Robust Bi-Objective Optimization and Dynamic Modeling of Hydropneumatic Suspension Unit Considering Real Gas Effects
Abstract
:1. Introduction
2. Mechanical Modeling of the ISU System
2.1. System Overview and Working Principle
2.2. Kinematic Analysis
2.2.1. Crank-Housing Angle Calculation
2.2.2. Piston Position Derivation
2.2.3. Calculation of the Side Force Applied to the Cylinder Wall
2.3. Thermodynamic Modeling of Nitrogen Gas Spring
2.4. Damping Characteristics Analysis
3. Dynamic Response Analysis of Hydropneumatic Suspension System
3.1. Single Degree of Freedom Dynamic Model
3.2. Sinusoidal Displacement Excitation and Acceleration Calculation
3.3. Root Mean Square (RMS) Acceleration
4. Optimization Design
4.1. Robust Bi-Objective Optimization Problem Formulation
4.2. Optimization Methodology and Experimental Design
4.3. Sensitivity Analysis of Design Variables
4.4. Metamodel Construction
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Simulation Parameters
Symbol | Definition | Value | Unit |
---|---|---|---|
L1 | Main crank length | 4 × 10−1 | m |
L3 | Connecting rod length | 2.3 × 10−1 | m |
Dz | Damping orifice diameter | 3 × 10−3 | m |
Dd | Check valve diameter | 5 × 10−3 | m |
n | Number of damping orifices | 3 | - |
Vni | Initial gas volume | 1230 × 10−6 | m3 |
Pni | Initial gas pressure | 145 × 105 | Pa |
T0 | Ambient temperatures | [20, 120] | °C |
LJA | Max jounce displacement | 0.3630 | m |
LRE | Max rebound displacement | −0.1200 | m |
Ao | Oil piston area | 6.4 × 10−3 | m2 |
Ag | Gas piston area | 6.4 × 10−3 | m2 |
xstatic | Vertical offset at static | −1.63 × 10−1 | m |
wstatic | Wheel vertical static position | 0 | m |
g | Gravitational acceleration | 9.8 | m/s2 |
N | Static vertical load | 2.94 × 104 | N |
µ | Friction coefficient of the cylinder | 0 | - |
A0 | Real gas coefficient A | 1.362 × 102 | - |
B0 | Real gas coefficient B | 5.046 × 10−2 | - |
a | Real gas coefficient a | 2.617 × 10−2 | - |
b | Real gas coefficient b | −6.91 × 10−3 | - |
c | Real gas coefficient c | 4.2 × 104 | - |
R | Universal gas constant | 8.3145 | J/(mol·K) |
M | Molar mass of nitrogen | 28.013 | kg/kmol |
ρ | Oil density | 850 | kg/m3 |
Cz | Damping orifice coefficient | 0.7 | - |
Cd | Check valve coefficient | 0.6 | - |
References
- Wong, J.; Huang, W. “Wheels vs. Tracks”—A Fundamental Evaluation from the Traction Perspective. J. Terramech. 2006, 43, 27–42. [Google Scholar] [CrossRef]
- Dindorf, R. Comprehensive review comparing the development and challenges in the energy performance of pneumatic and hydropneumatic suspension systems. Energies 2025, 18, 427. [Google Scholar] [CrossRef]
- Yang, C.; Gao, X.; Liu, Z.; Cai, L.; Cheng, Q.; Zhang, C. Modeling and analysis of the vibration characteristics of a new type of in-arm hydropneumatic suspension of a tracked vehicle. J. Vibroeng. 2016, 18, 4627–4646. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D. Optimization of maintenance plan for armored vehicle In-armed suspension unit (ISU) based on field data and reliability-centered maintenance. J. Appl. Reliab. 2024, 24, 75–84. [Google Scholar] [CrossRef]
- Els, P.S.; Van Niekerk, J.L. Dynamic Modelling of an Off-Road Vehicle for the Design of a Semi-Active, Hydropneumatic Spring-Damper System. Veh. Syst. Dyn. 1999, 33, 566–577. [Google Scholar] [CrossRef]
- Cho, J.-R.; Lee, H.-W.; Yoo, W.-S.; Lee, J.-K. Study on Damping Characteristics of Hydropneumatic Suspension Unit of Tracked Vehicle. KSME Int. J. 2004, 18, 262–271. [Google Scholar] [CrossRef]
- Qin, B.; Zeng, R.; Li, X.; Yang, J. Design and Performance Analysis of the Hydropneumatic Suspension System for a Novel Road-Rail Vehicle. Appl. Sci. 2021, 11, 2221. [Google Scholar] [CrossRef]
- Nie, J.; Wang, F.; Zhang, X.; Yang, Y. Design and Test of Hydro-Pneumatic ISD Suspension in Heavy Multi-Axle Vehicles. Adv. Mech. Eng. 2021, 13, 16878140211064737. [Google Scholar] [CrossRef]
- Viadero-Monasterio, F.; Meléndez-Useros, M.; Jiménez-Salas, M.; Boada, B.L. Robust Static Output Feedback Control of a Semi-Active Vehicle Suspension Based on Magnetorheological Dampers. Appl. Sci. 2024, 14, 10336. [Google Scholar] [CrossRef]
- Miao, Y.; Rui, X.; Wang, P.; Zhu, H.; Zhang, J.; Wang, J. Nonlinear Dynamic Modeling and Analysis of Magnetorheological Semi-Active Suspension for Tracked Vehicles. Appl. Math. Modell. 2024, 125, 311–333. [Google Scholar] [CrossRef]
- Shen, Y.; Li, J.; Huang, R.; Yang, X.; Chen, J.; Chen, L.; Li, M. Vibration Control of Vehicle ISD Suspension Based on the Fractional-Order SH-GH Stragety. Mech. Syst. Signal Process. 2025, 234, 112880. [Google Scholar] [CrossRef]
- Van Der Westhuizen, S.F.; Els, P.S. Comparison of different gas models to calculate the spring force of a hydropneumatic suspension. J. Terramech. 2015, 57, 41–59. [Google Scholar] [CrossRef]
- Otis, D.R. New Developments in Predicting and Modifying the Performance of Hydraulic Accumulators. Proc. Natl. Conf. Fluid Power 1974, 28, 473–489. [Google Scholar]
- Otis, D.R.; Pourmovahed, A. An Algorithm for Computing Nonflow Gas Processes in Gas Springs and Hydropneumatic Accumulators. J. Dyn. Syst. Meas. Control. 1985, 107, 93–96. [Google Scholar] [CrossRef]
- Kwon, K.; Seo, M.; Kim, H.; Lee, T.H.; Lee, J. Min. Multi-objective optimisation of hydro-pneumatic suspension with gas–oil emulsion for heavy-duty vehicles. Veh. Syst. Dyn. 2020, 58, 1146–1165. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Li, G.; Mao, B.; Dong, Z.; Li, D. Optimal Parameter Identification of Hydro-Pneumatic Suspension for Mine Cars. Int. J. Simul. Multidiscip. Des. Optim. 2024, 15, 26. [Google Scholar] [CrossRef]
- Solomon, U.; Padmanabhan, C. Hydro-Gas Suspension System for a Tracked Vehicle: Modeling and Analysis. J. Terramech. 2011, 48, 125–137. [Google Scholar] [CrossRef]
- Qiao, C.; Wen, H.; Liu, X.; Wang, G. Damping control and experiment on active hydro-pneumatic suspension of sprayer based on genetic algorithm optimization. Front. Neurorobot. 2021, 15, 707390. [Google Scholar] [CrossRef]
- Yang, F.; Du, Y.; Wen, C.; Li, Z.; Mao, E.; Zhu, Z. Optimization design of the hydro-pneumatic suspension system for high clearance self-propelled sprayer using improved MOPSO algorithm. Int. J. Agric. Biol. Eng. 2024, 17, 109–122. [Google Scholar] [CrossRef]
- Els, P.S.; Theron, N.J.; Uys, P.E.; Thoresson, M.J. The Ride Comfort vs. Handling Compromise for off-Road Vehicles. J. Terramech. 2007, 44, 303–317. [Google Scholar] [CrossRef]
- Beattie, J.A.; Bridgeman, O.C. A new equation of state for fluids. I. Application to gaseous ethyl ether and carbon dioxide1. J. Am. Chem. Soc. 1927, 49, 1665–1667. [Google Scholar] [CrossRef]
- Beattie, J.A.; Bridgeman, O.C. A New Equation of State for Fluids. II. Application to Helium, Neon, Argon, Hydrogen, Nitrogen, Oxygen, Air and Methane. J. Am. Chem. Soc. 1928, 50, 3133–3138. [Google Scholar] [CrossRef]
- Zhu, X.; Guan, J.; Liu, Z.; Li, Y.; Yang, R. Fuzzy PID control of single chamber semi active hydro-pneumatic suspension based on GA optimization. In Proceedings of the 2024 43rd Chinese Control Conference (CCC), Kunming, China, 28–31 July 2024; 2024; pp. 792–797. [Google Scholar] [CrossRef]
- Sun, H.; Li, R.; Xu, J.; Xu, F.; Zhang, B.; Dong, X. Fractional modeling and characteristic analysis of hydro-pneumatic suspension for construction vehicles. Processes 2021, 9, 1414. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, S.X.; Sun, B.; Gao, S.; Gao, Y.; Guo, B.; Liu, Z.; Liu, F. Performance and optimization of the hydropneumatic suspension of high-speed wheeled excavators. Eng. Lett. 2023, 31, 974. [Google Scholar]
- Dridi, I.; Hamza, A.; Ben Yahia, N. A New Approach to Controlling an Active Suspension System Based on Reinforcement Learning. Adv. Mech. Eng. 2023, 15, 1–21. [Google Scholar] [CrossRef]
- Yin, Y.; Rakheja, S.; Boileau, P.-E. Multi-performance analyses and design optimisation of hydro-pneumatic suspension system for an articulated frame-steered vehicle. Veh. Syst. Dyn. 2019, 57, 108–133. [Google Scholar] [CrossRef]
- Els, P.S.; Grobbelaar, B. Heat Transfer Effects on Hydropneumatic Suspension Systems. J. Terramech. 1999, 36, 197–205. [Google Scholar] [CrossRef]
- Zhang, L.; Waza Muluken, T.; Dong, E. Robust Optimization Design of Suspension System Based on Spatial Structure. In Proceedings of the 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA), Xi’an, China, 27–29 September 2019; pp. 474–479. [Google Scholar] [CrossRef]
- Sun, D.; Park, S.; Wang, S.; Hwang, K.; Song, S.; Choi, W.; Park, J.; Kim, J. Shape optimization for the stability and lightweighting of the upper sliding rail of an automotive monopost seat. Int. J. Automot. Technol. 2024, 25, 1011–1023. [Google Scholar] [CrossRef]
- Lee, J.H. Development of system characteristic optimization method to achieve vehicle target performance. Int. J. Automot. Technol. 2024, 25, 295–303. [Google Scholar] [CrossRef]
- Experimental analysis of vacuum membrane dehumidifier: Hollow fiber module designs and dehumidification performance. Appl. Therm. Eng. 2024, 236, 121848. [CrossRef]
- Li, G.; Yang, J.; Wu, Z.; Zhang, W.; Okolo, P.; Zhang, D. A Sequential Optimal Latin Hypercube Design Method Using an Efficient Recursive Permutation Evolution Algorithm. Eng. Optim. 2024, 56, 179–198. [Google Scholar] [CrossRef]
- Katamesh, N.S.; Abbas, A.E.F.; Mahmoud, S.A. Four Chemometric Models Enhanced by Latin Hypercube Sampling Design for Quantification of Anti-COVID Drugs: Sustainability Profiling through Multiple Greenness, Carbon Footprint, Blueness, and Whiteness Metrics. BMC Chem. 2024, 18, 54. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xia, D.; Yong, N.; Wang, J.; Lin, J.; Wang, F.; Xu, S.; Ge, D. Hybrid Particle Swarm Optimization for High-Dimensional Latin Hypercube Design Problem. Appl. Sci. 2023, 13, 7066. [Google Scholar] [CrossRef]
- Simpson, T.W.; Poplinski, J.D.; Koch, P.N.; Allen, J.K. Metamodels for Computer-Based Engineering Design: Survey and Recommendations. Eng. Comput. 2001, 17, 129–150. [Google Scholar] [CrossRef]
- Park, K.-B. An Efficient Hybrid Metaheuristic Algorithm for Solving Constrained Global Optimization Problems. Ph.D. Thesis, Hanyang University, Seoul, Republic of Korea, February 2016. [Google Scholar]
- Yepes-Bellver, L.; Brun-Izquierdo, A.; Alcalá, J.; Yepes, V. Artificial Neural Network and Kriging Surrogate Model for Embodied Energy Optimization of Prestressed Slab Bridges. Sustainability 2024, 16, 8450. [Google Scholar] [CrossRef]
Design Variable | Initial Value | Optimal Value (by HMA) | Change |
---|---|---|---|
L1 (m) | 0.4 | 0.5282 | 32.05% |
L3 (m) | 0.23 | 0.3498 | 52.09% |
Dz (m) | 0.003 | 0.005794 | 93.13% |
Dd (m) | 0.005 | 0.01196 | 139.20% |
nd | 3 | 2 | −33.33% |
Objective | Metamodeler Predicted | Verification | Relative Error (%) |
---|---|---|---|
(m/s2) | 25.46 | 25.50 | 0.17% |
(N) | 6936.84 | 7096.00 | 2.24% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, D.; Chang, M.; Kim, J. Robust Bi-Objective Optimization and Dynamic Modeling of Hydropneumatic Suspension Unit Considering Real Gas Effects. Appl. Sci. 2025, 15, 6789. https://doi.org/10.3390/app15126789
Sun D, Chang M, Kim J. Robust Bi-Objective Optimization and Dynamic Modeling of Hydropneumatic Suspension Unit Considering Real Gas Effects. Applied Sciences. 2025; 15(12):6789. https://doi.org/10.3390/app15126789
Chicago/Turabian StyleSun, Di, Moonsuk Chang, and Jinho Kim. 2025. "Robust Bi-Objective Optimization and Dynamic Modeling of Hydropneumatic Suspension Unit Considering Real Gas Effects" Applied Sciences 15, no. 12: 6789. https://doi.org/10.3390/app15126789
APA StyleSun, D., Chang, M., & Kim, J. (2025). Robust Bi-Objective Optimization and Dynamic Modeling of Hydropneumatic Suspension Unit Considering Real Gas Effects. Applied Sciences, 15(12), 6789. https://doi.org/10.3390/app15126789