Research on a Simplified Estimation Method for Wheel Rolling Resistance on Unpaved Runways
Abstract
:1. Introduction
2. Theory and Methods
2.1. Rolling Resistance Calculation Model Based on Wheel–Soil Interaction Mechanism
2.1.1. Wheel–Soil Interaction Model
2.1.2. Computational Model for Wheel Resistance
- 1.
- Soil reaction forces at the wheel–soil interface are strictly radial in direction;
- 2.
- The magnitude of these radial forces equals the normal pressure measured in plate-sinkage tests at equivalent depths.
- D: Wheel outer diameter;
- F: Rolling resistance;
- z0: Maximum sinkage depth;
- z: Local sinkage depth;
- θ: Angle between radial pressure and vertical axis;
- θ0: Soil entry angle.
2.2. Sobol’-Based Sensitivity Analysis of Rolling Resistance
2.2.1. Parameter Sensitivity Analysis Methodology
- Wheel characteristics: Load W, diameter D, and contact width b;
- Soil properties: Sinkage exponent n, cohesive modulus kc, and frictional modulus kφ.
- First-order sensitivity index:
- Total sensitivity index:
- 3.
- Quasi-random sampling:
- Generate N×(2k) parameter combinations via Sobol’ sequences within defined bounds;
- Partition into base matrices A and B (N × k each).
- 4.
- Hybrid matrix construction:
- 5.
- Model evaluation:
- f(A): Baseline resistance values;
- f(B): Perturbed parameter effects;
- f(Ci): Isolated Xi influences.
- 6.
- Index calculation:
- First-order sensitivity:
- Total sensitivity:
2.2.2. Sobol’ Sequence and Numerical Simulation Analysis
2.3. Parameter Determination Based on Field Tests
- Data-driven parameter optimization: The exponent N was inversely derived by fitting resistance measurements to refine n, ensuring alignment with experimental observations;
- Parametric sensitivity exploration: The exponent N was systematically varied across 1.3–1.7 (0.1 increments) to quantify its impact on predictive accuracy.
2.4. Validation of Simplified Resistance Estimation Equations
- N = 1.3: 16.9% deviation;
- N = 1.4: 13.3% deviation;
- N = 1.6: 4.0% deviation;
- N = 1.7: 44.3% deviation (rendering the prediction nonviable).
2.5. Uncertainty Analysis of Rolling Resistance Estimation
- F: Wheel rolling resistance (N);
- A = 181.2: Dimensionless composite coefficient (determined by experimental fitting);
- N = 1.39: Dimensionless soil deformation index (determined by experimental fitting);
- m = 152: Aircraft mass (t).
3. Conclusions
- The Bekker-derived resistance equation demonstrates superior practicality due to its parametric simplicity and strong correlation with measured resistance values. Its ability to balance theoretical rigor with operational measurability makes it the optimal choice for resistance prediction in unpaved surface operations.
- Among six primary parameters influencing rolling resistance, vertical load W and soil sinkage index n emerge as dominant factors. When soil conditions are fixed (e.g., at a specific airfield), W becomes the sole critical operational variable. This insight justifies the simplified power-law formulation F = AmN, which preserves essential nonlinear characteristics while simplifying the parameters compared to the original model.
- Application of the calibrated equation (N = 1.39) to takeoff performance analysis yielded a roll distance prediction of 937 m, deviating by 148 m (13.7%) from theoretical benchmarks. The 13.7% deviation falls within acceptable limits for preliminary engineering assessments, thereby confirming the model’s utility in real-world scenarios such as rapidly constructing unpaved runways after emergency events like earthquakes to promptly deliver disaster relief supplies to affected areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ohu, J.O.; Raghavan, G.S.V.; McKyes, E. Cone index prediction of compacted soils. Trans. ASAE 1988, 31, 306–310. [Google Scholar] [CrossRef]
- Busscher, W.J.; Bauer, P.J.; Camp, C.R.; Sojka, R.E. Correction of cone index for soil water content differences in a coastal plain soil. Soil Tillage Res. 1997, 43, 205–217. [Google Scholar] [CrossRef]
- Liu, M.M.; Chen, L.L.; Ren, Y.X. Evaluating vehicle trafficability on soft ground using wheel force information. Meas. Control 2024, 6, 1–8. [Google Scholar] [CrossRef]
- Lu, S.Y.; Xu, X.J.; Wang, W.H. Coupling dynamic model of vehicle-wheel-ground for all-terrain distributed driving unmanned ground vehicle. Simul. Model. Pract. Theory 2023, 128, 1281–1293. [Google Scholar] [CrossRef]
- Bernstein, R. Probleme zur experimentellen Motorpflugmechanik. Der Mot. 1913, 16, 199–206. [Google Scholar]
- Meirion-Griffith, G.; Spenko, M. A pressure-sinkage model for small-diameter wheels on compactive, deformable terrain. J. Terramechanics 2013, 50, 37–44. [Google Scholar] [CrossRef]
- Mashadi, B.; Ebrahimi-Nejad, S.; Abbaspour, M. A rolling resistance estimate using nonlinear finite element numerical analysis of a full three-dimensional tyre model. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 147–160. [Google Scholar] [CrossRef]
- Tingle, J.S.; Grogan, W.P. Behavior of unsurfaced airfields supporting operations of C-17 aircraft. J. Transp. Eng. 1999, 125, 75–84. [Google Scholar] [CrossRef]
- Tucker, A.; Childress, C.; Poremski, R. Getting Dirty: Testing C-17 Airfield Performance in Dirt and Mud Landing Zones. In Proceedings of the US Air Force T&E Days 2009, Albuquerque, NM, USA, 10–12 February 2009; p. 1712. [Google Scholar]
- Pytka, J.; Józwik, J.; Łyszczyk, T.; Gnapowski, E. Embedded wheel force sensor for aircraft landing gear testing. In Proceedings of the 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), Rome, Italy, 20–22 June 2018. [Google Scholar]
- Pytka, J.A. Identification of rolling resistance coefficients for aircraft tires on unsurfaced airfields. J. Aircr. 2014, 51, 353–360. [Google Scholar] [CrossRef]
- Pytka, J.A.; Tarkowski, P.T.; Budzyński, P.; Józwik, J. Method for testing and evaluating grassy runway surface. J. Aircr. 2017, 54, 229–234. [Google Scholar] [CrossRef]
- ICAO. Global Reporting Format (GRF) for Runway Surface Conditions, 1st ed.; Doc 10064; International Civil Aviation Organization: Montreal, QC, Canada, 2020. [Google Scholar]
- Nav Canada. Runway Surface Condition (RSC) NOTAM—Specifications and Procedures, AC 590-001. 2023. Available online: https://www.navcanada.ca/en/aeronautical-information/operational-guides/runway-surface-condition-notam.aspx (accessed on 15 October 2023).
- Transport Canada. Cracking the Code: Understanding Runway Condition Codes. Aviat. Saf. Lett. 2021, 4, 12–15. [Google Scholar]
- Reece, A.R. Principles of soil-vehicle mechanics. Proc. Inst. Mech. Eng. Automob. Div. 1965, 180, 45–66. [Google Scholar] [CrossRef]
- Pope, R.G. The effect of sinkage rate on pressure sinkage relationships and rolling resistance in real and artificial clays. J. Terramechanics 1969, 6, 31–38. [Google Scholar] [CrossRef]
- Czapla, T.; Fice, M.; Niestrój, R. Experimental identification of wheel-surface model parameters: Various terrain conditions. Sci. Rep. 2022, 12, 16015. [Google Scholar] [CrossRef]
- Ding, L.; Gao, H.; Deng, Z.; Li, Y.; Liu, G. New perspective on characterizing pressure–sinkage relationship of terrains for estimating interaction mechanics. J. Terramechanics 2014, 52, 57–76. [Google Scholar] [CrossRef]
- Meirion-Griffith, G.; Spenko, M. A modified pressure–sinkage model for small, rigid wheels on deformable terrains. J. Terramechanics 2011, 48, 149–155. [Google Scholar] [CrossRef]
- Dallas, J.; Jain, K.; Dong, Z.; Sapronov, L.; Cole, M.P.; Jayakumar, P.; Ersal, T. Online terrain estimation for autonomous vehicles on deformable terrains. J. Terramechanics 2020, 91, 11–22. [Google Scholar] [CrossRef]
- Guo, J.; Guo, T.; Zhong, M.; Gao, H.; Huang, B.; Ding, L.; Deng, Z. In-situ evaluation of terrain mechanical parameters and wheel-terrain interactions using wheel-terrain contact mechanics for wheeled planetary rovers. Mech. Mach. Theory 2020, 145, 103696. [Google Scholar] [CrossRef]
- Wang, Z.; Chong, X.; Liang, L.; Yao, Z.; Wang, G. Simplified Estimation Method for Tire Running Resistance on Soil Runways. CN Patent 202410961039.3, 29 November 2024. [Google Scholar]
- Zhang, J.; Gao, P.; Xu, W.; Su, L.; Tan, W.; Deng, Y.; Wan, L.; Cen, F. Method for Establishing Rut Prediction Model of Soil Runway Based on Large Transport Aircraft. CN Patent 202011042180.1, 29 December 2020. [Google Scholar]
- Wong, J.Y. Theory of Ground Vehicles; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 1–354. [Google Scholar]
- Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Sobol, I.M. On sensitivity estimation for nonlinear mathematical models. Mat. Model. 1990, 2, 112–118. [Google Scholar]
- Bratley, P.; Fox, B.L. Implementing Sobol’s quasirandom sequence generator (weblink) ACM Trans. on Math. Software 1988, 14, 88–100. [Google Scholar]
- Shein, I.R.; Ivanovskii, A.L. All Russian mathematical portal. Pis′ Ma V Zh. Èksper. Teoret. Fiz. 2015, 8, 33–165. [Google Scholar]
- Bai, P.K. Research on Methods for Determining Takeoff and Landing Roll Distance of Large Military Transport Aircraft on Unpaved Runways. Master’s Thesis, Air Force Engineering University, Xi’an, China, 31 December 2022. [Google Scholar]
- Yuan, J.; Wu, Y.F.; Zhang, Z.K.; Liu, S.F. Influencing Factors of Aircraft Dynamic Response under Unevenness Excitation. J. Civ. Aviat. Univ. China 2021, 39, 34–39. [Google Scholar]
- Zhang, J.; Wei, X.; Quan, Z.Q.; Wang, J.; Li, J.Y.; Zuo, S.H.; Chen, T.Y.; Wang, Y.L. Design and application of aircraft load simulation loading vehicle. Exp. Technol. Manag. 2023, 40, 141–148. [Google Scholar]
- Wang, Z.; Chong, X.; Wang, G.; Liu, C.; Zhang, J. Research on the Measurement and Estimation Method of Wheel Resistance on a Soil Runway. Coatings 2024, 14, 1062–1075. [Google Scholar] [CrossRef]
- Hao, X.J.; Yang, J. Study on Maximum Takeoff Weight Correction Method of ARJ21 under Non-Standard Conditions. J. Civ. Aviat. Flight Univ. China 2023, 34, 51–56. [Google Scholar]
Parameter | Physical Meaning | Lower Bound | Upper Bound |
---|---|---|---|
n | Soil deformation index | 0.2 | 1.2 |
b/m | Wheel width | 0.235 | 0.375 |
kc/(kN/mn+1) | Cohesive deformation modulus | 0 | 80 |
kφ/(kN/mn+2) | Frictional deformation modulus | 0 | 6000 |
W/kN | Vertical load | 0 | 2000 |
D/m | Wheel diameter | 0.5 | 1.5 |
Soil Type | n | kc/(kN/mn+1) | kφ/(kN/mn+2) |
---|---|---|---|
Clay soil | 0.5 | 13.19 | 692.15 |
Lean soil | 0.2 | 16.43 | 1724.69 |
Sandy loam | 0.9 | 52.53 | 1127.97 |
Load | Maximum (kN) | Minimum (kN) | Mean (kN) | Standard Deviation (kN) |
---|---|---|---|---|
80 kN | 7.20 | 0.01 | 3.22 | 2.25 |
4.76 | 0.22 | 2.93 | 1.12 | |
6.64 | 0.07 | 3.67 | 1.90 | |
5.85 | 0.05 | 3.25 | 1.44 | |
100 kN | 7.41 | 0.83 | 4.59 | 1.86 |
9.04 | 0.04 | 4.50 | 2.31 | |
9.82 | 0.11 | 4.23 | 2.63 | |
9.47 | 0.20 | 4.36 | 2.42 | |
120 kN | 8.70 | 2.13 | 5.04 | 1.59 |
9.79 | 2.99 | 6.14 | 1.58 | |
12.23 | 0.06 | 6.02 | 3.20 | |
10.27 | 0.01 | 5.73 | 2.43 |
Fitting Equation | R2 | 80 kN | 100 kN | 120 kN | 200 kN | 500 kN | 1000 kN | 1500 kN |
---|---|---|---|---|---|---|---|---|
Measured Value | — | 3.27 | 4.42 | 5.73 | — | — | — | — |
y = 88.1x1.7 | 0.99632 | 3.02 | 4.42 | 6.02 | 14.35 | 68.11 | 221.30 | 440.89 |
y = 111.2x1.6 | 0.99579 | 3.10 | 4.43 | 5.93 | 13.42 | 58.14 | 176.24 | 337.17 |
y = 140.2x1.5 | 0.97742 | 3.17 | 4.43 | 5.83 | 12.54 | 49.57 | 140.20 | 257.56 |
y = 176.7x1.4 | 0.99972 | 3.25 | 4.44 | 5.73 | 11.71 | 42.25 | 111.49 | 196.68 |
y = 181.2x1.39 | 0.99977 | 3.26 | 4.45 | 5.73 | 11.66 | 41.66 | 109.18 | 191.83 |
y = 223.1x1.3 | 0.99513 | 3.33 | 4.45 | 5.64 | 10.96 | 36.07 | 88.82 | 150.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, P.; Chong, X.; Wang, Z. Research on a Simplified Estimation Method for Wheel Rolling Resistance on Unpaved Runways. Appl. Sci. 2025, 15, 6566. https://doi.org/10.3390/app15126566
Guo P, Chong X, Wang Z. Research on a Simplified Estimation Method for Wheel Rolling Resistance on Unpaved Runways. Applied Sciences. 2025; 15(12):6566. https://doi.org/10.3390/app15126566
Chicago/Turabian StyleGuo, Pengshuo, Xiaolei Chong, and Zihan Wang. 2025. "Research on a Simplified Estimation Method for Wheel Rolling Resistance on Unpaved Runways" Applied Sciences 15, no. 12: 6566. https://doi.org/10.3390/app15126566
APA StyleGuo, P., Chong, X., & Wang, Z. (2025). Research on a Simplified Estimation Method for Wheel Rolling Resistance on Unpaved Runways. Applied Sciences, 15(12), 6566. https://doi.org/10.3390/app15126566