Recent Developments on Biomineralization for Erosion Control
Abstract
1. Introduction
2. Biomineralization Process and Efficiency Optimization
2.1. Traditional Biomineralization Process
2.2. Biomineralization Efficiency Optimization
3. Multi-Investigations of Biomineralization Erosion Control in Ocean Engineering
3.1. Erosion Control of Coastline
3.2. Local Scour Protection Around Monopile
3.3. Stability Evaluation of MICP-Reinforced Seabed
4. Suggestions for Future Research
5. Conclusions
- (1)
- The optimization of reinforcement methodology (mixing, grouting, immersion) and material formulation (polycarboxylic acid, PA) are conducive to a more uniform distribution of calcium carbonate. The addition of 3% polycarboxylic acid (PA) delays the onset of CaCO3 precipitation by >2 h and acts as a non-bacterial nucleation template, facilitating spatially uniform distribution. Kinetic analysis of Ca2+ conversion confirmed complete ion utilization within 24 h under optimized PA concentration (3%), yielding a compressive strength of 2.76 MPa after five treatment cycles;
- (2)
- The erosion resistance of coastline soil was investigated by erosion function apparatus (EFA) tests, tidal actions model tests, wave actions model tests, and field applications. Field validations in Ahoskie and Sanya demonstrate the efficacy of MICP in coastal erosion control through tailored delivery systems and environmental adaptations. In Ahoskie, three delivery methods (surface spraying, PVDs, and trenches) achieved distinct performance: surface spraying formed 7% CaCO3 crusts (73% improvement at surface compared to the untreated soil), PVDs enhanced subsurface layers (72% improvement at 30 cm depth compared to the untreated soil), and trenches concentrated CaCO3 (9.9%) near gravel interfaces, collectively enabling the slope to withstand Hurricane Dorian over 331 days. Meanwhile, Sanya’s studies highlighted seawater-compatible MICP solutions, achieving maximum 1743 kPa penetration resistance in the atmospheric zone and layered “M-shaped” CaCO3 precipitation in tidal regions. Comparatively, EICP under freshwater yielded weaker aggregates, with MICP’s spherical crystals outperforming EICP’s irregular structures. While tidal exposure degraded MICP durability, synergies between biomineralization and natural sedimentation underscored its ecological potential;
- (3)
- MICP coupled with polyvinyl alcohol (PVA) effectively mitigated local scour around the monopile through biomineralization and polymer-enhanced crystal adhesion. Experimental studies reveal that MICP treatments (2–4 cycles) reduce maximum scour depth by 84–100% under unidirectional currents through the formation of a 4–9 cm MICP cemented cone stabilizing seabed sediment. It is necessary to consider the balance of MICP protective times and edge scour. MICP coupled with polyvinyl alcohol (PVA) outperforms conventional methods, achieving 500-fold increases in critical shear stress (94.4 Pa) via dense vaterite crystallization at particle contacts and sustaining <0.3 mm erosion under extreme flows. Synergistic effects of polymer-modulated infiltration and biomineralization enable precise 5 cm-thick cemented layers without deep grouting;
- (4)
- In addition to erosion protection, MICP technology can also be used to reinforce the seabed and improve stability. The numerical model of MICP reaction for seabed reinforcement considering the wave actions, incorporating bacterial kinetics (suspended/attached phases), urea hydrolysis (Michaelis–Menten equation), and Darcy-driven convection–diffusion–reaction processes, can be used to analyze the seabed stability after MICP treatment. This framework accounts for CaCO3-induced porosity reduction and shear modulus enhancement, resolving wave–seabed–MICP interactions. Simulations reveal MICP increases seabed stability by amplifying vertical effective stress and reducing pore pressure. Surface CaCO3 clogging diminishes permeability and redistributes seepage forces, enhancing resistance to liquefaction. Comparative analyses confirm untreated seabed instability increases linearly with wave height, while MICP-treated seabed exhibits nonlinear stability gains through cohesive strength effects. Validated via unit tests and parametric studies, the model demonstrates MICP’s efficacy in mitigating wave-induced seabed liquefaction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Rijn, L.C. Coastal erosion and control. Ocean Coast. Manag. 2011, 54, 867–887. [Google Scholar] [CrossRef]
- Zhang, K.; Douglas, B.C.; Leatherman, S.P. Global warming and coastal erosion. Clim. Change 2004, 64, 41–58. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Change 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Zhu, X.; Linham, M.M.; Nicholls, R.J. Technologies for Climate Change Adaptation-Coastal Erosion and Flooding; Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi: Kongens Lyngby, Denmark, 2010. [Google Scholar]
- Pilkey, O.H.; Cooper, J.A.G. The Last Beach. Duke University Press: Durham, NC, USA, 2020. [Google Scholar]
- Barragán, J.M.; De Andrés, M. Analysis and trends of the world’s coastal cities and agglomerations. Ocean Coast. Manag. 2015, 114, 11–20. [Google Scholar] [CrossRef]
- Ataie-Ashtiani, B.; Beheshti, A.A. Experimental investigation of clear-water local scour at pile groups. J. Hydraul. Eng. 2006, 132, 1100–1104. [Google Scholar] [CrossRef]
- Amini, A.; Melville, B.W.; Ali, T.M.; Ghazali, A.H. Clear-water local scour around pile groups in shallow-water flow. J. Hydraul. Eng. 2012, 138, 177–185. [Google Scholar] [CrossRef]
- Qi, W.G.; Gao, F.P.; Randolph, M.F.; Lehane, B.M. Scour effects on p–y curves for shallowly embedded piles in sand. Géotechnique 2016, 66, 648–660. [Google Scholar] [CrossRef]
- Sumer, B.M.; Fredsøe, J.; Christiansen, N. Scour around vertical pile in waves. J. Waterw. Port Coast. Ocean Eng. 1992, 118, 15–31. [Google Scholar] [CrossRef]
- Qi, W.G.; Li, Y.X.; Xu, K.; Gao, F.P. Physical modelling of local scour at twin piles under combined waves and current. Coast. Eng. 2019, 143, 63–75. [Google Scholar] [CrossRef]
- Sumer, B.M.; Whitehouse, R.J.; Tørum, A. Scour around coastal structures: A summary of recent research. Coast. Eng. 2001, 44, 153–190. [Google Scholar] [CrossRef]
- Raudkivi, A.J.; Ettema, R. Clear-water scour at cylindrical piers. J. Hydraul. Eng. 1983, 109, 338–350. [Google Scholar] [CrossRef]
- Whitehouse, R. Scour at Marine Structures: A Manual for Practical Applications; Thomas Telford: London, UK, 1998. [Google Scholar]
- Lin, Y.; Lin, C. Effects of scour-hole dimensions on lateral behavior of piles in sands. Comput. Geotech. 2019, 111, 30–41. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Hong, Y.; Mašín, D.; Li, W.; He, B.; Pan, H. Centrifuge testing on monotonic and cyclic lateral behavior of large-diameter slender piles in sand. Ocean Eng. 2021, 226, 108299. [Google Scholar] [CrossRef]
- Yamamoto, T.; Koning, H.L.; Sellmeijer, H.; Van Hijum, E.P. On the response of a poro-elastic bed to water waves. J. Fluid Mech. 1978, 87, 193–206. [Google Scholar] [CrossRef]
- Sakai, T.; Hatanaka, K.; Mase, H. Wave-induced effective stress in seabed and its momentary liquefaction. J. Waterw. Port Coast. Ocean Eng. 1992, 118, 202–206. [Google Scholar] [CrossRef]
- Mory, M.; Michallet, H.; Bonjean, D.; Piedra-Cueva, I.; Barnoud, J.M.; Foray, P.; Abadie, S.; Breul, P. A field study of mo-mentary liquefaction caused by waves around a coastal structure. J. Waterw. Port Coast. Ocean Eng. 2007, 133, 28–38. [Google Scholar] [CrossRef]
- Chávez, V.; Mendoza, E.; Silva, R.; Silva, A.; Losada, M.A. An experimental method to verify the failure of coastal structures by wave induced liquefaction of clayey soils. Coast. Eng. 2017, 123, 1–10. [Google Scholar] [CrossRef]
- Young, Y.L.; White, J.A.; Xiao, H.; Borja, R.I. Liquefaction potential of coastal slopes induced by solitary waves. Acta Geotech. 2009, 4, 17–34. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Cao, R.; Gao, G.; Feng, X.; Yin, B.; Ren, P.; Guo, J.; Lv, X. Pressure characteristics of two-dimensional topog-raphy in wave-induced seabed liquefaction. Physics of Fluids 2025, 37. [Google Scholar]
- Zhao, H.Y.; Jeng, D.S.; Liao, C.C. Parametric study of the wave-induced residual liquefaction around an embed-ded pipeline. Appl. Ocean Res. 2016, 55, 163–180. [Google Scholar] [CrossRef]
- Chen, W.; Fang, D.; Chen, G.; Jeng, D.; Zhu, J.; Zhao, H. A simplified quasi-static analysis of wave-induced residual liquefaction of seabed around an immersed tunnel. Ocean Eng. 2018, 148, 574–587. [Google Scholar] [CrossRef]
- Kirca, V.O.; Sumer, B.M.; Fredsøe, J. Residual liquefaction under standing waves. In Proceedings of the Twenty-second International Offshore and Polar Engineering Conference, Rhodes, Greece, 17–23 June 2012. ISOPE: 2012. [Google Scholar]
- Jeng, D.S.; Chen, L.; Liao, C.; Tong, D. A numerical approach to determine wave (current)-induced residual re-sponses in a layered seabed. J. Coast. Res. 2019, 35, 1271–1284. [Google Scholar] [CrossRef]
- Williams, A.T.; Rangel-Buitrago, N.; Pranzini, E.; Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Q.; Zhang, H.; Liang, F. Effect of scour remediation by solidified soil on lateral response of mono-pile supporting offshore wind turbines using numerical model. Appl. Ocean Res. 2024, 150, 104143. [Google Scholar] [CrossRef]
- Whitehouse, R.J.; Harris, J.M.; Sutherland, J.; Rees, J. The nature of scour development and scour protection at offshore windfarm foundations. Mar. Pollut. Bull. 2011, 62, 73–88. [Google Scholar] [CrossRef]
- Chiew, Y.M. Scour protection at bridge piers. J. Hydraul. Eng. 1992, 118, 1260–1269. [Google Scholar] [CrossRef]
- Jordan, P.; Fröhle, P. Bridging the gap between coastal engineering and nature conservation? A review of coastal ecosystems as nature-based solutions for coastal protection. J. Coast. Conserv. 2022, 26, 4. [Google Scholar] [CrossRef]
- Hsiung, A.R.; Hartanto, R.S.; Bhatia, N.; Morris, R.L. Challenges and opportunities for implementing na-ture-based coastal protection in an urbanised coastal city based on public perceptions. J. Environ. Manag.-Ment 2024, 370, 122620. [Google Scholar] [CrossRef]
- Perricone, V.; Mutalipassi, M.; Mele, A.; Buono, M.; Vicinanza, D.; Contestabile, P. Nature-based and bioinspired solutions for coastal protection: An overview among key ecosystems and a promising pathway for new functional and sus-tainable designs. ICES J. Mar. Sci. 2023, 80, 1218–1239. [Google Scholar] [CrossRef]
- Forrester, J.; Leonardi, N.; Cooper, J.R.; Kumar, P. Seagrass as a nature-based solution for coastal protection. Eco-Log. Eng. 2024, 206, 107316. [Google Scholar] [CrossRef]
- Rahman, H.T.; Manuel, P.; Sherren, K.; Rapaport, E.; van Proosdij, D. Characterizing social barriers to na-ture-based coastal adaptation approaches. Nat.-Based Solut. 2023, 4, 100099. [Google Scholar] [CrossRef]
- Pade, C.; Guimaraes, M. The CO2 uptake of concrete in a 100 year perspective. Cem. Concr. Res. 2007, 37, 1348–1356. [Google Scholar] [CrossRef]
- Chen, Y.; Han, Y.; Zhang, X.; Sarajpoor, S.; Zhang, S.; Yao, X. Experimental study on permeability and strength characteristics of MICP-treated calcareous sand. Biogeotechnics 2023, 1, 100034. [Google Scholar] [CrossRef]
- Peng, S.; Di, H.; Fan, L.; Fan, W.; Qin, L. Factors affecting permeability reduction of MICP for fractured rock. Front. Earth Sci. 2020, 8, 217. [Google Scholar] [CrossRef]
- Song, C.; Elsworth, D. Stress sensitivity of permeability in high-permeability sandstone sealed with microbial-ly-induced calcium carbonate precipitation. Biogeotechnics 2024, 2, 100063. [Google Scholar] [CrossRef]
- Yu, T.; Souli, H.; Pechaud, Y.; Fleureau, J.M. Review on engineering properties of MICP-treated soils. Geomech. Eng. 2021, 27, 13–30. [Google Scholar]
- Lin, H.; Suleiman, M.T.; Brown, D.G. Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP). Soils Found. 2020, 60, 944–961. [Google Scholar] [CrossRef]
- Konstantinou, C.; Wang, Y.; Biscontin, G. A systematic study on the influence of grain characteristics on hydraulic and mechanical performance of MICP-treated porous media. Transp. Porous Media 2023, 147, 305–330. [Google Scholar] [CrossRef]
- Wu, C.; Chu, J.; Wu, S.; Hong, Y. 3D characterization of microbially induced carbonate precipitation in rock frac-ture and the resulted permeability reduction. Eng. Geol. 2019, 249, 23–30. [Google Scholar] [CrossRef]
- Mujah, D.; Cheng, L.; Shahin, M.A. Microstructural and geomechanical study on biocemented sand for optimiza-tion of MICP process. J. Mater. Civ. Eng. 2019, 31, 04019025. [Google Scholar] [CrossRef]
- Liu, S.; Gao, X. Evaluation of the anti-erosion characteristics of an MICP coating on the surface of tabia. J. Mater. Civ. Eng. 2020, 32, 04020304. [Google Scholar] [CrossRef]
- Ma, G.; He, X.; Jiang, X.; Liu, H.; Chu, J.; Xiao, Y. Strength and permeability of bentonite-assisted biocemented coarse sand. Can. Geotech. J. 2021, 58, 969–981. [Google Scholar] [CrossRef]
- Sang, G.; Lunn, R.J.; El Mountassir, G.; Minto, J.M. Meter-scale MICP improvement of medium graded very grav-elly sands: Lab measurement, transport modelling, mechanical and microstructural analysis. Eng. Geol. 2023, 324, 107275. [Google Scholar] [CrossRef]
- Yu, X.; Rong, H. Seawater based MICP cements two/one-phase cemented sand blocks. Appl. Ocean Res. 2022, 118, 102972. [Google Scholar] [CrossRef]
- Lin, W.; Gao, Y.; Lin, W.; Zhuo, Z.; Wu, W.; Cheng, X. Seawater-based bio-cementation of natural sea sand via mi-crobially induced carbonate precipitation. Environ. Technol. Innov. 2023, 29, 103010. [Google Scholar] [CrossRef]
- Boquet, E.; Boronat, A.; Ramos-Cormenzana, A. Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 1973, 246, 527–529. [Google Scholar] [CrossRef]
- Whiffin, V.S. Microbial CaCO3 Precipitation for the Production of Biocement. Doctoral Thesis, Murdoch University, Murdoch, Australia, 2004. Available online: https://researchportal.murdoch.edu.au/esploro/outputs/doctoral/Microbial-CaCO3-precipitation-for-the-production/991005540291407891 (accessed on 9 June 2025).
- Mitchell, J.K.; Santamarina, J.C. Biological considerations in geotechnical engineering. J. Geotech. Geoenviron. Eng. 2005, 131, 1222–1233. [Google Scholar] [CrossRef]
- Hosseini, S.M.J.; Guan, D.; Cheng, L. Ground improvement with a single injection of a high-performance all-in-one MICP solution. Geomicrobiol. J. 2024, 41, 636–647. [Google Scholar] [CrossRef]
- Arpajirakul, S.; Pungrasmi, W.; Likitlersuang, S. Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Constr. Build. Mater. 2021, 282, 122722. [Google Scholar] [CrossRef]
- Wani, K.S.; Mir, B.A. Application of bio-engineering for marginal soil improvement: An eco-friendly ground im-provement technique. Indian Geotech. J. 2022, 52, 1097–1115. [Google Scholar] [CrossRef]
- Lin, H.; Suleiman, M.T.; Jabbour, H.M.; Brown, D.G.; Kavazanjian, E., Jr. Enhancing the axial compression response of pervious concrete ground improvement piles using biogrouting. J. Geotech. Geoenviron. Eng. 2016, 142, 04016045. [Google Scholar] [CrossRef]
- Lai, H.J.; Cui, M.J.; Chu, J. Effect of pH on soil improvement using one-phase-low-pH MICP or EICP biocementa-tion method. Acta Geotech. 2023, 18, 3259–3272. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, L.; Li, C.; Li, M.; Amini, F.; Zhang, H. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. J. Mater. Civ. Eng. 2014, 26, 04014094. [Google Scholar] [CrossRef]
- Karimian, A.; Hassanlourad, M. Mechanical behaviour of MICP-treated silty sand. Bull. Eng. Geolo-Gy Environ. 2022, 81, 285. [Google Scholar] [CrossRef]
- Wang, Y.J.; Chen, W.B.; Li, P.L.; Yin, Z.Y.; Yin, J.H.; Jiang, N.J. Soil improvement using biostimulated MICP: Mechanical and biochemical experiments, reactive transport modelling, and parametric analysis. Comput. Geotech-Nics 2024, 172, 106446. [Google Scholar] [CrossRef]
- Van Wijngaarden, W.K.; Vermolen, F.J.; Van Meurs, G.A.M.; Vuik, C. Modelling biogrout: A new ground im-provement method based on microbial-induced carbonate precipitation. Transp. Porous Media 2011, 87, 397–420. [Google Scholar] [CrossRef]
- Cheng, L.; Shahin, M.A. Urease active bioslurry: A novel soil improvement approach based on microbially in-duced carbonate precipitation. Can. Geotech. J. 2016, 53, 1376–1385. [Google Scholar] [CrossRef]
- Wang, Y.; Konstantinou, C.; Soga, K.; Biscontin, G.; Kabla, A.J. Use of microfluidic experiments to optimize MICP treatment protocols for effective strength enhancement of MICP-treated sandy soils. Acta Geotech. 2022, 17, 3817–3838. [Google Scholar] [CrossRef]
- Teng, F.; Sie, Y.C.; Ouedraogo, C. Strength improvement in silty clay by microbial-induced calcite precipitation. Bull. Eng. Geol. Environ. 2021, 80, 6359–6371. [Google Scholar] [CrossRef]
- Chen, Y.W.; Cui, M.J.; Lai, H.J.; Zheng, J.J.; Ren, Y.X. Modified one-phase-low-pH EICP method using low-pH cementation solution for soil biomineralization. Acta Geotech. 2025, 1–14. [Google Scholar] [CrossRef]
- Chae, S.H.; Chung, H.; Nam, K. Evaluation of microbially Induced calcite precipitation (MICP) methods on dif-ferent soil types for wind erosion control. Environ. Eng. Res. 2021, 26, 190507. [Google Scholar]
- Wang, Y.N.; Li, S.K.; Li, Z.Y.; Garg, A. Exploring the application of the MICP technique for the suppression of erosion in granite residual soil in Shantou using a rainfall erosion simulator. Acta Geotech. 2023, 18, 3273–3285. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, N.; Jin, Y.; Li, Q.; Xu, J. Application of microbially induced calcium carbonate precipitation (MICP) in sand embankments for scouring/erosion control. Mar. Georesources Geotechnol. 2021, 39, 1459–1471. [Google Scholar] [CrossRef]
- Liu, S.; Wang, R.; Yu, J.; Peng, X.; Cai, Y.; Tu, B. Effectiveness of the anti-erosion of an MICP coating on the surfac-es of ancient clay roof tiles. Constr. Build. Mater. 2020, 243, 118202. [Google Scholar] [CrossRef]
- Liu, S.; Du, K.; Huang, W.; Wen, K.; Amini, F.; Li, L. Improvement of erosion-resistance of bio-bricks through fiber and multiple MICP treatments. Constr. Build. Mater. 2021, 271, 121573. [Google Scholar] [CrossRef]
- Jiang, N.J.; Soga, K.; Kuo, M. Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures. J. Geotech. Geoenviron. Eng. 2017, 143, 04016100. [Google Scholar] [CrossRef]
- Jiang, N.J.; Soga, K. Erosional behavior of gravel-sand mixtures stabilized by microbially induced calcite precipi-tation (MICP). Soils Found. 2019, 59, 699–709. [Google Scholar] [CrossRef]
- Chek, A.; Crowley, R.; Ellis, T.N.; Durnin, M.; Wingender, B. Evaluation of factors affecting erodibility improve-ment for MICP-treated beach sand. J. Geotech. Geoenviron. Eng. 2021, 147, 04021001. [Google Scholar] [CrossRef]
- Li, K.; Wang, Y. The impact of Microbially Induced Calcite Precipitation (MICP) on sand internal erosion re-sistance: A microfluidic study. Transp. Geotech. 2024, 49, 101404. [Google Scholar] [CrossRef]
- Meng, H.; Gao, Y.; He, J.; Qi, Y.; Hang, L. Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests. Geoderma 2021, 383, 114723. [Google Scholar] [CrossRef]
- Cheng, Y.J.; Tang, C.S.; Pan, X.H.; Liu, B.; Xie, Y.H.; Cheng, Q.; Shi, B. Application of microbial induced carbonate precipitation for loess surface erosion control. Eng. Geol. 2021, 294, 106387. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, H.; Tang, X.; Liu, K.; Ye, L.; Ma, G. Field investigation of the feasibility of MICP for Mitigating Nat-ural Rainfall-Induced erosion in gravelly clay slope. Bull. Eng. Geol. Environ. 2024, 83, 406. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, G.; Wu, H.; Lu, H.; Zaman, M. Rainfall-induced erosion of biocemented graded slopes. Int. J. Geomech. 2022, 22, 04021256. [Google Scholar] [CrossRef]
- Liu, B.; Tang, C.S.; Pan, X.H.; Cheng, Q.; Xu, J.J.; Lv, C. Mitigating rainfall induced soil erosion through bio-approach: From laboratory test to field trail. Eng. Geol. 2025, 344, 107842. [Google Scholar] [CrossRef]
- Sun, X.; Miao, L.; Wang, H.; Wu, L.; Fan, G.; Xia, J. Sand foreshore slope stability and erosion mitigation based on microbiota and enzyme mix–induced carbonate precipitation. J. Geotech. Geoenviron. Eng. 2022, 148, 04022058. [Google Scholar] [CrossRef]
- Rodríguez, R.F.; Cardoso, R. Study of biocementation treatment to prevent erosion by concentrated water flow in a small-scale sand slope. Transp. Geotech. 2022, 37, 100873. [Google Scholar] [CrossRef]
- Jongvivatsakul, P.; Janprasit, K.; Nuaklong, P.; Pungrasmi, W.; Likitlersuang, S. Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method. Constr. Build. Mater. 2019, 212, 737–744. [Google Scholar] [CrossRef]
- Sun, X.; Miao, L.; Wu, L.; Wang, H. Theoretical quantification for cracks repair based on microbially induced car-bonate precipitation (MICP) method. Cem. Concr. Compos. 2021, 118, 103950. [Google Scholar] [CrossRef]
- Choi, S.G.; Wang, K.; Wen, Z.; Chu, J. Mortar crack repair using microbial induced calcite precipitation method. Cem. Concr. Compos. 2017, 83, 209–221. [Google Scholar] [CrossRef]
- Intarasoontron, J.; Pungrasmi, W.; Nuaklong, P.; Jongvivatsakul, P.; Likitlersuang, S. Comparing performances of MICP bacterial vegetative cell and microencapsulated bacterial spore methods on concrete crack healing. Constr. Build. Mater. 2021, 302, 124227. [Google Scholar] [CrossRef]
- Nuaklong, P.; Jongvivatsakul, P.; Phanupornprapong, V.; Intarasoontron, J.; Shahzadi, H.; Pungrasmi, W.; Thaiboonrod, S.; Likitlersuang, S. Self-repairing of shrinkage crack in mortar containing microencapsulated bacterial spores. J. Mater. Res. Technol. 2023, 23, 3441–3454. [Google Scholar] [CrossRef]
- Jiang, L.; Xia, H.; Hu, S.; Zhao, X.; Wang, W.; Zhang, Y.; Li, Z. Crack-healing ability of concrete enhanced by aero-bic-anaerobic bacteria and fibers. Cem. Concr. Res. 2024, 183, 107585. [Google Scholar] [CrossRef]
- Zamani, A.; Xiao, P.; Baumer, T.; Carey, T.J.; Sawyer, B.; DeJong, J.T.; Boulanger, R.W. Mitigation of liquefaction triggering and foundation settlement by MICP treatment. J. Geotech. Geoenviron. Eng. 2021, 147, 04021099. [Google Scholar] [CrossRef]
- O’Donnell, S.T.; Kavazanjian, E., Jr.; Rittmann, B.E. MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II: MICP. J. Geotech. Geoenviron. Eng. 2017, 143, 04017095. [Google Scholar] [CrossRef]
- O’Donnell, S.T.; Rittmann, B.E.; Kavazanjian, E., Jr. MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation. J. Geotech. Geoenviron. Eng. 2017, 143, 04017094. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, J.; Bian, H.; Yue, J.; Xiao, J.; Wei, Y. Study on Liquefaction-Resistance Performance of MICP-Cemented Sands: Applying Centrifuge Shake Table Tests. J. Geotech. Geoenviron. Eng. 2024, 150, 06024004. [Google Scholar] [CrossRef]
- Ahenkorah, I.; Rahman, M.M.; Karim, M.R.; Beecham, S. Cyclic liquefaction resistance of MICP-and EICP-treated sand in simple shear conditions: A benchmarking with the critical state of untreated sand. Acta Geotech. 2024, 19, 5891–5913. [Google Scholar] [CrossRef]
- Xiao, P.; Liu, H.; Xiao, Y.; Stuedlein, A.W.; Evans, T.M. Liquefaction resistance of bio-cemented calcareous sand. Soil Dyn. Earthq. Eng. 2018, 107, 9–19. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, Z.; Stuedlein, A.W.; Evans, T.M. Liquefaction modeling for biocemented calcareous sand. J. Geotech. Geoenviron. Eng. 2021, 147, 04021149. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Geng, W.; He, J.; Gao, Y. Evaluation of liquefaction resistance for single-and multi-phase SICP-treated sandy soil using shaking table test. Acta Geotech. 2023, 18, 6007–6025. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Liu, H.; Zhang, Z.; Ding, X. Performance evaluation of a MICP-treated calcareous sandy foun-dation using shake table tests. Soil Dyn. Earthq. Eng. 2020, 129, 105959. [Google Scholar] [CrossRef]
- Darby, K.M.; Hernandez, G.L.; DeJong, J.T.; Boulanger, R.W.; Gomez, M.G.; Wilson, D.W. Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation. J. Geotech. Geoenviron.-Ment. Eng. 2019, 145, 04019084. [Google Scholar] [CrossRef]
- Kanwal, M.; Khushnood, R.A.; Adnan, F.; Wattoo, A.G.; Jalil, A. Assessment of the MICP potential and corrosion inhibition of steel bars by biofilm forming bacteria in corrosive environment. Cem. Concr. Compos. 2023, 137, 104937. [Google Scholar] [CrossRef]
- Sun, X.; Wai, O.W.; Xie, J.; Li, X. Biomineralization to prevent microbially induced corrosion on concrete for sus-tainable marine infrastructure. Environ. Sci. Technol. 2023, 58, 522–533. [Google Scholar] [CrossRef]
- Umar, M.; Kassim, K.A.; Chiet, K.T.P. Biological process of soil improvement in civil engineering: A review. J. Rock Mech. Geotech. Eng. 2016, 8, 767–774. [Google Scholar] [CrossRef]
- Rajasekar, A.; Wilkinson, S.; Moy, C.K. MICP as a potential sustainable technique to treat or entrap contaminants in the natural environment: A review. Environ. Sci. Ecotechnol. 2021, 6, 100096. [Google Scholar] [CrossRef]
- Mujah, D.; Shahin, M.A.; Cheng, L. State-of-the-art review of biocementation by microbially induced calcite pre-cipitation (MICP) for soil stabilization. Geomicrobiol. J. 2017, 34, 524–537. [Google Scholar] [CrossRef]
- Zhang, K.; Tang, C.S.; Jiang, N.J.; Pan, X.H.; Liu, B.; Wang, Y.J.; Shi, B. Microbial-induced carbonate precipitation (MICP) technology: A review on the fundamentals and engineering applications. Environ. Earth Sci. 2023, 82, 229. [Google Scholar] [CrossRef]
- Fu, T.; Saracho, A.C.; Haigh, S.K. Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics 2023, 1, 100002. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, N.; Cai, G.; Jin, Y.; Ding, N.; Shen, D. Review of ground improvement using microbial induced carbonate precipitation (MICP). Mar. Georesources Geotechnol. 2017, 35, 1135–1146. [Google Scholar] [CrossRef]
- Gebru, K.A.; Kidanemariam, T.G.; Gebretinsae, H.K. Bio-cement production using microbially induced calcite precipitation (MICP) method: A review. Chem. Eng. Sci. 2021, 238, 116610. [Google Scholar] [CrossRef]
- Fouladi, A.S.; Arulrajah, A.; Chu, J.; Horpibulsuk, S. Application of Microbially Induced Calcite Precipitation (MICP) technology in construction materials: A comprehensive review of waste stream contributions. Constr. Build. Mater. 2023, 388, 131546. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, X.; Miao, L.; Wang, H.; Wu, L.; Shi, W.; Kawasaki, S. State-of-the-art review of soil erosion control by MICP and EICP techniques: Problems, applications, and prospects. Sci. Total Environ. 2024, 912, 169016. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Song, H.W.; Mishra, S.; Zhang, W.; Zhang, Y.L.; Zhang, Q.R.; Yu, Z.G. Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review. Chemosphere 2023, 318, 137894. [Google Scholar] [CrossRef]
- Harran, R.; Terzis, D.; Laloui, L. Mechanics, modeling, and upscaling of biocemented soils: A review of break-throughs and challenges. Int. J. Geomech. 2023, 23, 03123004. [Google Scholar] [CrossRef]
- DeJong, J.T.; Mortensen, B.M.; Martinez, B.C.; Nelson, D.C. Bio-mediated soil improvement. Ecol. Eng. 2010, 36, 197–210. [Google Scholar] [CrossRef]
- Wu, H.; Wu, W.; Liang, W.; Dai, F.; Liu, H.; Xiao, Y. 3D DEM modeling of biocemented sand with fines as cement-ing agents. Int. J. Numer. Anal. Methods Geomech. 2023, 47, 212–240. [Google Scholar] [CrossRef]
- Cheng, L.; Shahin, M.A.; Cord-Ruwisch, R.; Addis, M.; Hartanto, T.; Elms, C. Soil stabilisation by microbial-induced calcite precipitation (MICP): Investigation into some physical and environmental aspects. In Proceedings of the 7th International Congress on Environmental Geotechnics, Melbourne, Australia, 10–14 November 2014. [Google Scholar]
- Keykha, H.A.; Asadi, A.; Zareian, M. Environmental factors affectingthe compressive strength of microbiologically induced calciteprecipitation-treated soil. Geomicrobiol J 2017, 34, 889. [Google Scholar] [CrossRef]
- Stocks-Fischer, S.; Galinat, J.K.; Bang, S.S. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 1999, 31, 1563–1571. [Google Scholar] [CrossRef]
- Silva-Castro, G.A.; Uad, I.; Rivadeneyra, A.; Vilchez, J.I.; Martin-Ramos, D.; González-López, J.; Rivadeneyra, M.A. Carbonate precipitation of bacterial strains isolated from sediments and seawater: Formation mechanisms. Geomicrobiol. J. 2013, 30, 840–850. [Google Scholar] [CrossRef]
- Kang, B.; Wang, H.; Zha, F.; Liu, C.; Zhou, A.; Ban, R. Exploring the Uniformity of MICP Solidified Fine Particle Silt with Different Sample Preparation Methods. Biogeotechnics 2025, 100163. [Google Scholar] [CrossRef]
- Zhu, Y.Q.; Li, Y.J.; Sun, X.Y.; Guo, Z.; Rui, S.J.; Zheng, D.Q. A one-phase injection method to improve the strength and uniformity in MICP with polycarboxylic acid added. Acta Geotech. 2025, 20, 2279–2291. [Google Scholar] [CrossRef]
- GB/T 17671-1999; Method of testing cements—Determination of strength. Chinese Standards: Beijing, China, 1999.
- Clarà Saracho, A.; Haigh, S.K.; Ehsan Jorat, M. Flume study on the effects of microbial induced calcium carbonate precipitation (MICP) on the erosional behaviour of fine sand. Géotechnique 2021, 71, 1135–1149. [Google Scholar] [CrossRef]
- Salifu, E.; MacLachlan, E.; Iyer, K.R.; Knapp, C.W.; Tarantino, A. Application of microbially induced calcite pre-cipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation. Eng. Geol. 2016, 201, 96–105. [Google Scholar] [CrossRef]
- Kou, H.L.; Wu, C.Z.; Ni, P.P.; Jang, B.A. Assessment of erosion resistance of biocemented sandy slope subjected to wave actions. Appl. Ocean Res. 2020, 105, 102401. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Q.; Li, Y.; Li, Y.; Liu, C. Application of microbial-induced calcium carbonate precipitation in wave ero-sion protection of the sandy slope: An experimental study. Sustainability 2022, 14, 12965. [Google Scholar] [CrossRef]
- Ghasemi, P.; Montoya, B.M. Field implementation of microbially induced calcium carbonate precipitation for surface erosion reduction of a coastal plain sandy slope. J. Geotech. Geoenviron. Eng. 2022, 148, 04022071. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Wang, L.; Zhu, Y.; Rui, S. Field implementation to resist coastal erosion of sandy slope by eco-friendly methods. Coast. Eng. 2024, 189, 104489. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Wang, L.; Yang, H.; Li, Y.; Zhu, J. An innovative eco-friendly method for scour protection around monopile foundation. Appl. Ocean Res. 2022, 123, 103177. [Google Scholar] [CrossRef]
- Zhu, T.; He, R.; Hosseini, S.M.J.; He, S.; Cheng, L.; Guo, Y.; Guo, Z. Influence of precast microbial reinforcement on lateral responses of monopiles. Ocean Eng. 2024, 307, 118211. [Google Scholar] [CrossRef]
- Wang, X.; Tao, J.; Bao, R.; Tran, T.; Tucker-Kulesza, S. Surficial soil stabilization against water-induced erosion us-ing polymer-modified microbially induced carbonate precipitation. J. Mater. Civ. Eng. 2018, 30, 04018267. [Google Scholar] [CrossRef]
- Martinez, B.C.; DeJong, J.T.; Ginn, T.R. Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow. Comput. Geotech. 2014, 58, 1–13. [Google Scholar] [CrossRef]
- Fauriel, S.; Laloui, L. A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils. Comput. Geotech. 2012, 46, 104–120. [Google Scholar] [CrossRef]
- Wang, X.; Nackenhorst, U. A coupled bio-chemo-hydraulic model to predict porosity and permeability reduction during microbially induced calcite precipitation. Adv. Water Resour. 2020, 140, 103563. [Google Scholar] [CrossRef]
- Bosch, J.A.; Terzis, D.; Laloui, L. A bio-chemo-hydro-mechanical model of transport, strength and deformation for bio-cementation applications. Acta Geotech. 2024, 19, 2805–2821. [Google Scholar] [CrossRef]
- Li, Y.; Guo, Z.; Wang, L.; Yang, H. A coupled bio-chemo-hydro-wave model and multi-stages for MICP in the sea-bed. Ocean Eng. 2023, 280, 114667. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Dong, C.; Feng, G.; Sun, X.; Guo, Z. A coupled mathematical model of microbial grouting reinforced seabed considering the response of wave-induced pore pressure and its application. Comput. Geotech. 2025, 184, 107235. [Google Scholar] [CrossRef]
- Koponen, A.; Kataja, M.; Timonen, J. Permeability and effective porosity of porous media. Phys. Rev. E 1997, 56, 3319–3325. [Google Scholar] [CrossRef]
Treatment Method | Soil Type | CaCO3 Content and Distribution | UCS | Pros and Cons | Reference |
---|---|---|---|---|---|
Mixing | Silt | 8~10%, relatively uniform | 801.25 kPa | Good uniformity, suitable for shallow reinforcement, difficult to use on large areas | Kang et al., 2025 [117] |
Grouting | Silt | 5~13%, longitudinal inhomogeneity | 684.78 kPa | Suitable for deep reinforcement with limited reinforcement range | Kang et al., 2025 [117] |
Immersion | Silt | 6~13%, radial inhomogeneity | 206.11 kPa | Good uniformity, not suitable for field applications | Kang et al., 2025 [117] |
One-phase injection method with 3% PA added | ISO-standard sand (GB/T 17671-1999) [119] | 7~7.5%, relatively uniform | 2.76 MPa | Good uniformity, suitable for large-scale field applications | Zhu et al., 2025 [118] |
Site | Treatment Method | Soil Type | CaCO3 Content and Distribution Along Depth | UCS or Penetration Resistance | Reference |
---|---|---|---|---|---|
Ahoskie | Surface spraying | Poorly graded sand (SP) | ≤5.2%, decreasing, increasing first and then decreasing | ≤420 KPa | Ghasemi and Montoya, 2022 [124] |
Ahoskie | Prefabricated vertical drains (PVDs) | Poorly graded sand (SP) | ≤4.9%, increasing, increasing first and then decreasing | ≤150 kPa | Ghasemi and Montoya, 2022 [124] |
Ahoskie | Shallow trenches | Poorly graded sand (SP) | ≤4%, decreasing | ≤150 kPa | Ghasemi and Montoya, 2022 [125] |
Sanya | Surface spraying | Sandy soil at atmospheric region | ≤10%, decreasing, increasing first and then decreasing | ≤1800 kPa | Li et al., 2024 [125] |
Sanya | Surface spraying | Sandy soil at tidal region | ≤5%, fluctuating | ≤500 kPa | Li et al., 2024 [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Dong, C.; Zhu, Y.; Wang, Z.; Li, Y.; Feng, G. Recent Developments on Biomineralization for Erosion Control. Appl. Sci. 2025, 15, 6591. https://doi.org/10.3390/app15126591
Liu S, Dong C, Zhu Y, Wang Z, Li Y, Feng G. Recent Developments on Biomineralization for Erosion Control. Applied Sciences. 2025; 15(12):6591. https://doi.org/10.3390/app15126591
Chicago/Turabian StyleLiu, Shan, Changrui Dong, Yongqiang Zhu, Zichun Wang, Yujie Li, and Guohui Feng. 2025. "Recent Developments on Biomineralization for Erosion Control" Applied Sciences 15, no. 12: 6591. https://doi.org/10.3390/app15126591
APA StyleLiu, S., Dong, C., Zhu, Y., Wang, Z., Li, Y., & Feng, G. (2025). Recent Developments on Biomineralization for Erosion Control. Applied Sciences, 15(12), 6591. https://doi.org/10.3390/app15126591