High-Resolution Mapping of Subsurface Sedimentary Facies and Reservoirs Using Seismic Sedimentology
Abstract
1. Introduction
2. Current Understanding of Seismic Resolution
3. Methodology and Workflow
3.1. Step 1: Evaluate and Improve the Quality of Seismic Data
3.2. Step 2: Select Proper Seismic Attributes for Seismic Lithology
3.3. Step 3: Interpret Stratal Slices for Seismic Geomorphology
3.4. Step 4: Seismic Modeling (Optional)
- For a typical, interfingered sand–shale profile, a 90°-phase trace is a reasonable estimation for acoustic impedance and, therefore, for lithofacies (Figure 4);
- Seismic onlap or downlap patterns do not necessarily indicate the true pinch-out points of lithofacies [51];
- For a thin and shingled progradational sequence common in shallow-water deltaic systems or prograding carbonate platforms (Figure 8a), seismic clinoforms are challenging to recognize in the vertical section (Figure 8b) but more visible in a horizontal view (Figure 8c), showing the power of horizontal seismic resolution [23].
3.5. Step 5: Machine Learning for Ultrahigh-Resolution Interpretation (Optional)
4. Future Improvements
5. Conclusions
- For lithologic and facies mapping using seismic data, “high-resolution” refers to the ability to interpret the top and base of a sedimentary bed with a thickness of λ/4 (typically between 15 and 150 m) in a vertical view. Additionally, it enables the detection of beds as thin as λ/80, which range from 1 to 5 m when applying seismic sedimentology from a horizontal perspective.
- Displaying 90° data and frequency fusion on a stratal slice is one of the most effective thin-bed detective workflows for seismic sedimentology among various attribute and visualization format choices.
- Seismic modeling is essential for verifying and calibrating seismic sedimentological interpretations, such as defining seismic resolution and the true link between reflection configurations and local stratal and sedimentary architectures.
- Machine-learning-based approaches can offer a more accurate interpretation of thin-bed seismic sedimentology.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vail, P.R.; Mitchum, R.M., Jr.; Thompson, S., III. Stratigraphic interpretation of seismic reflection patterns in depositional sequences. In Seismic Stratigraphy; Payton, C.E., Ed.; American Association of Petroleum Geologists Memoir: Tulsa, OK, USA, 1977; Volume 26, pp. 63–82. [Google Scholar]
- Chopra, S.; Marfurt, K. Seismic attributes for prospect identification and reservoir characterization. Soc. Explor. Geophys. Geophys. Dev. Ser. 2007, 11, 464. [Google Scholar]
- Zhu, X.; Dong, Y.; Zeng, H.; Lin, C.; Zhang, X. Current status and future of seismic sedimentology in China. J. Palaeogeogr. 2020, 22, 397–411. [Google Scholar]
- Posamentier, H.W. Seismic geomorphology and depositional systems of deep-water environments: Observations from offshore Nigeria, Gulf of Mexico, and Indonesia. In Proceedings of the 64th EAGE Conference & Exhibition, Florence, Italy, 27–30 May 2002. [Google Scholar] [CrossRef]
- Posamentier, H.W. Seismic Geomorphology: Imaging Elements of Depositional Systems from Shelf to Deep Basin Using 3D Seismic Data: Implications for Exploration and Development. Geol. Soc. Lond. Mem. 2004, 29, 11–24. [Google Scholar] [CrossRef]
- Posamentier, H.W. Application of 3D seismic visualization techniques for seismic stratigraphy, seismic geomorphology, and depositional systems analysis: Examples from fluvial to deep-marine depositional environments. Geol. Soc. Lond. Pet. Geol. Conf. Ser. 2005, 6, 1565–1576. [Google Scholar] [CrossRef]
- Zeng, H.; Henry, S.C.; Riola, J.P. Stratal slicing: Part II. Real seismic data. Geophysics 1998, 63, 514–522. [Google Scholar] [CrossRef]
- Johnston, D.H. (Ed.) Methods and applications in reservoir geophysics. In Society of Exploration Geophysicists Investigations in Geophysics Series 15; Society of Exploration Geophysicists: Tulsa, OK, USA, 2010. [Google Scholar]
- Schlager, W. The future of applied sedimentary geology. J. Sediment. Res. 2000, 70, 2–9. [Google Scholar] [CrossRef]
- Zeng, H.; Hentz, T.F. High-frequency sequence stratigraphy from seismic sedimentology: Applied to Miocene, Vermilion Block 50, Tiger Shoal area, offshore Louisiana. Am. Assoc. Pet. Geol. Bull. 2004, 88, 153–174. [Google Scholar] [CrossRef]
- Lutome, M.S.; Lin, C.; Chunmei, D.; Zhang, X.; Harishidayat, D. Seismic sedimentology of lacustrine delta-fed turbidite systems: Implications for paleoenvironment reconstruction and reservoir prediction. Mar. Pet. Geol. 2020, 113, 104159. [Google Scholar] [CrossRef]
- Zeng, H. Ultra-thin, lacustrine sandstones imaged on stratal slices in the Cretaceous Qijia Depression, Songliao Basin, China. In Proceedings of the Society of Exploration Geophysicists Annual Meeting, San Antonio, TX, USA, 18–23 September 2011; pp. 951–955. [Google Scholar]
- Zeng, H. Improving the resolution of 3-D seismic data. Explor. Am. Assoc. Pet. Geol. 2024, 45, 44–47. [Google Scholar]
- Widess, M.B. How thin is a thin bed? Geophysics 1973, 38, 1176–1180. [Google Scholar] [CrossRef]
- Ricker, N. Wavelet contraction, wavelet expansion and the control of seismic resolution. Geophysics 1953, 18, 769–792. [Google Scholar] [CrossRef]
- Kallweit, R.S.; Wood, L.C. The limits of resolution of zero-phase wavelets. Geophysics 1982, 47, 1035–1046. [Google Scholar] [CrossRef]
- Carter, D.C. 3-D seismic geomorphology: Insights into fluvial reservoir deposition and performance, Widuri field, Java Sea. Am. Assoc. Pet. Geol. Bull. 2003, 87, 909–934. [Google Scholar] [CrossRef]
- Zhao, W.; Zou, C.; Chi, Y.; Zeng, H. Sequence stratigraphy, seismic sedimentology, and lithostratigraphic plays: Upper Cretaceous, Sifangtuozi area, southwest Songliao Basin, China. Am. Assoc. Pet. Geol. Bull. 2011, 95, 241–265. [Google Scholar] [CrossRef]
- Van Dyke, S.K. Stratal slicing for seismic sedimentology. Int. Basic Appl. Res. J. 2015, 1, 1–6. [Google Scholar]
- Cheng, S.; Jiang, Y.; Li, J.; Li, C.; Xu, L. Reservoir prediction in a development area with a high-density well pattern using seismic sedimentology: An example from the BB2 block, Changyuan LMD oil field, Songliao Basin, China. Interpretation 2015, 3, SS87–SS99. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z.; Chen, Y. Deep learning for seismic lithology prediction. Geophys. J. Int. 2018, 215, 1368–1387. [Google Scholar] [CrossRef]
- Yue, D.; Li, W.; Wang, W.; HU, G.; Qiao, H.; Zhang, M.; Wang, W.F. Fused spectral-decomposition seismic attributes and forward seismic modeling to predict sand bodies in meandering fluvial reservoirs. Mar. Pet. Geol. 2019, 99, 27–44. [Google Scholar] [CrossRef]
- Zeng, H.; Xu, Z.; Liu, W.; Janson, X.; Fu, Q. Seismic-informed carbonate shelf-to-basin transition in deeply buried Cambrian strata, Tarim Basin, China. Mar. Pet. Geol. 2022, 136, 18. [Google Scholar] [CrossRef]
- Li, W.; Yue, D.; Colombera, L.; Duan, D.; Long, T.; Wu, S.; Liu, Y. A novel method for seismic-attribute optimization driven by forward modeling and machine learning in the prediction of fluvial reservoirs. Geoenergy Sci. Eng. 2023, 227, 211952. [Google Scholar] [CrossRef]
- Xu, Z.; Li, J.T.; Li, J.; Yan, C.; Yang, S.; Wang, Y.; Shao, Z. Application of 9-component S-wave 3D seismic data to study sedimentary facies and reservoirs in a biogas-bearing area: A case study on the Pleistocene Qigequan Formation in Taidong area, Sanhu Depression, Qaidam Basin, NW China. Pet. Explor. Dev. 2024, 51, 647–660. [Google Scholar] [CrossRef]
- Posamentier, H.W. Ancient shelf ridges—A potentially significant component of the transgressive systems tract: A case study from offshore northwest Java. Am. Assoc. Pet. Geol. Bull. 2002, 86, 75–106. [Google Scholar]
- Dong, Y.; Zhu, X.; Zeng, H.; Bian, S.; Liu, C.; Cheng, K.; Xu, X. Study of seismic sedimentology in Qinan Sag (China). J. China Univ. Pet. 2008, 32, 7–12. [Google Scholar]
- Fehmers, G.C.; Höcker, C.F.W. Fast structural interpretation with structure-oriented filtering. Geophysics 2003, 68, 1286–1293. [Google Scholar] [CrossRef]
- Chopra, S.; Marfurt, K. Spectral decomposition and spectral balancing of seismic data. Lead. Edge 2016, 25, 176–179. [Google Scholar] [CrossRef]
- Portniaguine, O.; Castagna, J.P. Inverse spectral decomposition. In Proceedings of the 74th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, Denver, CO, USA, 10–15 October 2004; pp. 1786–1789. [Google Scholar]
- Smith, M.G.P.; Stein, J.; Bertrand, A.; Yu, G. Extending seismic bandwidth using the continuous wavelet transform. First Break 2008, 26, 97–102. [Google Scholar] [CrossRef]
- Liang, C.; Castagna, J.; Torres, R.Z. Tutorial: Spectral bandwidth extension—Invention versus harmonic extrapolation. Geophysics 2017, 82, W1–W16. [Google Scholar] [CrossRef]
- Matos, M.C.; Marfurt, K.J. Inverse continuous wavelet transform “deconvolution”. In Proceedings of the 81st Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, San Antonio, TX, USA, 18–24 September 2011; pp. 1861–1865. [Google Scholar]
- Taner, M.T.; Sheriff, R.E. Application of amplitude, frequency, and other attributes to stratigraphic and hydrocarbon determination. In Seismic Stratigraphy; Payton, C.E., Ed.; American Association of Petroleum Geologists Memoir: Tulsa, OK, USA, 1977; Volume 26, pp. 301–328. [Google Scholar]
- Liner, C.L.; Li, C.; Gersztenkorn, A.; Smythe, J. SPICE: A new general seismic attribute. In Proceedings of the 74th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, Denver, CO, USA, 10–15 October 2004; pp. 433–436. [Google Scholar]
- Li, C.; Liner, C. Singularity exponent from wavelet-based multiscale analysis: A new seismic attribute. Chin. J. Geophys. 2005, 48, 953–959. [Google Scholar] [CrossRef]
- Li, C.; Liner, C. Wavelet-based detection of singularities in acoustic impedances from surface seismic reflection data. Geophysics 2008, 73, V1–V9. [Google Scholar] [CrossRef]
- Matos, M.C.; Davogustto, O.; Zhang, K.; Marfurt, K.J. Detecting stratigraphic discontinuities using time-frequency seismic phase residues. Geophysics 2011, 76, 1–10. [Google Scholar] [CrossRef]
- Brown, A.R. Interpretation of three-dimensional seismic data. In American Association of Petroleum Geologists Memoir 42, 3rd ed.; Society of Exploration Geophysicists and American Association of Petroleum Geologists: Houston, TX, USA, 1991; p. 341. [Google Scholar]
- Sicking, C.J. Windowing and estimation variance in deconvolution. Geophysics 1982, 47, 1022–1034. [Google Scholar] [CrossRef]
- Zeng, H.; Backus, M.M. Interpretive advantages of 90°-phase wavelets: Part 2―Seismic applications. Geophysics 2005, 70, C17–C24. [Google Scholar] [CrossRef]
- Partyka, G.; Gridley, J.; Lopez, J. Interpretational applications of spectral decomposition in reservoir characterization. Lead. Edge 1999, 18, 353–360. [Google Scholar] [CrossRef]
- Grossmann, A.; Morlet, J. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 1984, 15, 723–736. [Google Scholar] [CrossRef]
- Mallat, S.; Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415. [Google Scholar] [CrossRef]
- Castagna, J.P.; Sun, S. Comparison of spectral decomposition methods. First Break 2006, 24, 75–79. [Google Scholar] [CrossRef]
- Wang, C.; Zong, Z.; Yin, X.; Li, K. Seismic resolution enhancement with variational modal-based fast-matching pursuit decomposition. Interpretation 2024, 12, T77–T86. [Google Scholar] [CrossRef]
- Zeng, H. Thickness imaging for high-resolution stratigraphic interpretation by linear combination and color blending of multiple-frequency panels. Interpretation 2017, 5, T411–T422. [Google Scholar] [CrossRef]
- Lindsey, J.P. The Fresnel zone and its interpretive significance. Lead. Edge 1989, 8, 33–39. [Google Scholar] [CrossRef]
- Sheriff, R.E. Encyclopedic Dictionary of Exploration Geophysics, 3rd ed.; Society of Exploration Geophysicists: Tulisan, Brazil, 1991; p. 383. [Google Scholar]
- Posamentier, H.W.; Dorn, G.A.; Cole, M.J.; Beierle, C.W.; Ross, S.P. Imaging elements of depositional systems with 3-D seismic data: A case study. In Proceedings of the Gulf Coast Section SEPM Foundation, 17th Annual Research Conference, Houston, TX, USA, 8–11 December 1996; pp. 213–228. [Google Scholar]
- Biddle, K.T.; Schlager, W.; Rudolph, K.W.; Bush, T.L. Seismic model of a progradational carbonate platform, Picco di Vallandro, the Dolomites, Northern Italy. Am. Assoc. Pet. Geol. Bull. 1992, 76, 14–30. [Google Scholar]
- Tipper, J.C. Do seismic reflections necessarily have chronostratigraphic significance? Geol. Mag. 1993, 130, 47–55. [Google Scholar] [CrossRef]
- He, Y.; Zeng, H.; Kerans, C.; Hardage, B.A. Seismic chronostratigraphy at reservoir scale: Statistical modeling. Interpretation 2015, 3, SN69–SN87. [Google Scholar] [CrossRef]
- Wang, W.; Wu, X.; Zeng, H.; Janson, X.; Kerans, C. Stratal surfaces honoring seismic structures and interpreted geologic time surfaces. Geophysics 2024, 89, N45–N57. [Google Scholar] [CrossRef]
- Harishidayat, D.; Al-Shuhail, A.; Randazzo, G.; Lanza, S.; Muzirafuti, A. Reconstruction of Land and Marine Features by Seismic and Surface Geomorphology Techniques. Appl. Sci. 2022, 12, 9611. [Google Scholar] [CrossRef]
- Kluesner, J.W.; Brothers, D. Seismic attribute detection of faults and fluid pathways within an active strike-slip shear zone: New insights from high-resolution 3D P-CableTM seismic data along the Hosgri fault, offshore California. Interpretation 2016, 4, SB131–SB148. [Google Scholar] [CrossRef]
- Feng, Y.E.; Meckel, T.; Hess, T. Processing techniques and challenges for high-resolution 3D marine seismic data: Case studies from the Gulf of Mexico and Japan. In Proceedings of the 89th Annual International Meeting, Society of Exploration Geophysicists, Expanded Abstracts, San Antonio, TX, USA, 15–20 September 2019; p. 3969. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, H. High-Resolution Mapping of Subsurface Sedimentary Facies and Reservoirs Using Seismic Sedimentology. Appl. Sci. 2025, 15, 6387. https://doi.org/10.3390/app15126387
Zeng H. High-Resolution Mapping of Subsurface Sedimentary Facies and Reservoirs Using Seismic Sedimentology. Applied Sciences. 2025; 15(12):6387. https://doi.org/10.3390/app15126387
Chicago/Turabian StyleZeng, Hongliu. 2025. "High-Resolution Mapping of Subsurface Sedimentary Facies and Reservoirs Using Seismic Sedimentology" Applied Sciences 15, no. 12: 6387. https://doi.org/10.3390/app15126387
APA StyleZeng, H. (2025). High-Resolution Mapping of Subsurface Sedimentary Facies and Reservoirs Using Seismic Sedimentology. Applied Sciences, 15(12), 6387. https://doi.org/10.3390/app15126387