Water. Polym. Degrad. Stab. 2020, 178, 109202. [Google Scholar] [CrossRef]
- Liu, S.; Jin, R.; Li, T.; Yang, S.; Shen, M. Are Biodegradable Plastic Mulch Films an Effective Way to Solve Residual Mulch Film Pollution in Farmland? Plant Soil 2024, 494, 85–94. [Google Scholar] [CrossRef]
- Ramanayaka, S.; Zhang, H.; Semple, K.T. Environmental Fate of Microplastics and Common Polymer Additives in Non-Biodegradable Plastic Mulch Applied Agricultural Soils. Environ. Pollut. 2024, 363, 125249. [Google Scholar] [CrossRef]
- An, L.; Liu, Q.; Deng, Y.; Wu, W.; Gao, Y.; Ling, W. Sources of Microplastic in the Environment. In Microplastics in Terrestrial Environments: Emerging Contaminants and Major Challenges; He, D., Luo, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 143–159. ISBN 978-3-030-56271-7. [Google Scholar]
- Iswahyudi, I.; Widodo, W.; Warkoyo, W.; Sutanto, A.; Garfansa, M.P.; Mujiyanti, W.A.; Sholeh, M.S. Investigating the Impact of Microplastics Type of Polyethylene, Polypropylene, and Polystyrene on Seed Germination and Early Growth of Rice Plants. Environ. Qual. Manag. 2024, 34, e22287. [Google Scholar] [CrossRef]
- Lasota, J.; Błońska, E.; Kempf, M.; Kempf, P.; Tabor, S. Impact of Various Microplastics on the Morphological Characteristics and Nutrition of the Young Generation of Beech (Fagus sylvatica L.). Sci. Rep. 2024, 14, 19284. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ingraffia, R.; Schloter, M.; Brüggemann, N.; Rillig, M.C. Effects of Multiple Microplastic Types on Growth of Winter Wheat and Soil Properties Vary in Different Agricultural Soils. Plants People Planet 2025, 7, 194–203. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Caesaria, P.U.; Rillig, M.C. Microplastics of Different Shapes Increase Seed Germination Synchrony While Only Films and Fibers Affect Seed Germination Velocity. Front. Environ. Sci. 2022, 10, 1017349. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Landt, L.; Rillig, M.C. Plastic Particles and Their Additives Promote Plant Invasion through Physicochemical Mechanisms on Seed Germination. J. Ecol. 2025, 113, 275–288. [Google Scholar] [CrossRef]
- MINAGRIS—Launching the MINAGRIS Multi-Scale Experiment Protocol. Available online: https://minagris.eu/launching-the-minagris-multi-scale-experiment-protocol/ (accessed on 19 November 2024).
- Li, J.; Song, Y.; Cai, Y. Focus Topics on Microplastics in Soil: Analytical Methods, Occurrence, Transport, and Ecological Risks. Environ. Pollut. 2020, 257, 113570. [Google Scholar] [CrossRef]
- Pflugmacher, S.; Sulek, A.; Mader, H.; Heo, J.; Noh, J.H.; Penttinen, O.-P.; Kim, Y.; Kim, S.; Esterhuizen, M. The Influence of New and Artificial Aged Microplastic and Leachates on the Germination of Lepidium sativum L. Plants 2020, 9, 339. Plants 2020, 9, 339. [Google Scholar] [CrossRef]
- ImageJ. Available online: https://imagej.net/ij/ (accessed on 24 March 2025).
- R: The R Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 21 February 2022).
- Boots, B.; Russell, C.W.; Green, D.S. Effects of Microplastics in Soil Ecosystems: Above and Below Ground. Environ. Sci. Technol. 2019, 53, 11496–11506. [Google Scholar] [CrossRef]
- Gharahi, N.; Zamani-Ahmadmahmoodi, R. Effect of Plastic Pollution in Soil Properties and Growth of Grass Species in Semi-Arid Regions: A Laboratory Experiment. Environ. Sci. Pollut. Res. 2022, 29, 59118–59126. [Google Scholar] [CrossRef]
- Jadhav, B.; Medyńska-Juraszek, A. Microplastic and Nanoplastic in Crops: Possible Adverse Effects to Crop Production and Contaminant Transfer in the Food Chain. Plants 2024, 13, 2526. [Google Scholar] [CrossRef]
- Esterhuizen, M.; Vikfors, S.; Penttinen, O.-P.; Kim, Y.J.; Pflugmacher, S. Lolium Multiflorum Germination and Growth Affected by Virgin, Naturally, and Artificially Aged High-Density Polyethylene Microplastic and Leachates. Front. Environ. Sci. 2022, 10, 964230. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Perlenfein, C.; Bernal, M.G.; Rillig, M.C. Disentangling Mechanisms by Which Microplastic Films Affect Plant-Soil Systems: Physical Effects of Particles Can Override Toxic Effects of Additives. Environ. Sci. Eur. 2024, 36, 198. [Google Scholar] [CrossRef]
- Yuan, L.; Zhou, L.; Li, J. Effect of Microplastics on the Allelopathic Effects of Native and Invasive Plants on Co-Occurring Invaders. Front. Plant Sci. 2024, 15, 1425815. [Google Scholar] [CrossRef] [PubMed]
- Lozano, Y.M.; Rillig, M.C. Effects of Microplastic Fibers and Drought on Plant Communities. Environ. Sci. Technol. 2020, 54, 6166–6173. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, G.; Ye, X.; Zhang, X.; Jiang, Y.; Han, Y.; Lu, L.; Liu, Z.; Zhang, H. Multigenerational Toxic Effects in Daphnia Pulex Are Induced by Environmental Concentrations of Tire Wear Particle Leachate. J. Hazard. Mater. 2025, 486, 136977. [Google Scholar] [CrossRef]
- Dolar, A.; Mušič, B.; Skalar, T.; Marolt, G.; Drobne, D.; Škapin, A.S.; Jemec Kokalj, A. Microplastics from Cigarette Filters: Comparative Effects on Selected Terrestrial and Aquatic Invertebrates. Environ. Pollut. 2025, 374, 126199. [Google Scholar] [CrossRef]
- Zhang, P.; Yuan, Y.; Zhang, J.; Wen, T.; Wang, H.; Qu, C.; Tan, W.; Xi, B.; Hui, K.; Tang, J. Specific Response of Soil Properties to Microplastics Pollution: A Review. Environ. Res. 2023, 232, 116427. [Google Scholar] [CrossRef]
Comparison | Estimate | Lower CI | Upper CI | p Value |
---|---|---|---|---|
LDPE 0.01%-Control | −0.08234 | −0.36323 | 0.19854 | 0.812 |
LDPE 1%-Control | −0.02403 | −0.30966 | 0.26161 | 0.974 |
LDPE 1%-LDPE 0.01% | 0.05831 | −0.22732 | 0.34395 | 0.930 |
Comparison | Estimate | Std. Error | t Value | p Value |
---|---|---|---|---|
LDPE 1%–Control | 0.22712 | 0.11185 | 2.031 | 0.1068 |
LDPE 5%–Control | 0.26331 | 0.11561 | 2.278 | 0.0607 |
LDPE 5%–LDPE 1% | 0.03619 | 0.11447 | 0.316 | 0.9464 |
Comparison | Estimate | Lower CI | Upper CI |
LDPE 1%–Control | −0.3114 | −10.608 | 0.4380 |
LDPE 5%–Control | −0.4473 | −12.219 | 0.3273 |
LDPE 5%–LDPE 1% | −0.1359 | −0.9029 | 0.6311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Železnikar, Š.; Kacjan Maršić, N.; Pintar, M. Sowing in Plastic Contaminated Soils: How (Micro)plastics Impact Seed Germination and Growth of White Mustard (Sinapis alba L.). Appl. Sci. 2025, 15, 6801. https://doi.org/10.3390/app15126801
Železnikar Š, Kacjan Maršić N, Pintar M. Sowing in Plastic Contaminated Soils: How (Micro)plastics Impact Seed Germination and Growth of White Mustard (Sinapis alba L.). Applied Sciences. 2025; 15(12):6801. https://doi.org/10.3390/app15126801
Chicago/Turabian StyleŽeleznikar, Špela, Nina Kacjan Maršić, and Marina Pintar. 2025. "Sowing in Plastic Contaminated Soils: How (Micro)plastics Impact Seed Germination and Growth of White Mustard (Sinapis alba L.)" Applied Sciences 15, no. 12: 6801. https://doi.org/10.3390/app15126801
APA StyleŽeleznikar, Š., Kacjan Maršić, N., & Pintar, M. (2025). Sowing in Plastic Contaminated Soils: How (Micro)plastics Impact Seed Germination and Growth of White Mustard (Sinapis alba L.). Applied Sciences, 15(12), 6801. https://doi.org/10.3390/app15126801