Sensitivity Analysis on the Effect of Occupant- and Vehicle-Related Parameters on Injury Risk During Autonomous Vehicle Crash
Abstract
1. Introduction
2. Methods
2.1. Simulation Framework
2.2. Active Human Body Model
2.3. Vehicle Models
2.4. Parametric Simulation
2.4.1. Simulation Matrix
2.4.2. Occupant Posture at Crash
2.4.3. Seat-Related Parameters
2.4.4. Seatbelt Types and Load Limits
2.4.5. Crash Pulses
2.5. Crash Simulation Procedure
2.6. Sensitivity Analysis
3. Results
3.1. Biofidelity Evaluation of the AHBM
3.2. Crash Pulse of an Autonomous Vehicle
3.3. Average Injury Risk from Parametric Simulations
3.4. Parameter Effects on Injury Risk
3.4.1. Effect of Seatback Angle
3.4.2. Effect of AEB Activation
3.4.3. Effect of Seat Track Position
3.4.4. Effects of Belt System Types
4. Discussion
4.1. Overview
4.2. Upright vs. Reclined Posture
4.3. Effect of Activation of AEB on Injury Risk
4.4. Effect of Seattrack Position
4.5. BPI vs. BIS
4.6. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- SAE International. Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle Automated Driving Systems, J3016_202104; SAE International: Warrendale, PA, USA, 2021. [Google Scholar]
- Koopman, P.; Wagner, M. Autonomous vehicle safety: An interdisciplinary challenge. IEEE Intell. Transp. Syst. Mag. 2017, 9, 90–96. [Google Scholar] [CrossRef]
- National Highway Traffic Safety Administration (NHTSA). Critical Reasons for Crashes Investigated in the National Motor Vehicle Crash Causation Survey; Crash Stats Report No. DOT HS 812 115; NHTSA: Washington, DC, USA, 2015. Available online: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115 (accessed on 1 April 2025).
- Zhang, L.; Yuan, K.; Chu, H.; Huang, Y.; Ding, H.; Yuan, J.; Chen, H. Pedestrian collision risk assessment based on state estimation and motion prediction. IEEE Trans. Veh. Technol. 2021, 71, 98–111. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Tang, X.; Yang, K.; Cao, D.; Lin, X. Interaction-aware decision-making for autonomous vehicles. IEEE Trans. Transp. Electrific. 2023, 9, 4704–4715. [Google Scholar] [CrossRef]
- Lubbe, N.; Wisch, M.; Seiniger, P.; Johannsen, H.; Winner, H. Predicted road traffic fatalities in Germany: The potential and limitations of vehicle safety technologies from passive safety to highly automated driving. In Proceedings of the IRCOBI Conference, Athens, Greece, 12–14 September 2018. [Google Scholar]
- McCarthy, R.L. Autonomous vehicle accident data analysis: California OL 316 Reports: 2015–2020. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2022, 8, 034502. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, X.; Wu, X.; Glaser, Y.; He, L. Crash comparison of autonomous and conventional vehicles using pre-crash scenario typology. Accid. Anal. Prev. 2021, 159, 106281. [Google Scholar] [CrossRef]
- Leledakis, A.; Östh, J.; Davidsson, J.; Jakobsson, L. The influence of car passengers’ sitting postures in intersection crashes. Accid. Anal. Prev. 2021, 157, 106170. [Google Scholar] [CrossRef]
- Leledakis, A.; Lindman, M.; Östh, J.; Wågström, L.; Davidsson, J.; Jakobsson, L. A Method for predicting crash configurations using counterfactual simulations and real-world data. Accid. Anal. Prev. 2021, 150, 105932. [Google Scholar] [CrossRef]
- Olafsdottir, J.M.; Brolin, K.; Halldin, P.; Östh, J.; Svensson, M.Y. Passenger kinematics and muscle responses in autonomous braking events with standard and reversible pre-tensioned restraints. In Proceedings of the IRCOBI Conference, Gothenburg, Sweden, 11–13 September 2013. No. IRC-13-70. [Google Scholar]
- Reed, M.P.; Ebert, S.M.; Hallman, J.J. Occupant Dynamics during Crash Avoidance Maneuvers; Report No. DOT HS 812 997; National Highway Traffic Safety Administration (NHTSA): Washington, DC, USA, 2021.
- Huber, P.; Marzougui, D.; Avdija, M. Passenger kinematics in braking, Lane change and oblique driving maneuvers. In Proceedings of the IRCOBI Conference, Lyon, France, 9–11 September 2015. [Google Scholar]
- Jorlöv, S.; Bohman, K.; Larsson, A. Seating positions and activities in highly automated cars—A qualitative study of future automated driving scenarios. In Proceedings of the IRCOBI Conference, Antwerp, Belgium, 13–15 September 2017. [Google Scholar]
- Koppel, S.; Charlton, J.; Fildes, B.; Stephens, A.; Fitzharris, M. Seating configuration and position preferences in fully automated vehicles. Traffic Inj. Prev. 2019, 20 (Suppl. S2), S103–S109. [Google Scholar] [CrossRef]
- Östling, M.; Larsson, A. Occupant activities and sitting positions in automated vehicles in China and Sweden. In Proceedings of the 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV), Eindhoven, The Netherlands, 10–13 June 2019. [Google Scholar]
- Nie, B.; Gan, S.; Chen, W.; Zhou, Q. Seating preferences in highly automated vehicles and occupant safety awareness: A national survey of Chinese perceptions. Traffic Inj. Prev. 2020, 21, 247–253. [Google Scholar] [CrossRef]
- Schaefer, L.C.; Schaefer, L.C.; Junge, M.; Vörös, I.; Koçaslan, K.; Becker, U. Odds ratios for reclined seating positions in real-world crashes. Accid. Anal. Prev. 2021, 161, 106357. [Google Scholar] [CrossRef]
- Dissanaike, S.; Kaufman, R.; Mack, C.D.; Mock, C.; Bulger, E. The effect of reclined seats on mortality in motor vehicle collisions. J. Trauma Acute Care Surg. 2008, 64, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Rawska, K.; Gepner, B.; Kulkarni, S.; Chastain, K.; Zhu, J.; Richardson, R.; Perez-Rapela, D.; Forman, J.; Kerrigan, J.R. Submarining sensitivity across varied anthropometry in an autonomous driving system environment. Traffic Inj. Prev. 2019, 20, S123–S127. [Google Scholar] [CrossRef] [PubMed]
- Rawska, K.; Gepner, B.; Moreau, D.; Kerrigan, J.R. Submarining sensitivity across varied seat configurations in autonomous driving system environment. Traffic Inj. Prev. 2020, 21, S1–S6. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.; Huang, Y.; Zhou, Q. Mechanisms of using knee bolster to control kinematical motion of occupant in reclined posture for lowering injury risk. Int. J. Crashworthiness 2017, 22, 415–424. [Google Scholar] [CrossRef]
- Porkolab, L.; Lakatos, I. A Simulation system for testing side crashes, in non-traditional seating positions, for self-driving cars. Acta Polytech. Hungarica 2023, 20, 63–82. [Google Scholar] [CrossRef]
- Östh, J.; Larsson, E.; Jakobsson, L. Human body model muscle activation influence on crash response. In Proceedings of the IRCOBI Conference, Porto, Portugal, 14–16 September 2022. [Google Scholar]
- Global Human Body Models Consortium (GHBMC). User Manual: Simplified Pedestrians Versions 1.5.3, 1.6.3, 2.4.3 for LS-DYNA®; Elemance LLC: Durham, NC, USA, 2020. [Google Scholar]
- Kato, D.; Nakahira, Y.; Atsumi, N.; Iwamoto, M. Development of human-body model THUMS Version 6 containing muscle controllers and application to injury analysis in frontal collision after brake deceleration. In Proceedings of the IRCOBI Conference, Athens, Greece, 12–14 September 2018; pp. 207–223. [Google Scholar]
- Östh, J.; Pipkorn, B.; Forsberg, J.; Iraeus, J. Numerical reproducibility of human body model crash simulations. In Proceedings of the IRCOBI Conference, Online, 8–10 September 2021. [Google Scholar]
- Tran, T.D.; Hsiao, H.M.; Kuo, C.Y.; Chen, Y.C. Validation of MADYMO human body model in braking maneuver with highly reclined seatback. Int. J. Crashworthiness 2022, 27, 1743–1752. [Google Scholar] [CrossRef]
- Matsuda, T.; Takahashi, Y.; Kimpara, H.; Shibata, T.; Watanabe, I. Simulation of occupant posture changes due to evasive manoeuvres and injury predictions in vehicle frontal and side collisions. In Proceedings of the IRCOBI Conference, Athens, Greece, 12–14 September 2018. [Google Scholar]
- Antona, J.; Ejima, S.; Zama, Y. Influence of the driver conditions on the injury outcome in front impact collisions. Int. J. Automot. Eng. 2011, 2, 33–38. [Google Scholar] [CrossRef]
- Forman, J.; Lin, H.; Gepner, B.; Wu, T. Occupant safety in automated vehicles-effect of seatback recline on occupant restraint. Int. J. Automot. Eng. 2019, 10, 139–143. [Google Scholar] [CrossRef]
- Boyle, K.J.; Reed, M.P.; Zaseck, L.W.; Hu, J. A human modelling study on occupant kinematics in highly reclined seats during frontal crashes. In Proceedings of the International Research Conference on the Biomechanics of Impact, IRCOBI, Florence, Italy, 11–13 September 2019. IRC-19-43. [Google Scholar]
- Meijer, R.; Rodarius, C.; Adamec, J.; van Nunen, E.; Van Rooij, L. A first step in computer modelling of the active human response in a far-side impact. Int. J. Crashworthiness 2008, 13, 643–652. [Google Scholar] [CrossRef]
- Kirschbichler, S.; Huber, P.; Prüggler, A.; Steidl, T.; Sinz, W.; Mayer, C.; DAddetta, G.A. Factors influencing occupant kinematics during braking and lane change maneuvers in a passenger vehicle. In Proceedings of the International IRCobi Conference on the Biomechanics of Impact, Berlin, Germany, 10–12 September 2014. [Google Scholar]
- Precooni & OM4IS Data. Available online: https://zenodo.org/records/5747370 (accessed on 6 June 2025).
- Melvin, J.; Shee, T. Facial injury assessment techniques. In Proceedings of the 12th ESV Conference, Göteborg, Sweden, 29 May–1 June 1989. [Google Scholar]
- Loyd, A.M.; Nightingale, R.W.; Song, Y.; Luck, J.F.; Cutcliffe, H.; Myers, B.S.; Bass, C.D. Impact properties of adult and ATD heads. In Proceedings of the IRCOBI Conference Proceedings, Dublin, Ireland, 12–14 September 2012; No. 507. pp. 552–564. [Google Scholar]
- Ewing, C.L.; Thomas, D.J.; Beeler, G.W.; Patrick, L.M.; Gillis, D.B. Dynamic response of the head and neck of the living human to—G x impact acceleration (No. 680792). In Proceedings of the 12th Stapp Car Crash Conference, Detroit, MI, USA, 1968. SAE Technical Paper. [Google Scholar]
- Ewing, C.L.; Thomas, D.J. Torque versus angular displacement response of human head to-Gx impact acceleration (No. 730976). In Proceedings of the 17th Stapp Car Crash Conference, Coronado, CA, USA, 17–19 November 1973. SAE Technical Paper. [Google Scholar]
- Klinich, K.; Beebe, M.; Pritz, H.; Haffner, M. Performance criteria for a biofidelic dummy neck. In Draft Report US Department of Transportation; National Highway Traffic Safety Administration, Vehicle Research and Test Center: East Liberty, OH, USA, 1992. [Google Scholar]
- Kroell, C.; Schneider, D.; Nahum, A. Impact tolerance and response of the human thorax. In Proceedings of the 15th Stapp Car Crash Conference, Coronado, CA, USA, 17–19 November 1971; pp. 84–134. [Google Scholar]
- Kroell, C.; Schneider, D.; Nahum, A. Impact tolerance and response of the human thorax II. In Proceedings of the 18th Stapp Car Crash Conference, Denver, CO, USA, 7–9 November 1974; pp. 383–457. [Google Scholar]
- Bouquet, R.; Ramet, M.; Bermond, F.; Cesari, D. Thoracic and pelvis human response to impact. In Proceedings of the 14th International Technical Conference on the Enhanced Safety of Vehicles, Toronto, ON, Canada, 23–26 May 1994; Volume 1, pp. 100–109. [Google Scholar]
- Yoganandan, N.; Pintar, F.A.; Kumaresan, S.; Haffiner, M.; Kuppa, S. Impact biomechanics of the human thorax-abdomen complex. Int. J. Crashworthiness 1997, 2, 219–228. [Google Scholar] [CrossRef]
- Viano, D.C.; Lau, I.V.; Asbury, C.; King, A.I.; Begeman, P. Biomechanics of the human chest, abdomen, and pelvis in lateral impact. Accid. Anal. Prev. 1989, 21, 553–574. [Google Scholar] [CrossRef] [PubMed]
- ISO TR 9790; Road Vehicles—Anthropomorphic Side Impact Dummy—Lateral Impact Response Requirements to Assess the Biofidelity of the Dummy. International Organization for Standardizatinon: Geneva, Switzerland, 1999.
- Subit, D.; Duprey, S.; Lau, S.; Guillemot, H.; Lessley, D.; Kent, R. Response of the human torso to lateral and oblique constant-velocity impacts. Ann. Adv. Automot. Med./Annu. Sci. Conf. 2010, 54, 27. [Google Scholar]
- Compigne, S.; Caire, Y.; Quesnel, T.; Verries, J.P. Non-injurious and injurious impact response of the human shoulder: Three-dimensional analysis of kinematics and determination of injury threshold (No. 2004-22-0005). In Proceedings of the 48th Stapp Car Crash Conference, Nashville, TN, USA, 1–3 November 2004. SAE Technical Paper. [Google Scholar]
- Cavanaugh, J.M.; Nyquist, G.W.; Goldberg, S.J.; King, A.I. Lower abdominal tolerance and response. SAE Trans. 1986, 611–633. [Google Scholar]
- Eppinger, R.; Kuppa, S.; Saul, R.; Sun, E. Supplement: Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems: II; National Highway Traffic Safety Administration (NHTSA): Washington, DC, USA, 2000.
- Gabler, L.F.; Crandall, J.R.; Panzer, M.B. Development of a second-order system for rapid estimation of maximum brain strain. Ann. Biomed. Eng. 2019, 47, 1971–1981. [Google Scholar] [CrossRef]
- Kent, R.; Patrie, J. Chest deflection tolerance to blunt anterior loading is sensitive to age but not load distribution. Forensic Sci. Int. 2005, 149, 121–128. [Google Scholar] [CrossRef]
- Craig, M.; Parent, D.; Lee, E.; Rudd, R.; Takhounts, E.; Hasija, V. Injury Criteria for the THOR 50th Male ATD; National Highway Traffic Safety Administration: Washington, DC, USA, 2020.
- Stemper, B.D.; Baisden, J.L.; Yoganandan, N.A.; Pintar, F.A.; DeRosia, J.; Whitley, P.; Shender, B.S. Effect of loading rate on injury patterns during high rate vertical acceleration. In Proceedings of the International Research Council on the Biomechanics of Injury Conference, Dublin, Ireland, 12–14 September 2012; Volume 40, pp. 217–224. [Google Scholar]
- Rupp, J.D.; Reed, M.P.; Miller, C.S.; Madura, N.H.; Klinich, K.D.; Kuppa, S.M.; Schneider, L.W. Development of new criteria for assessing the risk of knee-thigh-hip injury in frontal impacts using Hybrid III femur force measurements. In Proceedings of the 21st International Technical Conference on the Enhanced Safety of Vehicles, Stuttgart, Germany, 15–18 June 2009. Paper 09-0306. [Google Scholar]
- Rupp, J.D.; Flannagan, C.A.; Kuppa, S.M. Injury risk curves for the skeletal knee–thigh–hip complex for knee-impact loading. Accid. Anal. Prev. 2010, 42, 153–158. [Google Scholar] [CrossRef]
- Kuppa, S.; Wang, J.; Haffner, M.; Eppinger, R. Lower extremity injuries and associated injury criteria (No. 2001-06-0160). In Proceedings of the International Technical Conference on Enhanced Safety of Vehicles, Toronto, ON, Canada, 12–15 May 2001. SAE Technical Paper. [Google Scholar]
- Funk, J.R.; Srinivasan, S.C.; Crandall, J.R.; Khaewpong, N.; Eppinger, R.H.; Jaffredo, A.S.; Petit, P.Y. The effects of axial preload and dorsiflexion on the tolerance of the ankle/subtalar joint to dynamic inversion and eversion (No. 2002-22-0013). In Proceedings of the 46th Stapp Car Crash Conference, San Antonio, TX, USA, 11–13 November 2002. SAE Technical Paper. [Google Scholar]
- National Highway Traffic Safety Administration (NHTSA). Crash Simulation Vehicle Models. Available online: https://www.nhtsa.gov/crash-simulation-vehicle-models (accessed on 6 June 2025).
- Shin, Y.; Kim, M.Y.; Jeong, J. Analysis of intersection accident trend of autonomous emergency braking system vehicle based on actual accident. J. Auto-Veh. Safety Assoc. 2023, 15, 35–44. [Google Scholar]
- Hasija, V.; Ruparel, T.; Kelkar, R.; Craig, M.J.; Takhounts, E.G. Injury risk evaluation for mid-sized females using finite element human body models. In Proceedings of the IRCOBI Conference, Cambridge, UK, 13–15 September 2023. [Google Scholar]
- Park, Y.; Park, W.; Kim, S. An in-depth analysis of head-on collision accidents for frontal crash tests of automated driving vehicles. J. Auto-Veh. Safety Assoc. 2023, 15, 88–94. [Google Scholar]
- MADYMO Reference Manual Version 2022.1. Available online: https://plm.sw.siemens.com/en-US/simcenter/mechanical-simulation/madymo/ (accessed on 6 June 2025).
- The MathWorks Inc. MATLAB, Version: 9.13.0 (R2022b); The MathWorks Inc.: Natick, MA, USA, 2022; Available online: https://www.mathworks.com (accessed on 1 November 2023).
- Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Reichert, R.; Kan, C.D.S. Effect of Reclined and Rotated Seating for Automated Driving Systems; SAE Technical Paper No. 2022-01-5048; SAE International: Warrendale, PA, USA, 2022. [Google Scholar]
- Gepner, B.; Rawska, K.; Richardson, R.; Kulkarni, S.; Chastain, K.; Zhu, J.; Kerrigan, J. Challenges for occupant safety in highly automated vehicles across various anthropometries. In Proceedings of the 26th International Technical Conference on the Enhanced Safety of Vehicles (ESV): Technology: Enabling a Safer Tomorrow, Eindhoven, The Netherlands, 10–13 June 2019; National Highway Traffic Safety Administration: Washington, DC, USA, 2019. No. 19-0335. [Google Scholar]
- Östh, J.; Bohman, K.; Jakobsson, L. Evaluation of kinematics and restraint interaction when repositioning a driver from a reclined to an upright position prior to frontal impact using active human body model simulations. In Proceedings of the IRCOBI Conference, Online, 8–10 September 2020. [Google Scholar]
Type | Body Region | Test Condition | References |
---|---|---|---|
Component | Head | Frontal impact | Melvin et al., 1989 [36] |
Frontal drop | Loyd et al., 2012 [37] | ||
Neck | Frontal sled (15 g) | Ewing et al. (1968, 1973) [38,39] | |
Lateral sled (7 g) | Klinich et al., 1995 [40] | ||
Thorax | Frontal impact | Kroell et al., (1971, 1974) [41,42] | |
Frontal impact | Bouquet et al., 1994 [43] | ||
Thorax | Frontal oblique impact | Yoganandan et al., 1997 [44] | |
Thorax | Lateral oblique impact | Viano et al., 1989 [45] | |
Shoulder | Lateral impact | ISO9790 [46] | |
Lateral impact | Subit et al., 2010 [47] | ||
Lateral impact | Compigne et al., 2004 [48] | ||
Abdomen | Frontal impact | Cavanaugh et al., 1986 [49] | |
Abdomen | Lateral oblique impact | Viano et al., 1989 [45] | |
Pelvis | Lateral impact | Viano et al., 1989 [45] | |
Whole-body | Whole-body | Braking 50 km/h (1 g) | OM4IS project [13,34,35] |
Body Region | Injury Metrics (or Predictor) | AIS Level |
---|---|---|
Skull | HIC15 (Eppinger et al., 1999 [50]) | 2+ |
Brain | Damage (Gabler et al., 2019 [51]) | 2+ |
Thorax | Chest compression (Kent and Patrie, 2005 [52]) | 3+ |
Abdomen | Abdomen compression (Craig et al., 2020 [53]) | 3+ |
Cervical spine | Nij (frontal) (Eppinger et al., 1999 [50]) | 2+ |
Lumbar spine | Compressive axial force (Stemper et al., 2012 [54]) | 2+ |
Hip | Resultant force (Rupp et al., 2009 [55]) | 2+ |
Femoral condyle | Compressive axial force (Rupp et al., 2010 [56]) | 3+ |
Tibial plateau | Compressive axial force (Kuppa et al., 2001 [57]) | 2+ |
Ankle | Axial load at distal tibia (Funk et al., 2002 [58]) | 2+ |
Input Parameter | No. of Conditions | Description |
---|---|---|
Occupant posture at crash | 4 | Weak bracing with AEB activation, |
normal bracing with AEB activation, | ||
strong bracing with AEB activation, and | ||
nominal posture without AEB activation | ||
Seatback angle | 2 | Upright (19°), reclined (49°) |
Seat track position | 4 | Front (−50 mm), baseline (0 mm), rear (+50 mm), * concept rear (+300 mm) |
Seating location | 2 | Driver, passenger |
Shoulder belt load limit | 2 | Baseline (3.1 kN), low (1.55 kN) |
Seat belt type | 2 | B-pillar integrated (BPI), belt in seat (BIS) |
Crash pulse | 54 | 2 (crash scenario) × 3 (overlap) |
×3 (relative velocity) × 3 (heading angle) | ||
Total | 12,096 simulations |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, S.; Kim, T.; Kim, J. Sensitivity Analysis on the Effect of Occupant- and Vehicle-Related Parameters on Injury Risk During Autonomous Vehicle Crash. Appl. Sci. 2025, 15, 6492. https://doi.org/10.3390/app15126492
Shim S, Kim T, Kim J. Sensitivity Analysis on the Effect of Occupant- and Vehicle-Related Parameters on Injury Risk During Autonomous Vehicle Crash. Applied Sciences. 2025; 15(12):6492. https://doi.org/10.3390/app15126492
Chicago/Turabian StyleShim, Sunghyun, Taewung Kim, and Jaehoon Kim. 2025. "Sensitivity Analysis on the Effect of Occupant- and Vehicle-Related Parameters on Injury Risk During Autonomous Vehicle Crash" Applied Sciences 15, no. 12: 6492. https://doi.org/10.3390/app15126492
APA StyleShim, S., Kim, T., & Kim, J. (2025). Sensitivity Analysis on the Effect of Occupant- and Vehicle-Related Parameters on Injury Risk During Autonomous Vehicle Crash. Applied Sciences, 15(12), 6492. https://doi.org/10.3390/app15126492