A Probabilistic Approach to the Nitrate Risk Assessment of Groundwater in Intensively Farmed Region of Southeast Türkiye
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geology and Hydrogeology
2.3. Methods
2.3.1. Observation and Determination of Water Quality Parameters
2.3.2. Multivariate Statistical Analysis
2.3.3. Health Risk Assessment Procedure
2.3.4. Monte Carlo Simulation (MCS) and Sensitivity Analysis (SA)
2.3.5. Mapping
3. Results and Discussion
3.1. Groundwater Hydrochemistry Assessment
3.2. Statistical Analysis
3.3. Nitrate Concentration Assessment
3.4. Health Risk Assessment
3.5. A Probabilistic Approach for Nitrate Risk Assessment
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhatnagar, A.; Sillanpää, M. A Review of Emerging Adsorbents for Nitrate Removal from Water. Chem. Eng. J. 2011, 168, 493. [Google Scholar] [CrossRef]
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global Diagnosis of Nitrate Pollution in Groundwater and Review of Removal Technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, M.; Biagioni, R.N.; Alarcón-Herrera, M.T.; Rivas-Lucero, B.A. An Overview of Nitrate Sources and Operating Processes in Arid and Semiarid Aquifer Systems. Sci. Total Environ. 2018, 624, 1513. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; De Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Van Breda, S.G. Drinking Water Nitrate and Human Health: An Updated Review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef]
- Romanelli, A.; Soto, D.X.; Matiatos, I.; Martínez, D.E.; Esquius, S. A Biological and Nitrate Isotopic Assessment Framework to Understand Eutrophication in Aquatic Ecosystems. Sci. Total Environ. 2020, 715, 136909. [Google Scholar] [CrossRef] [PubMed]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; WHO Press: Geneva, Switzerland, 2017. [Google Scholar]
- Gardner, S.G.; Levison, J.; Parker, B.L.; Martin, R.C. Groundwater Nitrate in Three Distinct Hydrogeologic and Land-Use Settings in Southwestern Ontario, Canada. Hydrogeol. J. 2020, 28, 1891. [Google Scholar] [CrossRef]
- Kahraman, N.; Yazici Karabulut, B.; Atasoy, A.D.; Yesilnacar, M.I. Investigation of Nitrate Pollution in Unconfined Aquifer of Harran Plain in Summer and Winter Periods (2014–2015). Harran Univ. Eng. J. 2016, 1, 1. [Google Scholar]
- Yazici Karabulut, B.; Atasoy, A.D.; Yesilnacar, M.I. Removal of Nitrate from Aqueous Solutions by Batch Electrocoagulation Process Using al and Fe Plate Electrodes. Harran Univ. J. Eng. 2019, 4, 79. [Google Scholar]
- Yazici Karabulut, B.; Atasoy, A.D.; Yesilnacar, M.I. Investigation of the Effect of Montmorillonite Clay on Aluminum Amount and Fock Form in Nitrate Removal by Electrocoagulation Process. Int. J. Math. Eng. Nat. Sci. 2019, 8, 135. [Google Scholar]
- Yazici Karabulut, B.; Atasoy, A.D.; Can, O.T.; Yesilnacar, M.I. Electrocoagulation for Nitrate Removal in Groundwater of Intensive Agricultural Region: A Case Study of Harran Plain, Turkey. Environ. Earth Sci. 2021, 80, 190. [Google Scholar] [CrossRef]
- Serio, F.; Miglietta, P.P.; Lamastra, L.; Ficocelli, S.; Intini, F.; De Leo, F.; De Donno, A. Groundwater Nitrate Contamination and Agricultural Land Use: A Grey Water Footprint Perspective in Southern Apulia Region (Italy). Sci. Total Environ. 2018, 645, 1425. [Google Scholar] [CrossRef]
- Taufiq, A.; Effendi, A.J.; Iskandar, I.; Hosono, T.; Hutasoit, L.M. Controlling Factors and Driving Mechanisms of Nitrate Contamination in Groundwater System of Bandung Basin, Indonesia, Deduced by Combined Use of Stable Isotope Ratios, CFC Age Dating, and Socioeconomic Parameters. Water Res. 2019, 148, 292. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Su, C.; Wang, M.; Abbas, H.; Baloch, M.Y.J.; Ghani, J.; Huq, M.E. Groundwater Fluoride and Nitrate Contamination and Associated Human Health Risk Assessment in South Punjab, Pakistan. Environ. Sci. Pollut. Res. 2023, 30, 61606. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.; Thorling, L.; Kim, H.; Blicher-Mathiesen, G. Long-Term Nitrate Response in Shallow Groundwater to Agricultural N Regulations in Denmark. J. Environ. Manag. 2019, 240, 66. [Google Scholar] [CrossRef] [PubMed]
- Qasemi, M.; Farhang, M.; Biglari, H.; Afsharnia, M.; Ojrati, A.; Khani, F.; Zarei, A. Health Risk Assessments Due to Nitrate Levels in Drinking Water in Villages of Azadshahr, Northeastern Iran. Environ. Earth Sci. 2018, 77, 782. [Google Scholar] [CrossRef]
- Koh, E.H.; Lee, E.; Lee, K.K. Application of Geographically Weighted Regression Models to Predict Spatial Characteristics of Nitrate Contamination: Implications for an Effective Groundwater Management Strategy. J. Environ. Manag. 2020, 268, 110646. [Google Scholar] [CrossRef]
- Saraswat, A.; Ram, S.; Kouadri, S.; Raza, M.B.; Hombegowda, H.C.; Kumar, R.; Jena, R.K. Groundwater Quality, Fluoride Health Risk and Geochemical Modelling for Drinking and Irrigation Water Suitability Assessment in Tundla Block, Uttar Pradesh, India. Groundw. Sustain. Dev. 2023, 23, 100991. [Google Scholar] [CrossRef]
- Wang, D.; Li, P.; Yang, N.; Yang, C.; Zhou, Y.; Li, J. Distribution, Sources and Main Controlling Factors of Nitrate in a Typical Intensive Agricultural Region, Northwestern China: Vertical Profile Perspectives. Environ. Res. 2023, 237, 116911. [Google Scholar] [CrossRef]
- Panneerselvam, B.; Muniraj, K.; Pande, C.; Ravichandran, N. Prediction and Evaluation of Groundwater Characteristics Using the Radial Basic Model in Semi-Arid Region, India. Int. J. Environ. Anal. Chem. 2023, 103, 1377–1393. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Z.; Wang, J.; Wu, J.; Yang, C.; Kang, W.; Huang, X. Multivariate Analysis and Geochemical Signatures of Shallow Groundwater in the Main Urban Area of Chongqing, Southwestern China. Water 2020, 12, 2833. [Google Scholar] [CrossRef]
- Ramalingam, S.; Panneerselvam, B.; Kaliappan, S.P. Effect of High Nitrate Contamination of Groundwater on Human Health and Water Quality Index in Semi-Arid Region, South India. Arab. J. Geosci. 2022, 15, 242. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Shi, P.; Bi, Z.; Shan, Z.; Ren, L. The Deep Challenge of Nitrate Pollution in River Water of China. Sci. Total Environ. 2021, 770, 144674. [Google Scholar] [CrossRef]
- Adimalla, N.; Qian, H. Groundwater Chemistry, Distribution and Potential Health Risk Appraisal of Nitrate Enriched Groundwater: A Case Study from the Semi-Urban Region of South India. Ecotoxicol. Environ. Saf. 2021, 207, 111277. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund (RAGS). Human Health Evaluation Manual (Part F); US Environmental Protection Agency: Washington, DC, USA, 2014; Volume I.
- Wang, Y.; Li, P. Appraisal of Shallow Groundwater Quality with Human Health Risk Assessment in Different Seasons in Rural Areas of the Guanzhong Plain (China). Environ. Res. 2022, 207, 112210. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.A.; Morovati, M.; Najafi Saleh, H.; Ghale Askari, S.; Ghaderpoori, M.; Shams, M.; Sadeghi, S. Groundwater Quality Evaluation for Drinking and Industrial Purposes. A Case Study in Northeastern Iran. J. Environ. Anal. Chem. 2022, 102, 6094. [Google Scholar] [CrossRef]
- Yazici-Karabulut, B.; Kocer, Y.; Yesilnacar, M.I. Bottled Water Quality Assessment through Entropy-Weighted Water Quality Index (EWQI) and Pollution Index of Groundwater (PIG): A Case Study in a Fast-Growing Metropolitan Area in Türkiye. Int. J. Environ. Health Res. 2024, 34, 61. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Ghazala, H.; Mahmoudi, A.E.; Sherbini, R.E.; Genedi, M.A. Hydrogeological Attributes and Groundwater Potential of the Saq Aquifer System: Insights from Petrophysical Properties and Hydrochemical Characteristics in Al Qassim Province, KSA. Environ. Earth Sci. 2024, 83, 597. [Google Scholar] [CrossRef]
- Adimalla, N.; Wu, J. Groundwater Quality and Associated Health Risks in a Semi-Arid Region of South India: Implication to Sustainable Groundwater Management. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 191. [Google Scholar] [CrossRef]
- Duraisamy, S.; Govindhaswamy, V.; Duraisamy, K.; Krishinaraj, S.; Balasubramanian, A.; Thirumalaisamy, S. Hydrogeochemical Characterization and Evaluation of Groundwater Quality in Kangayam Taluk, Tirupur District, Tamil Nadu, India, Using GIS Techniques. Environ. Geochem. Health 2019, 41, 851. [Google Scholar] [CrossRef]
- Subba Rao, N.; Sunitha, B.; Adimalla, N.; Chaudhary, M. Quality Criteria for Groundwater Use from a Rural Part of Wanaparthy District, Telangana State, India, Through Ionic Spatial Distribution (ISD), Entropy Water Quality Index (EWQI) and Principal Component Analysis (PCA). Environ. Geochem. Health 2020, 42, 579. [Google Scholar] [CrossRef]
- Mengistu, H.A.; Demlie, M.B.; Abiye, T.A.; Xu, Y.; Kanyerere, T. Conceptual Hydrogeological and Numerical Groundwater Flow Modelling around the Moab Khutsong Deep Gold Mine, South Africa. Groundw. Sustain. Dev. 2019, 9, 100266. [Google Scholar]
- Yazici Karabulut, B.; Derin, P.; Demir Yetiþ, A.; Yeþilnacar, M.Ý. Health Risk Assessment in an Area of Dental Fluorosis Disease from High Fluoride Drinking Water: A Case Study from Southeastern Türkiye. Int. J. Environ. Health Res. 2024, 34, 2299. [Google Scholar] [CrossRef] [PubMed]
- Karunanidhi, D.; Aravinthasamy, P.; Deepali, M.; Subramani, T.; Roy, P.D. The Effects of Geochemical Processes on Groundwater Chemistry and the Health Risks Associated with Fluoride Intake in a Semi-Arid Region of South India. RSC Adv. 2020, 10, 4840. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhou, H.; He, S.; Zhang, Y. Comprehensive Understanding of Groundwater Quality for Domestic and Agricultural Purposes in Terms of Health Risks in a Coal Mine Area of the Ordos Basin, North of the Chinese Loess Plateau. Environ. Earth Sci. 2019, 78, 446. [Google Scholar] [CrossRef]
- Li, P.; He, X.; Li, Y.; Xiang, G. Occurrence and Health Implication of Fluoride in Groundwater of Loess Aquifer in the Chinese Loess Plateau: A Case Study of Tongchuan, Northwest China. Expo. Health 2019, 11, 95. [Google Scholar] [CrossRef]
- Chitsazan, M.; Aghazadeh, N.; Mirzaee, Y.; Golestan, Y. Hydrochemical Characteristics and the Impact of Anthropogenic Activity on Groundwater Quality in Suburban Area of Urmia City, Iran. Environ. Dev. Sustain. 2019, 21, 331. [Google Scholar] [CrossRef]
- Wei, M.; Wu, J.; Li, W.; Zhang, Q.; Su, F.; Wang, Y. Groundwater Geochemistry and Its Impacts on Groundwater Arsenic Enrichment, Variation, and Health Risks in Yongning County, Yinchuan Plain of Northwest China. Expo. Health 2021, 14, 219–238. [Google Scholar] [CrossRef]
- Qiu, H.; Gui, H.; Xu, H.; Cui, L.; Li, Z.; Yu, H. Quantifying Nitrate Pollution Sources of Shallow Groundwater and Related Health Risks Based on Deterministic and Monte Carlo Models: A Study in Huaibei Mining Area, Huaibei Coalfield, China. Ecotoxicol. Environ. Saf. 2023, 249, 114434. [Google Scholar] [CrossRef]
- Badeenezhad, A.; Radfard, M.; Passalari, H.; Parseh, I.; Abbasi, F.; Rostami, S. Factors Affecting the Nitrate Concentration and Its Health Risk Assessment in Drinking Groundwater by Application of Monte Carlo Simulation and Geographic Information System. Hum. Ecol. Risk Assess. 2021, 27, 1458–1471. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K. Characterization of Groundwater Nitrate Exposure Using Monte Carlo and Sobol Sensitivity Approaches in the Diverse Aquifer Systems of an Agricultural Semiarid Region of Lower Ganga Basin, India. Sci. Total Environ. 2021, 787, 147657. [Google Scholar] [CrossRef]
- Jalali, M.; Karami, S.; Fatehi Marj, A. On the Problem of the Spatial Distribution Delineation of the Groundwater Quality Indicators via Multivariate Statistical and Geostatistical Approaches. Environ. Monit. Assess. 2019, 191, 323. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.; Yaseen, Z.M.; Scholz, M.; Ali, M.; Gad, M.; Elsayed, S.; Khadr, M.; Hussein, H.; Ibrahim, H.H.; Eid, M.H.; et al. Evaluation and Prediction of Groundwater Quality for Irrigation Using an Integrated Water Quality Indices, Machine Learning Models and GIS Approaches: A Representative Case Study. Water 2023, 15, 694. [Google Scholar] [CrossRef]
- Feng, W.; Wang, C.; Lei, X.; Wang, H.; Xueliang, Z. Distribution of Nitrate Content in Groundwater and Evaluation of Potential Health Risks: A Case Study of Rural Areas in Northern China. Int. J. Environ. Res. Public Health 2020, 17, 9390. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.; Gaagai, A.; Agrama, A.A.; El-Fiqy, W.F.; Eid, M.H.; Szűcs, P.; Elsayedg, S.; Elsherbinyh, O.; Khadri, M.; Abukhadra, M.R.; et al. Comprehensive Evaluation and Prediction of Groundwater Quality and Risk Indices Using Quantitative Approaches, Multivariate Analysis, and Machine Learning Models: An Exploratory Study. Heliyon 2024, 10, e36606. [Google Scholar] [CrossRef]
- Ravikumar, P.; Somashekar, R.K. Principal Component Analysis and Hydrochemical Facies Characterization to Evaluate Groundwater Quality in Varahi River Basin, Karnataka State, India. Appl. Water Sci. 2017, 7, 745–755. [Google Scholar] [CrossRef]
- Hou, Q.; Pan, Y.; Zeng, M.; Wang, S.; Shi, H.; Huang, C.; Peng, H. Assessment of Groundwater Hydrochemistry, Water Quality, and Health Risk in Hainan Island, China. Sci. Rep. 2023, 13, 12104. [Google Scholar] [CrossRef]
- Yu, G.; Wang, J.; Liu, L.; Li, Y.; Zhang, Y.; Wang, S. The Analysis of Groundwater Nitrate Pollution and Health Risk Assessment in Rural Areas of Yantai, China. BMC Public Health 2020, 20, 437. [Google Scholar] [CrossRef]
- Zendehbad, M.; Mostaghelchi, M.; Mojganfar, M.; Cepuder, P.; Loiskandl, W. Nitrate in Groundwater and Agricultural Products: Intake and Risk Assessment in Northeastern Iran. Environ. Sci. Pollut. Res. 2022, 29, 78603. [Google Scholar] [CrossRef]
- Brella, D. Identification of the Groundwater Quality and Potential Noncarcinogenic Health Risk Assessment of Nitrate in the Groundwater of El Milia Plain, Kebir Rhumel Basin, Algeria. Hydrology 2023, 10, 171. [Google Scholar] [CrossRef]
- Moeini, Z.; Azhdarpoor, A. Health Risk Assessment of Nitrate in Drinking Water in Shiraz Using Probabilistic and Deterministic Approaches and Impact of Water Supply. Environ. Chall. 2021, 5, 100326. [Google Scholar] [CrossRef]
- Jafarzadeh, N.; Heidari, K.; Meshkinian, A.; Kamani, H.; Mohammadi, A.A.; Conti, G.O. Non-Carcinogenic Risk Assessment of Exposure to Heavy Metals in Underground Water Resources in Saraven, Iran: Spatial Distribution, Monte-Carlo Simulation, Sensitive Analysis. Environ. Res. 2022, 204, 112002. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, Q.; Yang, T.; Ju, Q.; Hou, X.; Gao, W.; Jiang, S. Groundwater Pollution Source Identification and Health Risk Assessment in the North Anhui Plain, Eastern China: Insights from Positive Matrix Factorization and Monte Carlo Simulation. Sci. Total Environ. 2023, 895, 165186. [Google Scholar] [CrossRef] [PubMed]
- Morovati, R.; Badeenezhad, A.; Najafi, M.; Azhdarpoor, A. Investigating the Correlation between Chemical Parameters, Risk Assessment, and Sensitivity Analysis of Fluoride and Nitrate in Regional Groundwater Sources Using Monte Carlo. Environ. Geochem. Health 2024, 46, 5. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Neagu, D.; Trundle, P.R. Evaluation of K-Nearest Neighbour Classifier Performance for Heterogeneous Data Sets. SN Appl. Sci. 2019, 1, 1559. [Google Scholar] [CrossRef]
- Raheja, H.; Goel, A.; Pal, M. Assessment of Groundwater Quality and Human Health Risk from Nitrate Contamination Using a Multivariate Statistical Analysis. J. Water Health 2024, 22, 350–366. [Google Scholar] [CrossRef]
- Zazouli, M.A.; Dashtban, N.; Jalalvand, M.A.; Kheilgavan, S.J.; Kholerdi, F.M.; Mohammadpour, A.; Dehbandi, R. Unveiling Nitrate Contamination and Health Risks: Insights from Groundwater Quality Assessment and Monte Carlo Simulation along the Southern Caspian Sea Coasts. Groundw. Sustain. Dev. 2024, 27, 101340. [Google Scholar] [CrossRef]
Parameters | Units | WHO (2017) | Pre-Irrigation | Post-Irrigation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | CV (%) | Min | Max | Mean | SD | CV (%) | |||
pH | ‒ | 8.5 | 7.00 | 7.70 | 7.40 | 0.19 | 2.58 | 6.71 | 7.79 | 7.34 | 0.25 | 3.37 |
EC | µS/cm | 1500 | 484.00 | 3090.00 | 977.40 | 601.47 | 61.54 | 483.00 | 3833.63 | 1105.13 | 756.66 | 68.47 |
TDS | mg/L | 1000 | 314.60 | 2008.50 | 635.31 | 390.95 | 61.54 | 313.95 | 2491.86 | 718.33 | 491.83 | 68.47 |
Na+ | mg/L | 200 | 15.89 | 295.41 | 65.60 | 64.66 | 98.56 | 12.58 | 230.89 | 54.71 | 50.44 | 92.18 |
NH4+ | mg/L | 1.5 | 0.01 | 0.05 | 0.03 | 0.01 | 42.55 | 0.00 | 0.04 | 0.02 | 0.01 | 56.43 |
K+ | mg/L | 20 | 0.66 | 189.35 | 15.87 | 41.71 | 262.84 | 0.53 | 161.21 | 15.25 | 35.80 | 234.86 |
Mg2+ | mg/L | 50 | 12.22 | 115.43 | 35.76 | 24.96 | 69.80 | 13.20 | 105.09 | 31.67 | 21.70 | 68.54 |
Ca2+ | mg/L | 100 | 57.40 | 408.60 | 123.59 | 79.68 | 64.47 | 52.56 | 502.31 | 124.14 | 96.90 | 78.06 |
F− | mg/L | 1.5 | 0.20 | 2.84 | 0.99 | 0.68 | 68.17 | 0.15 | 2.05 | 0.79 | 0.52 | 66.40 |
Cl− | mg/L | 250 | 15.00 | 314.00 | 75.83 | 73.95 | 97.52 | 16.00 | 342.00 | 71.94 | 76.64 | 106.54 |
NO3− | mg/L | 50 | 27.00 | 945.00 | 138.80 | 193.69 | 139.54 | 20.77 | 797.94 | 113.56 | 165.08 | 145.36 |
SO42− | mg/L | 250 | 21.59 | 298.38 | 103.05 | 100.27 | 97.30 | 20.76 | 275.00 | 97.42 | 90.07 | 92.45 |
HCO3− | mg/L | 125 | 121.64 | 777.44 | 308.74 | 150.39 | 48.71 | 131.33 | 406.58 | 281.82 | 75.99 | 26.97 |
Pre-Irrigation Period | |||||||||
---|---|---|---|---|---|---|---|---|---|
Males | Females | Children | |||||||
HQoral | HQdermal | HQ | HQoral | HQdermal | HQ | HQoral | HQdermal | HQ | |
Min | 0.65 | 6.4 × 10−5 | 0.65 | 0.77 | 7.5 × 10−5 | 0.77 | 0.88 | 2.0 × 10−4 | 0.88 |
Max | 22.72 | 6.4 × 10−5 | 22.72 | 26.85 | 7.5 × 10−5 | 26.85 | 30.71 | 2.0 × 10−4 | 30.71 |
Mean | 3.34 | 6.4 × 10−5 | 3.34 | 3.94 | 7.5 × 10−5 | 3.94 | 4.51 | 2.0 × 10−4 | 4.51 |
Median | 2.56 | 6.4 × 10−5 | 2.56 | 3.03 | 7.5 × 10−5 | 3.03 | 3.46 | 2.0 × 10−4 | 3.46 |
Percentage of HI > 1 | 18.90% | 18.90% | 19.95% | ||||||
Post-Irrigation Period | |||||||||
Males | Females | Children | |||||||
HQoral | HQdermal | HQ | HQoral | HQdermal | HQ | HQoral | HQdermal | HQ | |
Min | 0.50 | 6.4 × 10−5 | 0.50 | 0.59 | 7.5 × 10−5 | 0.59 | 0.68 | 2.0 × 10−4 | 0.68 |
Max | 19.18 | 6.4 × 10−5 | 19.18 | 22.67 | 7.5 × 10−5 | 22.67 | 25.93 | 2.0 × 10−4 | 25.93 |
Mean | 2.73 | 6.4 × 10−5 | 2.73 | 3.23 | 7.5 × 10−5 | 3.23 | 3.69 | 2.0 × 10−4 | 3.69 |
Median | 1.95 | 6.4 × 10−5 | 1.95 | 2.30 | 7.5 × 10−5 | 2.30 | 2.63 | 2.0 × 10−4 | 2.63 |
Percentage of HI > 1 | 13.65% | 18.90% | 18.90% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazıcı Karabulut, B. A Probabilistic Approach to the Nitrate Risk Assessment of Groundwater in Intensively Farmed Region of Southeast Türkiye. Appl. Sci. 2025, 15, 6575. https://doi.org/10.3390/app15126575
Yazıcı Karabulut B. A Probabilistic Approach to the Nitrate Risk Assessment of Groundwater in Intensively Farmed Region of Southeast Türkiye. Applied Sciences. 2025; 15(12):6575. https://doi.org/10.3390/app15126575
Chicago/Turabian StyleYazıcı Karabulut, Benan. 2025. "A Probabilistic Approach to the Nitrate Risk Assessment of Groundwater in Intensively Farmed Region of Southeast Türkiye" Applied Sciences 15, no. 12: 6575. https://doi.org/10.3390/app15126575
APA StyleYazıcı Karabulut, B. (2025). A Probabilistic Approach to the Nitrate Risk Assessment of Groundwater in Intensively Farmed Region of Southeast Türkiye. Applied Sciences, 15(12), 6575. https://doi.org/10.3390/app15126575