Non-Subsampled Contourlet Transform-Based Domain Feedback Information Distillation Network for Suppressing Noise in Seismic Data
Abstract
:1. Introduction
- (1)
- This paper proposes a new feedback information distillation network (FID-N) that mainly consists of a two-path information distillation (ID) block used in a recurrent manner to form a feedback mechanism, with the advantage of sharing the weights of each iterative block during the procedure, and fully exploits features from seismic signals and effectively restores the noisy seismic signals step by step.
- (2)
- Noise suppression is formulated to predict the NSCT coefficients to further remove noise with the FID-N while preserving more details compared with spatial-domain algorithms.
- (3)
- Our scheme was verified with synthetic and real seismic data and demonstrated both qualitatively and quantitatively that the denoised data obtained with our method had higher SNR values and richer useful information compared with those obtained with other cutting-edge methods, especially for high-frequency low-SNR data.
2. Related Work
3. Proposed Method
3.1. Architecture for FID-N Seismic Denoising Network
3.2. Two-Path Information Distillation Block (IDB)
3.3. NSCT Prediction
4. Experimental Results and Analysis
4.1. Seismic Datasets and Experimental Details
4.2. Comparison with State-of-the-Art (SOTA) Methods
4.3. Ablation Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canales, L.L. Random noise reduction. In Proceedings of the 54th Annual International Meeting, Atlanta, GA, USA, 2 December 1984. [Google Scholar]
- Zhang, J.H.; Lu, J.M. Application of wavelet transform in removing noise and improving resolution of seismic data. J. Univ. Pet. Ed. Nat. Sci. 1997, 31, 1975–1981. [Google Scholar]
- Neelamani, R.; Baumstein, A.; Gillard, D.; Hadidi, M.; Soroka, W. Coherent and random noise attenuation using the curvelet transform. Lead. Edge 2008, 27, 240–248. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, J. Random noise attenuation by f-x empirical mode decomposition predictive filtering. Geophysics 2014, 79, V81–V91. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.S.; Chen, X.; Li, J. Simultaneous seismic data interpolation and denoising with a new adaptive method based on treamlet transform. Geophys. J. Int. 2015, 201, 1182–1194. [Google Scholar] [CrossRef]
- Chen, Y.; Fomel, S. EMD-seislet transform. In Proceedings of the 85th SEG Annual International Meeting, New Orleans, LA, USA, 18–23 October 2015. [Google Scholar]
- Liu, W.; Cao, S.; Chen, Y.; Zu, S. An effective approach to attenuate random noise based on compressive sensing and curvelet transform. J. Geophys. Eng. 2016, 13, 135–145. [Google Scholar] [CrossRef]
- Liu, W.; Cao, S.; Chen, Y. Application of variational mode decomposition in random noise attenuation and time frequency analysis of seismic data. In Proceedings of the EAGE 78th Annual International Conference and Exhibition, Vienna, Austria, 30 May–2 June 2016. [Google Scholar]
- Beckouche, S.; Ma, J.W. Simultaneous dictionary learning and denoising for seismic data. Geophysics 2014, 79, A27–A31. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, J.; Bai, M.; Yang, B.; Ma, Z. Fast dictionary learning based on data-driven tight frame for 3-D seismic data denoising. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5904510. [Google Scholar] [CrossRef]
- Bonar, D.; Sacchi, M. Denoising seismic data using the nonlocal means algorithm. Geophysics 2012, 77, A5–A8. [Google Scholar] [CrossRef]
- Yuan, Y.H.; Wang, Y.B.; Liu, Y.K.; Chang, X. Non-dyadic curvelet transform and its application in seismic noise elimination. Chin. J. Geophys. 2013, 56, 1023–1032. [Google Scholar]
- Zhou, Q.B.; Gao, J.H.; Wang, Z.G.; Li, K.X. Adaptive variable time fractional anisotropic diffusion filtering for seismic data noise attenuation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1905–1917. [Google Scholar] [CrossRef]
- Lin, C. Suppression of random noise in seismic data based on 3D Steerable Pyramid decomposition. Prog. Geophys. 2018, 33, 1081–1087. [Google Scholar]
- Genovese, F.; Palmeri, A. Wavelet-based generation of fully non-stationary random processes with application to seismic ground motions. Mech. Syst. Signal Process. 2025, 223, 111833. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26–30 June 2016. [Google Scholar]
- Li, J.C.; Fang, F.M.; Mei, K.F.; Zhang, G. Multi-scale residual network for image super-resolution. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018. [Google Scholar]
- Hui, Z.; Wang, X.M.; Gao, X.B. Fast and accurate single image super-resolution via information distillation network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Wang, L.; Li, D.; Zhu, Y.S.; Tian, L.; Shan, Y. Dual Super-Resolution Learning for Semantic Segmentation. In Proceedings of the Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Mustaqeem; Kwon, S. CLSTM: Deep feature-based speech emotion recognition using the hierarchical ConvLSTM network. Mathematics 2020, 8, 2133. [Google Scholar] [CrossRef]
- Sajjad, M.; Kwon, S. Clustering-based speech emotion recognition by incorporating learned features and deep BiLSTM. IEEE Access 2020, 8, 79861–79875. [Google Scholar]
- Zhang, K.; Gool, V.; Timofte, R. Deep unfolding network for image superresolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Marco, P.; Marco, V.; Adrian, H. Attention-Based Multi-Reference Learning for Image Super-Resolution. In Proceedings of the International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Xie, W.B.; Song, D.H.; Xu, C.; Xu, C.J.; Zhang, H.; Wang, Y. Learning frequency-aware dynamic network for efficient super-resolution. In Proceedings of the International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021. [Google Scholar]
- Zhang, J.; Long, C.; Wang, Y.; Piao, H.; Mei, H.; Yang, X.; Yin, B. A two stage attentive network for single image super-resolution. IEEE Trans. Circuits Syst. Video Technol. 2022, 32, 1020–1033. [Google Scholar] [CrossRef]
- Liu, N.; Wang, J.; Gao, J.; Chang, S.; Lou, Y. NS2NS: Self-learning for seismic image denoising. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Zhang, C.; Frogner, C.; Araya-Polo, M. Machine-learning based automated fault detection in seismic traces. In Proceedings of the Conference of 76th EAGE Conference and Exhibition, Amsterdam, NL, USA, 19 June 2014. [Google Scholar]
- Cao, J.; Wu, S.; He, X. Gas reservoir identification basing on deep learning of seismic-print characteristics. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 12–16 December 2016. [Google Scholar]
- Huang, L.; Dong, X.; Clee, T.E. A scalable deep learning platform for identifying geologic features from seismic attributes. Lead. Edge 2017, 36, 249–256. [Google Scholar] [CrossRef]
- Olivier, G.; Chaput, J.; Borchers, B. Using supervised machine learning to improve active source signal retrieval. Seismol. Res. Lett. 2018, 89, 1023–1029. [Google Scholar] [CrossRef]
- Jia, Y.; Yu, S.; Ma, J. Intelligent interpolation by Monte Carlo machine learning. Geophysics 2018, 83, 83–97. [Google Scholar] [CrossRef]
- Zhang, P.L.; Li, Y.; Zhang, T.T. Study of seismic data denoising based on U-Net deep neural network. Met. Mine 2020, 1, 200–208. [Google Scholar]
- Mai, H. Research on Seismic Data Denoising Based on Deep Residual Network; China University of Petroleum: Beijing, China, 2019. [Google Scholar]
- Fang, W.Q.; Li, Z.M. Random noise attenuation in seismic data based on dual residual networks. Chin. J. Eng. Geophys. 2021, 18, 44–50. [Google Scholar]
- Yu, K. Research on Seismic Data Denoising Method Based on Symmetric Dilated Convolution Neural Network; Chengdu University of Technology: Chengdu, China, 2020. [Google Scholar]
- Sang, Y.; Sun, J.G.; Meng, X.F.; Peng, Y.F.; Jin, H.B. Seismic random noise attenuation based on PCC classification in transform domain. IEEE Access 2020, 8, 30368–30377. [Google Scholar] [CrossRef]
- Sang, Y.; Sun, J.G.; Gao, D.C.; Wu, H. Noise attenuation of seismic data via deep multiscale fusion network. Wirel. Commun. Mob. Comput. 2021, 2021, 6612346. [Google Scholar] [CrossRef]
- Sang, Y.; Yu, B.W.; Wang, Q.J.; Yin, S.S. Suppressing seismic coherent and incoherent noise via deep neural network. In Proceedings of the International Conference on Smart Internet of Things, Jeju, Republic of Korea, 1 August 2021. [Google Scholar]
- Li, J.; Wu, X.; Hu, Z. Deep learning for simultaneous seismic image super-resolution and denoising. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5901611. [Google Scholar] [CrossRef]
- Chang, D.; Zhang, G.; Yong, X.; Gao, J.; Wang, Y.; Wang, W. Deep learning using synthetic seismic data by Fourier domain adaptation in seismic structure interpretation. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8030705. [Google Scholar] [CrossRef]
- Min, F.; Wang, L.; Pan, S.; Song, G. D2UNet: Dual decoder U-Net for seismic image super-resolution reconstruction. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5906913. [Google Scholar] [CrossRef]
- Li, F.; Liu, H.; Wang, W.; Ma, J. Swin transformer for seismic denoising. IEEE Geosci. Remote Sens. Lett. 2024, 21, 7501905. [Google Scholar] [CrossRef]
- Chen, J.; Chen, G.; Li, J.; Du, R.; Qi, Y.; Li, C.F.; Wang, N. Efficient seismic data denoising via deep learning with improved MCA-SCUNet. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5903614. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, J.; Huang, J.; Wang, W. An Adaptive Time-Frequency Denoising Method for Suppressing Source-Related Seismic Strong Noise. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5908410. [Google Scholar] [CrossRef]
- Zamir, A.R.; Wu, T.L.; Sun, L.; Shen, W.B.; Shi, B.E.; Malik, J.; Savarese, S. Feedback networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21 July 2017. [Google Scholar]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Artificial Intelligence and Statistics (AISTATS), Fort Lauderdale, FL USA, 11–13 April 2011. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing: The Sparse Way; Academic Press: Cambridge, UK; New York, NY, USA, 2008. [Google Scholar]
- Labate, D.; Lim, W.Q.; Kutyniok, G.; Weiss, G. Sparse multidimensional representation using shearlets. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), Wavelets XI, Bellingham, WA, USA, 17 September 2005. [Google Scholar]
- DaCunha, A.L.; Zhou, J.; Do, M.N. The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Trans. Image Process. 2006, 15, 3089–3101. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
Type | Kernel | Stride | Padding |
---|---|---|---|
Conv 1 | 3 × 3 | 1 | 1 |
Conv 2 | 5 × 5 | 1 | 2 |
Conv 3 | 3 × 3 | 1 | 1 |
Noise Level (dB) | Noisy Data (dB) | Traditional Methods | Deep Learning-Based Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Wavelet [47] (dB) | Curvelet [3] (dB) | Shearlet [49] (dB) | VDSR [16] (dB) | MSRN [17] (dB) | IDN [18] (dB) | USRNET [22] (dB) | TSAN [25] (dB) | D2UNet [41] (dB) | Ours (dB) | ||
0.02 | 80.5968 | 85.7465 | 87.4305 | 88.0954 | 90.4366 | 91.1316 | 91.0545 | 91.7665 | 91.6596 | 92.2417 | 93.7661 |
0.04 | 75.9162 | 80.9624 | 82.1635 | 83.0428 | 87.0879 | 89.3624 | 89.2232 | 90.0108 | 90.2113 | 90.8869 | 91.8348 |
0.06 | 71.8627 | 77.6552 | 79.1162 | 79.9688 | 85.6964 | 87.5658 | 87.3394 | 88.2009 | 88.6587 | 89.1266 | 90.5265 |
0.1 | 67.2135 | 72.8593 | 74.0852 | 74.8997 | 82.3354 | 85.8640 | 85.1654 | 86.0901 | 85.8964 | 86.8964 | 88.1273 |
0.15 | 63.6554 | 67.2268 | 68.9652 | 69.6744 | 75.4870 | 78.8837 | 78.4654 | 79.5418 | 79.2147 | 80.6566 | 82.5441 |
Noise Level (dB) | Noisy Data (dB) | Traditional Methods | Deep Learning-Based Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Wavelet [47] (dB) | Curvelet [3] (dB) | Shearlet [49] (dB) | VDSR [16] (dB) | MSRN [17] (dB) | IDN [18] (dB) | USRNET [22] (dB) | TSAN [25] (dB) | D2UNet [41] (dB) | Ours (dB) | ||
1 × 10−6 | 68.5969 | 72.6654 | 75.3775 | 76.2573 | 79.1136 | 80.6623 | 80.5472 | 81.4377 | 81.2451 | 83.5513 | 84.0452 |
5 × 10−6 | 62.4360 | 66.2186 | 69.5388 | 70.6695 | 74.0563 | 75.5080 | 75.9531 | 76.7624 | 76.7322 | 78.6542 | 80.1026 |
1 × 10−5 | 54.7663 | 57.7956 | 59.8267 | 60.7754 | 65.7964 | 67.6554 | 67.9622 | 69.1425 | 68.9633 | 70.8774 | 72.7694 |
5 × 10−5 | 43.6748 | 45.9952 | 48.1205 | 48.9943 | 54.2779 | 57.0286 | 56.8696 | 58.0532 | 58.3166 | 60.5588 | 62.4617 |
1 × 10−4 | 32.5772 | 34.4826 | 36.5253 | 37.2517 | 43.7844 | 46.7963 | 46.9957 | 48.2935 | 47.9532 | 49.7836 | 50.3967 |
Iteration T | 3 | 5 | 7 | 9 | 11 | 13 |
---|---|---|---|---|---|---|
Synthetic data (noise levels: 0.06) | 89.3611 dB | 89.5482 dB | 90.0663 dB | 90.5265 dB | 90.5915 dB | 90.6638 dB |
Forward models (noise levels: 1 × 10−5) | 71.3616 dB | 71.6228 dB | 72.1654 dB | 72.7694 dB | 72.8859 dB | 72.9863 dB |
Noise Level (dB) | Synthetic Data | Noise Level (dB) | Forward Models | ||
---|---|---|---|---|---|
Single Scale (Baseline) (dB) | Two-Path IDB (Ours) (dB) | Single Scale (Baseline) (dB) | Two-Path IDB (Ours) (dB) | ||
0.02 | 93.1491 | 93.7661 | 1 × 10−6 | 83.4659 | 84.0452 |
0.04 | 91.2566 | 91.8348 | 5 × 10−6 | 79.6658 | 80.1026 |
0.06 | 89.9013 | 90.5265 | 1 × 10−5 | 72.1438 | 72.7694 |
0.1 | 87.5524 | 88.1273 | 5 × 10−5 | 61.5471 | 62.4617 |
0.15 | 82.0659 | 82.5441 | 1 × 10−4 | 49.4936 | 50.3967 |
High-Frequency Levels of NSST Decomposition | Synthetic Data (Noise Levels: 0.06) | Forward Model (Noise Levels: 1 × 10−5) |
---|---|---|
2 levels (numbers of decomposition directions are 2 and 4, respectively) | 89.6527 dB | 71.6639 dB |
2 levels (numbers of decomposition directions are 4 and 8, respectively) | 89.9253 dB | 72.0663 dB |
3 levels (numbers of decomposition directions are 2, 4, and 8, respectively) | 90.5265 dB | 72.7694 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, K.; Zhang, G.; Tang, C.; Ran, Q.; Wen, L.; Han, S.; Liang, H.; Yi, H. Non-Subsampled Contourlet Transform-Based Domain Feedback Information Distillation Network for Suppressing Noise in Seismic Data. Appl. Sci. 2025, 15, 6734. https://doi.org/10.3390/app15126734
Chen K, Zhang G, Tang C, Ran Q, Wen L, Han S, Liang H, Yi H. Non-Subsampled Contourlet Transform-Based Domain Feedback Information Distillation Network for Suppressing Noise in Seismic Data. Applied Sciences. 2025; 15(12):6734. https://doi.org/10.3390/app15126734
Chicago/Turabian StyleChen, Kang, Guangzhi Zhang, Cong Tang, Qi Ran, Long Wen, Song Han, Han Liang, and Haiyong Yi. 2025. "Non-Subsampled Contourlet Transform-Based Domain Feedback Information Distillation Network for Suppressing Noise in Seismic Data" Applied Sciences 15, no. 12: 6734. https://doi.org/10.3390/app15126734
APA StyleChen, K., Zhang, G., Tang, C., Ran, Q., Wen, L., Han, S., Liang, H., & Yi, H. (2025). Non-Subsampled Contourlet Transform-Based Domain Feedback Information Distillation Network for Suppressing Noise in Seismic Data. Applied Sciences, 15(12), 6734. https://doi.org/10.3390/app15126734